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Abstract—We focus on the maximum regularization parameter for
anisotropic total-variation denoising. It corresponds to the minimum
value of the regularization parameter above which the solution remains
constant. While this value is well know for the Lasso, such a critical
value has not been investigated in details for the total-variation. Though,
it is of importance when tuning the regularization parameter as it allows
fixing an upper-bound on the grid for which the optimal parameter is
sought. We establish a closed form expression for the one-dimensional
case, as well as an upper-bound for the two-dimensional case, that
appears reasonably tight in practice. This problem is directly linked
to the computation of the pseudo-inverse of the divergence, which can
be quickly obtained by performing convolutions in the Fourier domain.

I. INTRODUCTION

We consider the reconstruction of a d-dimensional signal (in this
study d = 1 or 2) from its noisy observation y =z + w € R" with
w €R™. Anisotropic TV regularization writes, for A > 0, as [1]

1
& = argmin = |y — z|5 + A|Vz|: ¢))
rER™ 2

with Vz € R being the concatenation of the d components of
the discrete periodical gradient vector field of z, and |Vz|; =
>, 1(Va)i| being a sparsity promoting term. The operator V acts
as a convolution which writes in the one dimensional case (d = 1)

V = Ftdiag(K-)F and div= FTdiag(K_)F (2)

where div = —V " (where ' denotes the adjoint), F' : R s C"
is the Fourier transform, F*™ = Re[F'~'] is its pseudo-inverse and
K, € C" and K. € C" are the Fourier transforms of the
kernel functions performing forward and backward finite differences
respectively. Similarly, we define in the two dimensional case (d = 2)

_(Ft 0 diag(K)
V= < 0 F*) (diag(Kﬁ) F L
and div=F" (diag(K;) diag(K.)) F0 )
T “\o F
where K, € C" and K. € C" (resp. K, € C" and K+ € C")
perform forward and backward finite difference in the horizontal
(resp. vertical) direction.

II. GENERAL CASE

For the general case, the following proposition provides an expres-
sion of the maximum regularization parameter A\max as the solution
of a convex but non-trivial optimization problem (direct consequence
of the Karush-Khun-Tucker condition).

Proposition 1. Define for y € R",
vy + Clleo ®)

min
¢eKerl[div,

Amax =

where div™ is the Moore-Penrose pseudo-inverse of div and Ker[div]
its null space. Then, v* = %Ilnl;:y if and only if A > Amax.
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III. ONE DIMENSIONAL CASE

In the 1d case, Ker[div] = Span(1,) and thus the optimization
problem can be solved by computing div* in the Fourier domain, in
O(nlogn) operations, as shown in the next corollary.

Corollary 1. For d = 1, Amax = 3[max(divt y) — min(div* y)],
where div" = F" diag(K;)F (6)

(K1)7 . 2
and (K;r)lz{ Conad |(Er)il” > 0

0 otherwise
and * denotes the complex conjugate.

Note that the condition |(K7);|* > 0 is satisfied everywhere except
for the zero frequency. In the non-periodical case, div is the incidence
matrix of a tree whose pseudo-inverse can be obtained following [2].

IV. TWO DIMENSIONAL CASE

In the 2d case, Ker[div] is the orthogonal of the vector space
of signals satisfying Kirchhoff’s voltage law on all cycles of the
periodical grid. Its dimension is n+ 1. It follows that the optimization
problem becomes much harder. Since our motivation is only to
provide an approximation of Amax, We propose to compute an upper-
bound in O(nlogn) operations thanks to the following corollary.

Corollary 2. For d =2, Amax < 5[max(div’ y) —min(div" y)],

Abnd
. Ft 0 diag(K:H)
h divt = 1) F d 7
where v ( 0 F+> <diag(K:) y  an N
(K1) .
iy { T D G > 0
T 0 otherwise

Kot .
(k2= | T 8 KP4 K >0
- 0 otherwise

Note that the condition |(K4)s|*> +|(K<):|? > 0 is again satisfied
everywhere except for the zero frequency. Remark also that this result
can be straightforwardly extended to the case where d > 2.

V. RESULTS AND DISCUSSION

Figure 1 and 2 provide illustrations of the computation of Amax
and Apnq on a 1d signal and a 2d image respectively. The convolution
kernel is a simple triangle wave in the 1d case but is more complex
in the 2d case. The operator divdiv™ is in fact the projector onto
the space of zero-mean signals, i.e., Im[div]. Figure 3 illustrates
the evolution of z* with respect to A (computed with the algorithm
of [3]). Our upper-bound Apng (computed in ~5ms) appears to be
reasonably tight (Amax computed in ~25s with [3] on Problem (5)).

Future work will concern the generalization of these results to other
£ analysis regularization and to ill-posed inverse problems.
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Fig. 1. (a) A 1d signal y. (b) The convolution kernel F' +K%~' that realizes the pseudo inversion of the divergence. (c) The signal divT y on which we can
read the value of Amax. (d) The signal divdivt y showing that one can reconstruct y from divt g up to its mean component.
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Fig. 2. (a) A 2d signal y. (b) The convolution kernels Ft Kr and FTK ;L that realizes the pseudo inversion of the divergence. (c) The absolute value of

the two coordinates of the vector field divt y on which we can read the upper-bound Apyg of Amax. (d) The image div divT y showing again that one can
reconstruct y from divt y up to its mean component.
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Fig. 3. (a) Evolution of |Vz* |« as a function of A. (b), (c), (d) Results z* of the periodical anisotropic total-variation for three different values of .
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