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SEMI-FREDHOLMNESS OF THE DISCRETE GAUSS-BONNET OPERATOR

HÈLA AYADI

ABSTRACT. In the context of an infinite locally finite weighted graph, we give a necessary and sufficient
condition for semi-Fredholmness of the Gauss-Bonnet operator. This result is a discrete version of the
theorem of Gilles Carron in the continuous case [5]. In addition, using a criterion of Anghel [2], we give
a sufficient condition to have an operator of Gauss-Bonnet with closed range. Finally, this work can be
considered as an extension of the work of Colette Anné and Nabila Torki-Hamza [3].

CONTENTS

1. Introduction 1
2. Preliminaries 1
2.1. Definitions and notations 1
2.2. The weighted graph 2
2.3. The notion of subgraph 2
2.4. Functional spaces 2
2.5. Operators and properties 3
3. Non-parabolicity at infinity 5
4. Semi-Fredholmness of the discrete Gauss-Bonnet operator 11
5. Examples 16
5.1. A star-like graph 16
5.2. The triadic tree 17
References 19

1. INTRODUCTION

Dirac type operators have become of central importance in many branches of mathematics such as
PDE’s, differential geometry and topology (see [4], [7], [12]..), since the introduction in 1928 by the
physicist Paul Dirac of a first-order linear differential operator whose square is the Laplacian operator.
In particular, this paper focuses on the conditions to have semi-Fredholmness of the discrete Gauss-
Bonnet operator needed to approach the Hodge decomposition theorem [3]. In fact, we present a discrete
version of the work of G. Carron [5], which defines a new concept "non-parabolicity at infinity" to have
the Gauss-Bonnet operator with closed range. Indeed, G. Carron’s condition is quite weaker than the
one given by Anghel [2]. Moreover, we provide a new sufficient condition to obtain a Gauss-Bonnet
operator semi-Fredholm. Finally, we give two explicit examples one example verifying the property of
non-parabolicity at infinity, and the other not.
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2. PRELIMINARIES

2.1. Definitions and notations.
• A graph G is a couple (V, E) where V is a set at most countable whose elements are called

vertices and E is a set of oriented edges, considered as a subset of V × V .
• If the graph G has a finite set of vertices, it’s called a finite graph. Otherwise, G is called infinite

graph.
• We assume that E is symmetric without loops:

v ∈ V ⇒ (v, v) /∈ E , (v1, v2) ∈ E ⇒ (v2, v1) ∈ E .

• Choosing an orientation of G consists of defining a partition of E : E+ t E− = E

(v1, v2) ∈ E+ ⇔ (v2, v1) ∈ E−.

• For e = (v1, v2), we denote

e− = v1, e
+ = v2 and − e = (v2, v1).

• The graph G is connected if, any two vertices x, y in V can be joined by a path of edges γxy, that
means,

γxy = {ek}k=1,...,n with e
−
1 = x, e+n = y and if n ≥ 2 , ∀j ; 1 ≤ j ≤ (n− 1)⇒ e+j = e−j+1.

• The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

deg(x) := ]{e ∈ E ; e− = x}.

• If deg(x) <∞, ∀x ∈ V , we say that G is a locally finite graph.

2.2. The weighted graph. The weighted graph (G, c, r) is given by the graph G = (V, E), a weight on
the vertices c : V →]0,∞[ and a weight on the edges r : E →]0,∞[such that r(−e) = r(e).

Examples: - An infinite electrical network is a weighted graph (G, c, r) where the weights of the
edges called resistances r; their reciprocals are called conductances. And the weights of the vertices
given by c(x) =

∑
y∈V

1
r(x,y) <∞, ∀x ∈ V .

-The graph G called a simple graph where the weights of the edges and the vertices equals 1.

All the graphs we shall consider on the sequel will be weighted, connected and locally finite.

2.3. The notion of subgraph. A subgraph of a graph G is a graph GK := (K, EK) such that K ⊂ V
and EK := {e ∈ E ; e−, e+ ∈ K}.

For such a subgraph we define:

• the vertex boundary :

∂K := {x ∈ V \K;∃y ∈ K, (x, y) ∈ E},

• the edge boundary:

∂EK := {e ∈ E ; e− ∈ K and e+ /∈ K or e+ ∈ K and e− /∈ K}.
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2.4. Functional spaces. We denote the set of real functions on V by:

C(V) = {f : V → R}
and the set of functions of finite support by C0(V).

Moreover, we denote the set of real skewsymmetric functions on E by:

Ca(E) = {ϕ : E → R ;ϕ(−e) = −ϕ(e)}
and the set of functions of finite support by Ca0 (E).

We define on the weighted graph (G, c, r) the following function spaces endowed of the scalar prod-
ucts.

a):

l2(V) :=

{
f ∈ C(V);

∑
x∈V

c(x)f2(x) <∞

}
,

with the inner product

〈f, g〉V =
∑
x∈V

c(x)f(x)g(x)

and the norm
‖f‖l2(V) =

√
〈f, f〉V .

b):

l2(E) :=

{
ϕ ∈ Ca(E); 1

2

∑
e∈E

r(e)ϕ2(e) <∞

}
,

with the inner product

〈ϕ,ψ〉E =
1

2

∑
e∈E

r(e)ϕ(e)ψ(e)

and the norm
‖ϕ‖l2(E) =

√
〈ϕ,ϕ〉E .

As a consequence, we define the direct sums of l2(V) and l2(E) by:

l2(G) := l2(V)⊕ l2(E) =
{
(f, ϕ), f ∈ l2(V) and ϕ ∈ l2(E)

}
,

with the norm
‖(f, ϕ)‖2l2(G) := ‖f‖

2
l2(V) + ‖ϕ‖

2
l2(E) .

2.5. Operators and properties. The difference operator: it is the operator

d : C0(V) −→ Ca0 (E),
given by

d(f)(e) = f(e+)− f(e−).
The coboundary operator: it is δ the formal adjoint of d. Thus it satisfies

(2.1) 〈df, ϕ〉E = 〈f, δϕ〉V
for all f ∈ C0(V) and for all ϕ ∈ Ca0 (E).

As consequence, we have the following formula characterizing δ :
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Lemma 2.1. The coboundary operator δ is characterized by the formula

δϕ(x) =
1

c(x)

∑
e,e+=x

r(e)ϕ(e),

for all ϕ ∈ Ca0 (E).

Proof
For f ∈ C0(V) and ϕ ∈ Ca0 (E), using (2.1), we get

〈df, ϕ〉E =
1

2

∑
e∈E

r(e)df(e)ϕ(e)

=
1

2

∑
e∈E

r(e)
(
f(e+)− f(e−)

)
ϕ(e)

=
1

2

∑
x∈V

f(x)

 ∑
e,e+=x

r(e)ϕ(e)−
∑

e,e−=x

r(e)ϕ(e)

 .

But, r(−e) = r(e) and
∑

e,e+=x

r(e)ϕ(e) = −
∑

e,e−=x

r(e)ϕ(e).

So we have,

〈df, ϕ〉E =
∑
x∈V

c(x)f(x)

 1

c(x)

∑
e,e+=x

r(e)ϕ(e)


= 〈f, δϕ〉V .

�

We introduce now a very important result inspired by [11].

Lemma 2.2. Let x and x0 in V , then there exists a positive constant Cxx0 such that

(2.2) |f(x)| ≤ Cxx0
(
|f(x0)|+ ‖df‖l2(E)

)
,

for all f ∈ C0(V).

Proof
As G is connected, then we can find a path γxx0 joining x to x0, i.e,

γxx0 = {ek}k=1,...,n with e
−
1 = x, e+n = x0 and if n ≥ 2 , ∀j ; 1 ≤ j ≤ (n− 1)⇒ e+j = e−j+1.

Then, using the triangle inequality, we have

|f(x)− f(x0)| =
∣∣f(x)− f(e+1 ) + f(e+1 )− f(e

+
2 ) + ...+ f(e+n−1)− f(x0)

∣∣
≤ |df(e1)|+ |df(e2)|+ ...+ |df(en)|

≤
∑

e∈γxx0

1√
r(e)

√
r(e) |df(e)| .



SEMI-FREDHOLMNESS OF THE DISCRETE GAUSS-BONNET OPERATOR 5

Applying the Cauchy-Schwarz inequality, we obtain

|f(x)− f(x0)| ≤

 ∑
e∈γxx0

1

r(e)

 1
2
 ∑
e∈γxx0

r(e)(df(e))2

 1
2

≤ Sxx0

(∑
e∈E

r(e)(df(e))2

) 1
2

≤ Sxx0 ‖df‖l2(E) ,

with Sxx0 =

 ∑
e∈γxx0

1

r(e)

 1
2

.

Thus, we deduce that

|f(x)| ≤ |f(x)− f(x0)|+ |f(x0)|
≤ Sxx0 ‖df‖l2(E) + |f(x0)|

≤ Cxx0

(
‖df‖l2(E) + |f(x0)|

)
,

with Cxx0 = max(Sxx0 , 1). �

Before giving another important result, for f ∈ C0(V), we define the mean value f of f by

f(e) =
f(e+) + f(e−)

2

for all e ∈ E .

And we have from [10] the following derivation property:

Lemma 2.3. For f, g ∈ C0(V) and ϕ ∈ Ca0 (E), it follows

(2.3) d(fg)(e) = f(e+)dg(e) + g(e−)d(f)(e).

(2.4) δ(fϕ)(x) = f(x)δϕ(x)− 1

2c(x)

∑
e,e+=x

r(e)d(f)(e)ϕ(e).

Proof
For f, g ∈ C0(V) and e ∈ E ,

d(fg)(e) = (fg)(e+)− (fg)(e−)

= f(e+)
(
g(e+)− g(e−)

)
+ g(e−)

(
f(e+)− f(e−)

)
= f(e+)d(g)(e) + g(e−)d(f)(e).
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On the other hand, for ϕ ∈ Ca0 (E) applying the characterization of δ from Lemma (2.1) to the function
fϕ ∈ Ca0 (E), we have

δ(fϕ)(x) =
1

c(x)

∑
e,e+=x

r(e)(fϕ)(e)

=
1

c(x)

∑
e,e+=x

r(e)

(
f(e+) + f(e−)

2

)
ϕ(e)

=
1

c(x)

∑
e,e+=x

r(e)f(e+)ϕ(e) +
1

c(x)

∑
e,e+=x

r(e)

(
f(e−)− f(e+)

2

)
ϕ(e)

= f(x)
1

c(x)

∑
e,e+=x

r(e)ϕ(e) +
1

2c(x)

∑
e,e+=x

r(e)d(f)(−e)ϕ(e)

= f(x)δ(ϕ)(x)− 1

2c(x)

∑
e,e+=x

r(e)d(f)(e)ϕ(e).

�

The Gauss-Bonnet operator: it is the endomorphism

D = d + δ : C0(V)⊕ Ca0 (E) −→ C0(V)⊕ Ca0 (E)
with,

D(f, ϕ) = δϕ+ df, ∀(f, ϕ) ∈ C0(V)⊕ Ca0 (E).
And it is a symmetric operator.

3. NON-PARABOLICITY AT INFINITY

Now we introduce the discrete result of Carron [5]:

Definition 3.1. We say that D is non-parabolic at infinity if there is a finite subgraph GK of G such that
for all finite subset U ofG\GK , there exists a positive constant C = C(U) such that holds the following
inequality

C ‖(f, ϕ)‖l2(U) ≤ ‖D(f, ϕ)‖l2(G\GK) , ∀(f, ϕ) ∈ C0(V \K)× Ca0 (E \ EK).

Remark 3.1. We call a finite subset U of G a couple U := (VU , EU ) such that VU is a finite subset of V
and EU is a finite subset of E . And, we denote

‖(f, ϕ)‖2l2(U) = ‖f‖
2
l2(VU ) + ‖ϕ‖

2
l2(EU ) .

Definition 3.2. G
K̃

is a neighborhood of GK if G
K̃

:= (K̃, E
K̃
) is a finite subgraph of G such that

i) K ⊂ K̃ finite,

ii) EK t ∂EK ⊂ EK̃ ,

iii) e = (x, y) ∈ E
K̃
⇒ x, y ∈ K̃.

Since we can define the smallest neighborhood of GK by G
K̃0

, where G
K̃0

is a finite subgraph of G
contains GK and its boundary.

Remark 3.2. In [9], G
K̃0

is called a combinatorial neighborhood of GK .
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Lemma 3.1. If D is non-parabolic at infinity then, for every finite subset U of G there exists a positive
constant C ′ = C ′(U) such that

(3.5) C ′ ‖(f, ϕ)‖l2(U) ≤ ‖D(f, ϕ)‖l2(G) + ‖(f, ϕ)‖l2(G
K̃
) , ∀(f, ϕ) ∈ C0(V)⊕ C

a
0 (E),

where G
K̃

is a neighborhood of GK .

Proof
Since U is a finite subset of G it can be reduced to a point or an edge.

Let x any vertex of G, we start by proving

C ′ |f(x)| ≤ ‖df‖l2(E) + ‖f‖l2(K̃)
, ∀f ∈ C0(V).

G
K̃

is a finite subgraph of G, so according to Lemma 2.2, we obtain

(3.6) f2(x) ≤ C1

(
‖f‖2

l2(K̃)
+ ‖df‖2l2(E)

)
,

where C1 is a positive constant which depends on x and K̃. Indeed:
let x ∈ V and x0 ∈ K̃, using Lemma 2.2, we obtain

(3.7) f2(x) ≤ Cxx0
(
f2(x0) + ‖df‖2l2(E)

)
.

Multiplying (3.7) by c(x0) > 0, we get

c(x0)f
2(x) ≤ Cxx0

(
c(x0)f

2(x0) + c(x0) ‖df‖2l2(E)
)

≤ Cxx0

(
‖f‖2

l2(K̃)
+ c(x0) ‖df‖2l2(E)

)
≤ C ′xx0

(
‖f‖2

l2(K̃)
+ ‖df‖2l2(E)

)
,

where C ′xx0 = max(Cxx0 , c(x0)Cxx0).
Then, we have

f2(x) ≤
C ′xx0
c(x0)

(
‖f‖2

l2(K̃)
+ ‖df‖2l2(E)

)
.

Finally, we obtain

f2(x) ≤ C1

(
‖f‖2

l2(K̃)
+ ‖df‖2l2(E)

)
where C1 =

C′xx0
c(x0)

.

On the other hand, we want to show the following inequality, for any edge e ∈ E

C ′′ |ϕ(e)| ≤ ‖δϕ‖l2(V) + ‖ϕ‖l2(E
K̃
) , ∀ϕ ∈ C0(E).

For e ∈ EK ⊂ EK̃ finite, we have

ϕ2(e) ≤ ‖ϕ‖2l2(E
K̃
) ≤ ‖ϕ‖

2
l2(E

K̃
) + ‖δϕ‖

2
l2(V) .

And if e ∈ E \ EK , we consider the indicator function of Kc, denoted by χ

(3.8) χ(x) =

 0 if x ∈ K

1 otherwise.
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which gives

dχ(e) =


0 if e ∈ EK ,

±1 if e ∈ ∂EK ,

0 otherwise.

& χ(e) =


0 if e ∈ EK ,

1
2 if e ∈ ∂EK ,

1 otherwise.

Let ϕ ∈ Ca0 (E), we have then χϕ with finite support in E \ EK . Thus, applying the definition of the
non-parabolicity at infinity of D to the function (0, χϕ), we obtain

‖χϕ‖2l2(U) ≤ C ‖δ(χϕ)‖
2
l2(V) ,

where C = 1
C(U) .

Since we have e ∈ E \ EK , this implies that

(3.9) ϕ2(e) ≤ C ‖δ(χϕ)‖2l2(V) .

The derivation property of Lemma (2.3), gives

δ(χϕ)(x) = χ(x)δϕ(x)− 1

2c(x)

∑
e,e+=x

r(e)d(χ)(e)ϕ(e).

And by the inequality (a− b)2 ≤ 2(a2 + b2), we obtain

‖δ(χϕ)‖2l2(V) =
∑
x∈V

c(x)(δ(χϕ))2

≤ 2


∑
x∈V

c(x) (χ(x)δϕ(x))2︸ ︷︷ ︸
I

+
∑
x∈V

c(x)

 1

2c(x)

∑
e,e+=x

r(e)d(χ)(e)ϕ(e)

2

︸ ︷︷ ︸
J

 .

So, for the first term we have

(3.10) I =
∑

x∈V\K

c(x) (δϕ(x))2 ≤ ‖δϕ‖2l2(V)

and for the second one, we get

(3.11) J =
∑
x∈K

1

2c(x)

 ∑
e,e+=x

r(e)d(χ)(e)ϕ(e)

2

︸ ︷︷ ︸
J1

+
∑

x∈V\K

1

2c(x)

 ∑
e,e+=x

r(e)d(χ)(e)ϕ(e)

2

︸ ︷︷ ︸
J2

.
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Using that supp(dχ) = ∂EK ⊂ EK̃ and the Cauchy-Schwarz inequality, we obtain

J1 =
∑
x∈K

1

2c(x)

 ∑
e,e+=x

e∈supp(dχ)

r(e)ϕ(e)


2

= CK

 ∑
e∈supp(dχ)

r(e)ϕ(e)

2

≤ CK

 ∑
e∈supp(dχ)

r(e)

 ∑
e∈supp(dχ)

r(e)ϕ2(e)


≤ CKC

′
K

∑
e∈E

K̃

r(e)ϕ2(e)

= C2 ‖ϕ‖2l2(E
K̃
) ,

where CK = max
x∈K

1
2c(x) , C ′K = ]E

K̃
max
e∈E

K̃

r(e) and C2 = CKC
′
K .

And for J2, we have e = (e−, e+) ∈ supp(dχ) = ∂EK , so if e− ∈ K, e+ ∈ ∂K.

J2 =
∑
x∈∂K

1

2c(x)

 ∑
e,e+=x

e∈supp(dχ)

r(e)ϕ(e)


2

= C ′′K

 ∑
e∈supp(dχ)

r(e)ϕ(e)

2

≤ C ′′K

 ∑
e∈supp(dχ)

r(e)

 ∑
e∈supp(dχ)

r(e)ϕ2(e)


≤ C ′′KC

′
K

∑
e∈E

K̃

r(e)ϕ2(e)

= C ′2 ‖ϕ‖
2
l2(E

K̃
) ,

where C ′′K = max
x∈∂K

1
2c(x) and C ′2 = C ′′KC

′
K .

Thus, (3.11) becomes

(3.12) J ≤ C ′′2 ‖ϕ‖
2
l2(E

K̃
) ,

where C ′′2 = max(C2, C
′
2).

So by (3.10) and (3.12), we get

(3.13) ‖δ(χϕ)‖2l2(V) ≤ max(2, 2C
′′
2 )
(
‖δϕ‖2l2(V) + ‖ϕ‖

2
l2(E

K̃
)

)
.
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Finally, (3.9) and (3.13) give

ϕ2(e) ≤ C̃
(
‖δϕ‖2l2(V) + ‖ϕ‖

2
l2(E

K̃
)

)
where C̃ =

2max(1,C′′2 )
C .

�

Proposition 3.1. If D is non-parabolic at infinity, then we can construct a Hilbert space W such that :
(1) C0(V)⊕ Ca0 (E) is dense in W .
(2) The injection of C0(V)⊕ Ca0 (E) to C(V)⊕ Ca(E) extends by continuity to W .
(3) D :W −→ l2(G) is a bounded operator.

Remark 3.3. In 1) and 2) we use the topology of ponctual convergence on C(V)⊕ Ca(E), it means, the
sequence (fn, ϕn) converges ponctually to (f, ϕ) on C(V)⊕ Ca(E) if fn(x) converges to f(x), ∀x ∈ V
and ϕn(e) converges to ϕ(e), ∀e ∈ E .

Remark 3.4. In Carron’s paper [5], the injection of the space of functions with compact support to l2loc
extends by continuity toW . But, in our case we didn’t need to introduce the space l2loc because in discrete
case this notion is trivial.

Proof
Let us denote by W the closure of C0(V)⊕ Ca0 (E) for the norm

N
K̃
(f, ϕ) =

(
‖(f, ϕ)‖2l2(G

K̃
) + ‖D(f, ϕ)‖2l2(G)

) 1
2
,

where G
K̃

is a neighborhood of GK (see Definition (3.2)).

Aim i): N
K̃

is a norm on W , we just look at the nullity, we have

N
K̃
(f, ϕ) = 0 ⇔ ‖(f, ϕ)‖l2(G

K̃
) = 0 and ‖D(f, ϕ)‖l2(G) = 0

⇔ ‖f‖
l2(K̃)

= 0, ‖ϕ‖l2(E
K̃
) = 0, ‖df‖l2(E) = 0 and ‖δϕ‖l2(V) = 0.

For any x ∈ V and as ]K̃ <∞, from Lemma (3.1), we get

(3.14) f2(x) ≤ C1

(
‖f‖2

l2(K̃)
+ ‖df‖2l2(E)

)
.

But, ‖f‖
l2(K̃)

= 0 and ‖df‖l2(E) = 0. So it follows immediately that f = 0 on V .

It remains to show that if ‖ϕ‖l2(E
K̃
) = 0 and ‖δϕ‖l2(V) = 0 then ϕ = 0. We suppose that ϕ 6= 0.

ϕ is a finite support function in E \ E
K̃

and therefore, by Lemma (3.1) where U equals to the support
of ϕ, there exists a positive constant C such that

C ‖ϕ‖l2(EU ) ≤ ‖ϕ‖l2(EK̃) + ‖δϕ‖l2(V) .

But, ‖ϕ‖l2(E
K̃
) = ‖δϕ‖l2(V) = 0, since we get ϕ = 0 on EU , which is impossible.

Aim ii) Show that the space W is independent of the choice of G
K̃

.

Let G
K̃1

be another neighborhood of GK such that K ⊂ K̃0 ⊂ K̃1.

So, we have
N
K̃0

(f, ϕ) ≤ N
K̃1

(f, ϕ).
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Moreover, to show the existence of a constant C > 0 such that N
K̃1

(f, ϕ) ≤ CN
K̃0

(f, ϕ), it suffices
to show the existence of a constant C > 0 such that ‖(f, ϕ)‖2

l2(K̃1\K̃ 0̂)
≤ CN2

K̃0
(f, ϕ). Indeed, we have

N2
K̃1

(f, ϕ) = ‖(f, ϕ)‖2
l2(K̃1)

+ ‖D(f, ϕ)‖2l2(G)

= ‖(f, ϕ)‖2
l2(K̃1\K̃0)

+ ‖(f, ϕ)‖2
l2(K̃0)

+ ‖D(f, ϕ)‖2l2(G)

= ‖(f, ϕ)‖2
l2(K̃1\K̃0)

+N2
K̃0

(f, ϕ).

Using lemma (3.1) and as we have ](K̃1 \ K̃0) <∞, we get

‖f‖2
l2(K̃1\K̃0)

≤ C
(
‖f‖2

l2(K̃0)
+ ‖df‖2l2(E)

)
,

where C = C(K̃1 \ K̃0, K̃0).

And

‖ϕ‖2l2(E
K̃1
\E
K̃0

) ≤ C
(
‖ϕ‖2l2(E

K̃0
) + ‖δϕ‖

2
l2(V)

)
.

where C = C(K̃1 \ K̃0, K̃0).

So, we obtain

‖(f, ϕ)‖2l2(G
K̃1
\G

K̃0
) ≤ CN

2
K̃0

(f, ϕ).

Thus, we have shown that the construction of a norm on W is independent of the choice of the
neighborhood associated to the subgraph GK . We set:

‖(f, ϕ)‖W :=
(
‖(f, ϕ)‖2l2(G

K̃0
) + ‖D(f, ϕ)‖2l2(G)

) 1
2
,

for (f, ϕ) ∈ C0(V)⊕ Ca0 (E).

Aim iii): By Lemma (3.1), we have the injection of C0(V) ⊕ Ca0 (E) to C(V) ⊕ Ca(E) extends by
continuity to W .

Aim iv): we have

‖D(f, ϕ)‖2l2(G) ≤ ‖(f, ϕ)‖
2
l2(G

K̃
) + ‖D(f, ϕ)‖2l2(G) = ‖(f, ϕ)‖

2
W .

Consequently, D :W −→ l2(G) is a bounded operator.
�

4. SEMI-FREDHOLMNESS OF THE DISCRETE GAUSS-BONNET OPERATOR

Definition 4.1. An operator is semi-Fredholm if its range is closed and its kernel is finite dimensional .

Now we come to our main result:

Theorem. Let W be a Hilbert space satisfying:
(1) C0(V)⊕ Ca0 (E) is dense in W .
(2) The injection of C0(V)⊕ Ca0 (E) to C(V)⊕ Ca(E) extends by continuity to W .
(3) D :W −→ l2(G) is a bounded operator.
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Then, the following conditions are equivalent:
i) D :W −→ l2(G) is semi-Fredholm.
ii) There exists a finite subgraph GK of G and a positive constant C = CK such that

(4.15) C ‖(f, ϕ)‖W ≤ ‖D(f, ϕ)‖l2(G) , ∀(f, ϕ) ∈ C0(V \K)× Ca0 (E \ EK).

Proof
We take the same arguments used by Carron [5]. We start by showing the direct implication, we

assume that the conclusion is false. Then, we can find an increasing sequence of finite subgraph {GKn}n
such that G =

⋃
nGKn and a sequence {σn}n with finite support in V \ Kn satisfying the following

conditions, for all n ≥ 1 
σn = (fn, ϕn) ∈ C0(V \Kn)× Ca0 (E \ EKn),

‖σn‖W = 1,

‖Dσn‖l2(G) ≤
1
n .

On the other hand, it was assumed that D :W −→ l2(G) is semi-Fredholm. Therefore, by [13] there
exists a bounded operator P : l2(G) −→W such that

(4.16) P ◦D = IdW −H,

where H is the orthogonal projection onto the kernel of D, it is an operator with finite rank.
Then, we obtain

‖σn‖W ≤ ‖(P ◦D)σn‖W + ‖Hσn‖W
≤ ‖P‖ ‖Dσn‖l2(G) + ‖Hσn‖W

≤
(
‖P‖
n

+ ‖Hσn‖W
)
.

If
lim
n→∞

‖Hσn‖W = 0 =⇒ lim
n→∞

‖σn‖W = 0,

which contradicts the assumption ‖σn‖W = 1.

So, our aim is to prove that {Hσn}n converges to 0 in W . Indeed, we set

(4.17) σn = σ1n + σ2n

with σ1n(= Hσn) ∈ kerD and σ2n ∈ (kerD)⊥.

Such as 
(P ◦D)σn = σ2n,

‖P ◦Dσn‖W ≤ ‖P‖ ‖Dσn‖l2(G) −→n→∞ 0.

Then, for the norm of W

(4.18) lim
n→∞

σ2n = 0.
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Moreover, {σ1n}n is a bounded sequence of kerD which is of finite dimension. So we can extract a
subsequence converging to σ in W , which we denote {σ1ϕ(n)}n.

Using (4.17) and (4.18), {σϕ(n)}n converges in W to σ (as a sum of two converging sequences) and
as a consequence ‖σ‖W = 1.

Let us prove that σ = 0 where σ = limσϕ(n) = limσ1ϕ(n).

We suppose that σ 6= 0. As W is injected continuously in C(V)⊕Ca(E) , there exists x ∈ V such that
{σϕ(n)(x)}n converges to σ(x) 6= 0. But, by construction the sequence {σϕ(n)}n converges ponctually
to 0 ( the sequence {σϕ(n)}n has a finite support outside of GKn). Hence, we conclude that σ(x) = 0
which is absurd.

It remains to prove ii)⇒ i).

First step: We construct a bounded operator Q : l2(G) −→ W such that Q ◦D − IdW is a compact
operator, this will show that D :W −→ l2(G) has a finite kernel and a closed range [13].

Let D1 be the restriction of D on G \ GK , so D1 : W (G \ GK) −→ l2(G) is bounded, where
W (G \GK) = {σ = (f, ϕ) ∈W ; σ = 0 on GK}. Moreover, by assumption we have

C ‖(f, ϕ)‖W ≤ ‖D(f, ϕ)‖l2(G) , ∀(f, ϕ) ∈ C0(V \K)× Ca0 (E \ EK).

Then, D1 is injective with closed range, which allows the existence of a left inverse P1 such that

P1 ◦D1 = Id.

On the other hand, we denote
D2 : l

2(K̃1) −→ l2(G)

where K̃1 is a neighborhood (see Definition (3.2)) of K̃0, such that K̃0 is the smallest neighborhood of
K.

Since l2(K̃1) is a vector space of finite dimension, then D2 is continuous with closed range. We
denote P2 "the parametrix" which is a continuous operator satisfying

P2 ◦D2 = Id−H2,

where H2 is the orthogonal projection onto the kernel of D2.

We consider now the indicator function χ as in (3.8) by replacing K by K̃0, which gives dχ, χ, 1−χ
and 1− χ where

(1− χ)(x) =

 1 if x ∈ K̃0

0 otherwise.
and (1− χ)(e) =


1 if e ∈ E

K̃0
,

1
2 if e ∈ ∂E

K̃0
,

0 otherwise.

Furthermore, we define the operator χ. depending on the domain by:

If χ. : C0(V) −→ C0(V) so we have χ.f = χf , for all f ∈ C0(V).
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If χ. : Ca0 (E) −→ Ca0 (E) we get χ.ϕ = χϕ, for all ϕ ∈ Ca0 (E).

If χ. : C0(V)⊕ Ca0 (E) −→ C0(V)⊕ Ca0 (E) hence we obtain χ.(f, ϕ) = (χf, χϕ),

for all (f, ϕ) ∈ C0(V)⊕ Ca0 (E).

We set
Qσ := P2(1− χ)σ + P1χσ,

where σ = (f, ϕ).

Second step: Let us check that the operator Q ◦D − Id is compact.
We denote the following bracket for any two operators A and B:

[A,B] = AB −BA.

Then, we obain

Q ◦D = P2(1− χ)D + P1χD

= P2D(1− χ) + P2[1− χ,D] + P1Dχ+ P1[χ,D]

= P2D2(1− χ) + P2[1− χ,D] + P1D1χ+ P1[χ,D]

= (Id−H2)(1− χ) + P2[1− χ,D] + Id(χ) + P1[χ,D]

= Id−H2(1− χ) + P2[1− χ,D] + P1[χ,D].

We just calculate P2[χ,D]. We have

[χ,D] = [χ,d] + [χ, δ].

For the first bracket, we obtain

[χ,d]f(e) = χ(e)d(f)(e)− d(χf)(e)

=
1

2

[
χ(e+) + χ(e−)

]
d(f)(e)− χ(e+)d(f)(e)− f(e−)dχ(e)

= −1

2
dχ(e)d(f)(e)− f(e−)dχ(e).

And for the second one, we get

[χ, δ]ϕ(x) = χ(x)δ(ϕ)(x)− δ(χϕ)(x)

= χ(x)δ(ϕ)(x)− χ(x)δ(ϕ)(x) + 1

2

∑
e,e+=x

d(χ)(e)ϕ(e)

=
1

2

∑
e,e+=x

d(χ)(e)ϕ(e).

But, the support of d(χ) is included in ∂E
K̃0
⊂ K̃1 which is finite. Then, [χ,D] has a finite range so

it is a compact operator.
Finally, Q ◦D = Id +H where H is a compact operator .

�

Remark 4.1. In the Theorem , we obtain D Fredholm if it is an essential-selfadjoint operator [5].
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Remark 4.2. There is a second method inspired from [2] to show ii)⇒ i) of the Theorem . This can be
demonstrated with the aid of the following claim: "If σn = (fn, ϕn) ∈ C0(V) × Ca0 (E) is W -bounded
and (Dσn)n is convergent in l2(G), then (σn)n has a W -convergent subsequence".

We have the following result:

Proposition 4.1. Let W be a Hilbert space satisfying:
(1) C0(V)⊕ Ca0 (E) is dense in W .
(2) The injection of C0(V)⊕ Ca0 (E) to C(V)⊕ Ca(E) extends by continuity to W .
(3) D :W −→ l2(G) is a bounded operator.

Then if there exists a finite subgraph GK of G and a positive constant C = CK such that

(4.19) C ‖(f, ϕ)‖W ≤ ‖D(f, ϕ)‖l2(G) , ∀(f, ϕ) ∈ C0(V \K)× Ca0 (E \ EK),

so necessarily, the operator D :W −→ l2(G) is semi-Fredholm.

Proof
We start by proving the following claim: if σn = (fn, ϕn) ∈ C0(V) × Ca0 (E) is W -bounded and

(Dσn)n is convergent in l2(G), then (σn)n has a W -convergent subsequence.

Let G
K̃

be a neighborhood of the subgraph GK (see Definition 3.2), then (σn �K̃)n is a bounded
sequence in a vector space with finite dimension. Hence, it admits a convergent subsequence.

In G \G
K̃

, we consider the indicator function χ as in (3.8) by replacing K by K̃. Then, we obtain a
function χσn with finite support in G \GK and we can apply the inequality (4.19) to χσn, in particular
to (χfn, 0) and (0, χϕn). First, we obtain

‖χfn‖W ≤ C ‖d(χfn)‖l2(E) .

But, from the equality (2.3) of Lemma (2.3), we get

d(χfn)(e) = χ(e+)d(fn)(e) + fn(e
−)d(χ)(e).

We have (d(fn))n is a convergent sequence and supp(dχ) ⊂ E
K̃

is finite, thus, fn(x) �K̃ admits a con-
vergent subsequence.
Then we may conclude that χfn admits a W -convergent subsequence, i.e, (fn �V \K̃)n admits a W -
convergent subsequence.

Second, we have
‖χϕn‖W ≤ C ‖δ(χϕn)‖l2(V) .

Since the equality (2.4) of Lemma (2.3) gives

δ(χϕn)(x) = χ(x)δ(ϕn)(x)−
1

2c(x)

∑
e,e+=x

r(e)d(χ)(e)ϕn(e), ∀x ∈ V.

Furthermore by assumptions the sequence (δ(ϕn))n is convergent and supp(dχ) ⊂ E
K̃

is finite, hence,
(ϕn �E

K̃
) admits a convergent subsequence. As a result, we deduce that the sequence (χϕn)n admits a

W -convergent subsequence. So, the sequence (ϕn �E\E
K̃
)n admits a W -convergent subsequence.

Now we can show that our operator D is semi-Fredholm.
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(1) We start by proving that kerD is finite dimensional, which is equivalent to show that {σ ∈
kerD; ‖σ‖W = 1} is compact.

Let (σn)n ⊂ kerD be such that ‖σn‖W = 1 and Dσn = 0. Then, by the claim, (σn)n admits
a convergent subsequence. So the result occurs.

(2) Let us show that ImD is closed.

Let (yn)n be a sequence of ImD such that (yn)n converges to y in l2(G). Is that y in ImD?

Since (yn)n ⊂ ImD, then there exist (σn)n ⊂ kerD⊥ and σn 6= 0 ∀n, such that yn = Dσn.
(σn)n must be bounded. If not, by extraction we can construct sn = σn

‖σn‖W
, such that

(sn)n ⊂ kerD⊥

‖sn‖W = 1

Dsn → 0.

Using the claim, we can conclude that (sn)n admits a convergent subsequence with limit denoted
s such that 

s ∈ kerD⊥

‖s‖W = 1

Ds = 0.

Then, s ∈ kerD ∩ kerD⊥ = {0}. So s = 0, which is absurd.

Hence the sequence (σn)n is bounded and since (Dσn)n converges to y, using the claim, the
sequence (σn)n admits a convergent subsequence and let σ be this limit. But, the operator D is
bounded. Then, Dσn converges to Dσ and by uniqueness of the limit y = Dσ.

�

Corollary 4.1. D is non-parabolic at infinity if and only if there exists a finite subgraph GK of G such
that if we complete C0(V)× Ca0 (E) by the norm

‖(f, ϕ)‖W =
(
‖(f, ϕ)‖2

l2(K̃)
+ ‖D(f, ϕ)‖2l2(G)

) 1
2
,

in order to obtain W satisfying
(1) C0(V)⊕ Ca0 (E) is dense in W .
(2) The injection of C0(V)⊕ Ca0 (E) to C(V)⊕ Ca(E) extends by continuity to W .
(3) D :W −→ l2(G) is semi-Fredholm.

5. EXAMPLES

5.1. A star-like graph.

Definition 5.1. The disjoint union of two graphsGα = (Vα, Eα) andGβ = (Vβ, Eβ) is the disjoint union
of their vertex and edge with no edge joining Vα and Vβ .

According to [6], we have the following definition:
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Definition 5.2. An infinite graph G = (V, E) is called star-like, if there exists a finite subgraph GK of
G so that G \GK is the union of a finite number of disjoint copies Gα of the graph N.

KG

FIGURE 1

Proposition 5.1. In the case where c = r = 1, D is non-parabolic at infinity in the star-like graph.

Proof
By the definition of the star-like graph, there exists a finite subgraph GK of G so that G \ GK =⊔

α∈J Gα. Let U be a finite subset of G \GK then, there exists α ∈ J such that U ⊂ Gα. We look for a
positive constant C = C(U) such that

(5.20) C ‖(f, ϕ)‖l2(U) ≤ ‖D(f, ϕ)‖l2(G) , ∀(f, ϕ) ∈ C0(V \K)⊕ Ca0 (E \ EK).

Let f ∈ C0(V \K) such that U is included in the support of f .

For U = {a}, we have

‖f‖2l2(U) = f2(a).

For o ∈ K and asG is connected we can find a path γoa joining o to a. Suppose that this path is of length
n such that x0 = a and xn = o, using the Jensen’s inequality and f(xn) = 0, we obtain

f2(a) = (f(x0)− f(x1) + f(x1)− f(x2) + f(x2)− ...− f(xn−1) + f(xn−1)− f(xn) + f(xn))
2

≤ n
(
(f(a)− f(x1))2 + (f(x1)− f(x2))2 + ...+ (f(xn−1)− f(xn))2

)
,

which implies

(5.21) f2(a) ≤ n ‖df‖2l2(V ) .

Remark 5.1. n depends only on U and K.
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Similarly, for ϕ ∈ Ca0 (E \ EK), we obtain

‖ϕ‖2l2(EU ) ≤ CU ‖δϕ‖
2
l2(V) .

Moreover, for U = {a1, ..., an}, we prove the inequality (5.20).

By the inequality (5.21), for all i ∈ {1, ..., n}, we get

f2(ai) ≤ ni ‖df‖2l2(V)
where ni is the number of edge of the shortest path between ai and any vertex of K.

For thus, we have
n∑
i=1

f2(ai) ≤
n∑
i=1

ni ‖df‖2l2(V) .

Hence

‖f‖2l2(U) ≤ CU ‖df‖
2
l2(V) .

And similarly, we show that

‖ϕ‖2l2(EU ) ≤ CU ‖δϕ‖
2
l2(V) .

�

5.2. The triadic tree.

Definition 5.3. A tree is a connected graph containing no cycles. The triadic tree is the tree such that
all the vertices have degree 3.

o
B1

B2

FIGURE 2

Proposition 5.2. In the triadic graph the condition of "non-parabolicity at infinity" is not verified.
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Proof
We fix a vertex o, see the figure 2, we can find an increasing sequence of finite subgraph {Gn}n such

that Gn = {x ∈ V; d(o, x) ≤ n} and G =
⋃
nGn. The contradiction of non-parabolicity at infinity

property could be: for all n there exists U outside of Gn and a 1-form ϕn with finite support outside of
Gn such that δϕn = 0 and ‖ϕn‖l2(U) 6= 0. Such ϕn exist. Indeed one can construct a skewsymmetric
function ϕn supported on the outward tree of every vertex xn ∈ Gn with δϕn = 0 in the following way:
let e0 and b0 be the two outward edges of xn (the third one rely xn to xn−1) and denote ekm, m > 1,
1 6 k 6 2m, resp. bkm, m > 1, 1 6 k 6 2m, the outward edges emanating from e0, resp. b0, of
generation m. We define ϕn to be 0 excepted on these edges where ϕn(ekm) =

1
2m and ϕn(bkm) = − 1

2m

(the edge are oriented outward). So, we deduce that δ does not satisfy the property of non-parabolicity
at infinity.

�

Remark 5.2. We can generalize this example for the tree with degree d ≥ 3, we can use the same
argument with ϕn = ±( 1

d−1)
m.

Remark 5.3. a) The importance of non-parabolicity at infinity appears with the operator δ. In fact, this
property for the operator d is always true on any connected graph.
b) In probability [8] and potential theory [15] there exists an interesting notion of non-parabolic for the
graph which is equivalent ([1] Theorem 2.1) to the following statement: there exists x ∈ V and C > 0
such that

f2(x) ≤ C ‖df‖2l2(E) , ∀f ∈ C0(G).
This notion is different from the non-parabolicity at infinity. Indeed, the graph Z and Z2 are parabolic,
but Zn, n ≥ 3 is non-parabolic. On the other side, we have δ is non-parabolic at infinity in Z but in Zn,
n ≥ 2, δ does not verify this property (since it has cycles supported outside any finite subgraph).

Acknowledgements I would like to express my sincere gratitude to my advisors Professors Nabila
Torki-Hamza and Colette Anné for the continuous support of my Ph.D study, for their patience, moti-
vation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of research and
without their wisdom this paper would not have been possible. I would like to thank the Laboratory of
Mathematics Jean Leray of Nantes (LMJL) and the research unity (UR/13ES47) of Faculty of Sciences
of Bizerte (University of Carthage) for its financial and its continuous support. Also, this work was finan-
cially supported by the "PHC Utique" program of the French Ministry of Foreign Affairs and Ministry
of higher education and research and the Tunisian Ministry of higher education and scientific research in
the CMCU project number 13G1501 " Graphes, Géométrie et théorie Spectrale".
Finally, I take this chance to thank Jun Masamune for the fruitful discussions during his visit to LMJL
Nantes. I would like to thank also the anonymous referee for the careful reading of my paper and the
valuable comments and suggestions.

REFERENCES

[1] A. Ancona, Théorie du potentiel sur des graphes et des variétés, Lectures Notes in Mathematics 1427 (1990) 1–112.
[2] N. Anghel, An abstract index theorem on noncompact Riemannian manifolds, Houston Journal of Mathematics 19 (1993)

223–237 .
[3] C. Anné, N. Torki-Hamza, The Gauss-Bonnet Operator of an Infinite Graph, Analysis Mathematical Physics 5 (2015)

137–159 .
[4] B. Booβ-Bavnbek, K. P. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Birkhauser

Boston/Basel/Berlin (1993).
[5] C. Carron, Un théorème de l’indice relatif, Pacific Journal of Mathematics 198 (2001) 81–107.
[6] Y. Colin de Verdière, N. Torki-Hamza, F. Truc, Essential Self-adjointness for combinatorial Schrödinger Operators II-

Metrically non complete graphs, Mathematical Physics Analysis and Geometry 14 (2011) 21–38.



20 HÈLA AYADI

[7] J. Gilbert, M.A. Murray, Cliford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced
Mathematics 26 1991.

[8] A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemann-
ian manifolds, Bulletin of the American Mathematical Society 36 (1999) 135–249.

[9] X. Huang, M. Keller, J. Masamune, R. K. Wojciechowski, A Note on Self-adjoint Extensions of The Laplacian on
Weighted Graphs, Journal Functional Analysis 265 (2013) 1556–1578.

[10] J. Masamune, A Liouville Property and its Application to the Laplacian of an Infinite Graph, Contemporary Mathematics
484 (2009) 103–115.

[11] T. Nakamura, M. Yamasaki, Generalized Extremal Length of an Infinite Network, Hiroshima Mathematical Journal 6
(1976) 95–111.

[12] J. Roe, Elliptic Operators, Topology and Asymptotic Methods, Pitman Research Notes in Math 179, Longmann Scientific
and Technical 1988.

[13] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag Berlin Heidelberg New York, 2001.
[14] N. Torki-Hamza, Laplaciens de graphes infinis I-Graphes métriquement complets, Confluentes Mathematici 2 (2010)

333–350 . Translated to: Laplacians of infinite graphs. I: Metrically complete graphs, arXiv:1201.4644v1.
[15] W. Woess, Random walks on infinite graphs and groups, A survey on selected topics, Bulletin of the London Mathematical

Society 26 (1994) 1–60.
[16] M. Yamasaki, Extremum Problems on an Infinite Network, Hiroshima Mathematical Journal 5 (1975) 223–250.

UNITÉ DE RECHERCHE MATHÉMATIQUES ET APPLICATIONS (UR/13ES47) À LA FACULTÉ DES SCIENCES DE BIZERTE.
LABORATOIRE DE MATHÉMATIQUES JEAN LERAY, UNIVERSITÉ DE NANTES.

E-mail address: halaayadi@yahoo.fr. Hela.Ayadi@univ-nantes.fr.


