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1 INTRODUCTION 1

Approximation of Markov semigroups in total variation
distance under an irregular setting: An application to
the CIR process

Clément Rey [

Abstract

In this paper, we propose a method to prove the total variation convergence of approximation of
Markov semigroups with singularities. In particular our approach is adapted to the study of numerical
schemes for Stochastic Differential Equation (SDE) with simply locally smooth coefficients. First we
present this method and then, we apply it to the CIR process. In particular, we consider the weak
second order scheme introduced in [2] and we prove that it also converges towards the CIR diffusion
process for the total variation distance. This convergence occurs with almost order two.

1 Introduction

In this paper we study the total variation distance between a Markov process presenting singularities
and its approximation based on a discrete Markov chain. In this purpose, we follow two steps. First,
we extend a result from [5]. Then, we apply this result to a second weak order scheme for CIR
diffusion process based on a cubature method and introduced in [2]. While, this scheme has second
weak order for smooth test functions, in this paper we are able to prove that the convergence for a
class of bounded and measurable functions occurs with almost order 2. Let us be more specific. For
N € N*, we consider the R%valued diffusion process

N
dX; = Vo(Xo)dt + Y Vi(Xy) o dW; (1)
=1

with V; € C%°(R%; RY) N Ce°(D; RY), where D is a subset of R, (W;);>0 a standard Brownian motion
and odW} denotes the Stratonovich integral with respect to Wi, We fix T > 0 and n € N* and we
introduce the time grid mr, = {t} = kT'/n,k € N}. We consider the d-dimensional approximation
Markov chain

n n Zk 1 on
thﬂ = Y ( s T—;aék-ﬁ-l)v keN, (2)

where ¢y : R? x RN x Ry — R? is a function such that 1 (z,0,0) = z, and Z, € RV, k € N*, is
a sequence of independent and centered random variables and supycn- 07 < C/n. So far, we do not
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1 INTRODUCTION 2

discuss the regularity of ¢. We aim to study the convergence of the law of X" to the law of the
Markov process (X;):>o defined in . More precisely, we aim to estimate the weak error distance

en(f) = [E[f (X)) = E[f (X0)]] -

In order to obtain total variation convergence for (,)nen+, we have to show that e, (f) — 0 for every
bounded and measurable function f. The method we adopt in this paper is inspired from [5] and is
based on the semigroup approach.

First, we introduce some notations. The semigroup of the Markov chain (X{')ier,.,, is denoted by
(QF)terr,, and its transition probabilities are given by v} (z,dy) = P(XZ%H € dy\X{% =uz), ke N
We recall that for t € mp,, QFf(x) = E[f(X]")|X§ = z]. We also consider a Markov process in
continuous time (X¢)¢>o with semigroup (Pt)i>o (see [31]) and we define pj 4 (2, dy) = P(Xep, | €
dy| Xy = ).

Moreover, for f € C>°(R%) and for a multi-index o = (ay, ..., aq) € N%, we denote |a = a1 + ... + ag
and Oof = (01)™ ... (0g)*f = 05 f(x) = Og} ... 0gd f(z). We include the multi-index a = (0, ...,0)
and in this case J,f = f. Let us introduce the norms

Il = s 3> 10u7@L Il = X [ 0af@)lde

2€R? (¢ |al<q 0<|a|<q

In particular | fllo,,c = | f[lo is the usual supremum norm and we denote by C/(R?) = {f €
CIRY), || fllg00 < +00} and by CZ(R?) C C4(R?) the set of functions with compact support. More-
over, we say that a function f € C9(R?) has polynomial growth of order ¢ € N with degree Bq € N if
there exists Cy > 1 such that

Ve R Y [0af(@)] < Cy(1+ |2]%). (3)

0<a|<q

Finally, we denote by CZ (R?) the set of functions satisfying .

pol

A first standard result is the following. Let us assume that there exists A > 0 and ¢ € N such that
for every f € C9(RY) and every k € N*,

Sup W () = S @)] = s [ )i dy) =[S @R )] < e/
zeR

Then, for every t € 77, we have

1Pef = QF flloo = Sup E[f(X{)|Xg = 2] — E[f(X:)| Xo = 2]| < C||f]lg.00/n"- (4)
zER?

It means that (X{')ien,,, is an approximation scheme of weak order A for the Markov process (X¢):>0.
In the case of the Fuler scheme for diffusion processes, this result, with A = 1, was initially proved
in the seminal papers of Milstein [27] and of Talay and Tubaro [34] (see also [19]). Later, similar
results were obtained in various situations: Diffusion processes with jumps (see [32], [17]) or diffusion
processes with boundary conditions (see [14], [11], [15]). An overview of this subject is given in [18].
More recently, approximation schemes of higher orders (e.g., h = 2), based on cubature methods,
have been introduced and studied by Kusuoka [23], Lyons [26], Ninomiya, Victoir [28] or Alfonsi [2].
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The reader may also refer to the work of Kohatsu-Higa and Tankov [20] for a higher weak order
scheme for jump processes. Despite the fact that most of these results concern diffusions with regular
coefficients, some papers treat more exotic cases. For instance, in [2], Alfonsi studied the weak error
for diffusion processes with coefficients that belong to Cg 01(Rd) as well as for the test functions.

Another result concerns convergence in total variation distance: We want to obtain (4) with || f|leo
instead of || f{|4,00, Wwhen f is a bounded and measurable function. In the case of the Euler scheme for
diffusion processes, a first similar result was obtained by Bally and Talay [6], [7] using the Malliavin
calculus (see also Guyon [16]). Afterwards Konakov, Menozzi and Molchanov [21], [22] obtained sim-
ilar results using a parametrix method. Later, Kusuoka [24] obtained estimates of the error in total
variation distance for the Victoir Ninomiya scheme (which corresponds to the case h = 2). More
recently, in [5], a generic result ensures the total variation distance convergence for smooth schemes
and for random variables Zy, k € N*, which satisfy the Doeblin condition. In [33], this method is
used to prove total variation convergence with order 3 for a numerical scheme for one dimensional SDE.

However, none of the results mentioned above concerns the case of diffusion processes with irregular
coefficients. In particular, in [5], the regularity in space for the functions 1, which often rely on the
regularity of the functions V;, is essential to prove the total variation convergence result. The main
idea of our approach is to consider that these functions V;, ¢ € {1,..., N}, are smooth only on a
subset D of R?. Simply using this local regularity, we prove the convergence for every bounded and
measurable test functions with support strictly contained in D. In order to do it, we combine some
results of convergence for smooth test functions for singular diffusions on R¢ with the total variation
convergence proven in [5] for a modification of (X;)¢>¢ with coefficients localized on D. In a first step,
we propose an abstract approach based on semigroups that leads to Theorem [2.I] Then we apply
this result to the case of Markov chain approximations of diffusion processes with locally smooth
coefficients and obtain Theorem [.I] It provides an estimation of the weak error for simply bounded
and measurable test functions with support contained in D. In the rest of this paper we sometimes
take the liberty to say that this is the convergence for the total variation distanceE] It is important
to notice that Theorem is not restricted to specific diffusions or schemes.

Using this approach, we then study the CIR process. In this case, the diffusion coefficient is given
by Vi(z) = ov/x, 0 € Ry, and is singular in zero. That is why, standard estimation methods can
not be applied. However, some papers manage to develop numerical analysis of this scheme using
among other the close link that exists with Bessel processes. The reader may refer to [12], [3], [1], [2]
or [I0] for a non exhaustive list of studies concerning numerical approximation for the CIR process.
In particular, in [2], the author proves the weak convergence with order 2 for smooth test functions
(under polynomial growth assumptions for the test function and its derivatives), of a scheme based
on cubature method (and also inspired by [3]). In [10], the authors propose an expansion of the
weak error for Lipschitz test functions. However, so far, there is no study concerning the total
variation convergence of a numerical scheme toward the CIR diffusion. Since the diffusion process
has a singularity in zero, the result from [5] can not apply directly. Despite this singularity, we use
and extend the result from [2] and [5], and prove that (4) is also satisfied for the scheme introduced
in [2] under some hypotheses on the support of the test functions. More specifically we obtain the

2The total variation distance concerns every bounded and measurable test function with support in R? (and not
simply in D). However, the total variation convergence can be deduced straightly from our result if we suppose that
P(Xr ¢ D) and P(X} ¢ D) are small enough.
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following results:

First (see (62))), there exists C, 3 > 0 such that for every bounded and measurable test function f
with supp(f) C [di1,dz], 0 < d; < d2 < +00 and every n large enough, we have

[ELf(X7(2)) = F(XP@)]| < O+ [2]%)] flloo In(n)* /n®,

with (XI?T/n(:E))keN the scheme introduced in [2].

Moreover, using the finiteness of some exponential moments of the CIR process, we obtain the fol-
lowing result under some appropriate assumptions (see (63)): There exists € € (0,2) such that for
every bounded and measurable test function f with supp(f) C [d1,0), d1 > 0, and for every n large
enough, we have

ELf(X7(2)) = Y7 (@)]] < Cexp(Bla)|| flloo/n* ™,

with Y7!(z) a o(X{(x),t < T)-measurable random variable introduced in (63).

We begin by presenting the abstract semigroup framework of this paper in Section 2] In the same
Section, we obtain Theorem [2.1]that is the abstract total variation convergence result under localized
regularization properties of the semigroups. Then, in Section [3| we apply the abstract framework
to the case of generic numerical schemes for diffusion processes with locally smooth coefficients and
obtain Theorem The paper ends with a theoretical application in order to obtain total variation
convergence results for the scheme presented in [2] for the CIR process.

2 The distance between two semigroups

Throughout this section the following notations prevail. We fix T' > 0 and we denote by n € N*, the
number of time steps between 0 and 7. Then, for k¥ € N we define ¢} = kT'/n and we introduce the

homogeneous time grid 77, = {t} = kT'/n, k € N} and its bounded version ﬂ'%’n ={t€nput<T}

for T > 0. Finally, for S € [0,T) we denote ﬁ‘qu ={te Tr%TL, t > S}. Notice that all the results from
this paper remain true with non homogeneous time steps but, for sake of clarity, we do not consider
this case.

2.1 Convergence of semigroups

In this section we show how regularity properties and estimation properties of the semigroups interact
to lead to weak convergence results. First, we establish estimation results for smooth test functions.
Then, under regularization properties of the semigroups, we provide total variation distance estimation
results, i.e. for simply bounded and measurable test functions. We conclude by establishing Theorem
which is the main abstract result of this paper and provide an approach for total variation
convergence when regularization properties are only valid in the neighborhood of the terminal date
T.
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2.1.1 Smooth test functions

We consider a sequence of finite transition measures py(x,dy), k € N* from RY to R?. This means
that for each fixed x and k, pj(z, dy) is a finite measure on R? with the borelian ¢ field and for each
bounded and measurable function f : R? — R, the application

v @)= [ F(e.dy)
is measurable. We also denote

Vo e R, |up(x)| = sup | [ fly)up(z.dy)| and |u}|=sup sup | [ f(y)up(z,dy),
[flle<l JRE 2€R? || flloo<l JRE

and we assume that all the sequences of measures we consider in this paper satisfy

sup 14| < oc. (5)
keN*

Although the main application concerns the case where p (x, dy) is a probability measure, we do not
make such assumption. We allow p(x, dy) to be a signed measure of finite (but arbitrary) total mass.
This is because one may use the results from this section not only in order to estimate the distance
between two semigroups but also in order to obtain an expansion of the error. Now we associate the
sequence of measures to the time grid 77, and we define the following discrete semigroup,

Rif(@) = fla), B f@) = Phutad@) = Py [ F)uta(o.dy)

k+1

More generally, we define (P )¢ senp.;t<s DY

Pt%,tgf(f’?) = f(x), Vk,r € N k<, Pt%,tf+lf(x) = Pt%,tﬁﬂ?—i—lf(x)'
We notice that for ¢, s,u € 71y, t < s < u, we have the semigroup property: P/, f = P/ P2, f. We
consider the following hypothesis: Let ¢ € Nand t, s € 7r,,, t < s. If f € C1(R?) then P sf € C1(RY)
and when f € C{(R?),
sup [P/ fllgeo < Cllfllg.00- (6)

t,SETT n;it<s

Notice that implies that @ holds for ¢ = 0. We also consider the following hypothesis: Let ¢ € N

and t,s € mpp, t <s. If f e Cgol(]Rd) then P, s f € Cgol(Rd) and there exists C' > 1, 8 € N such that

B, = VzeR? sup Y [Ga PP f(2)] < O(L+|al?). (7)

tvseﬂT,n,§t<3 0<|a‘<q
Moreover we assume that there exists C > 1 and 3 € N such that for every f € C/(R?), we have

SB; = Vxe Rd, sup Z |8anSf(m)| <C(1+ |$|ﬁ)”f|

t,sem t<s
,S€ T, tx OS\aKq

4,00 (8)
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We consider now a second sequence of finite transition measures v} (x,dy),k € N* and the corre-
sponding semigroup (Q?)tew,n defined as above. We aim to estimate the distance between P" f and
Q" f in terms of the distance between the transition measures i} (z, dy) and v}}(z, dy), so we denote

b=
(Pt”)t@mn can be seen as a semigroup in continuous time (P;)¢>o considered on the time grid w7,
while (Q¢)ters,, would be its approximation discrete semigroup. Let ¢ € N and h > 0 be fixed. We

introduce a short time error approximation assumption: There exists a constant C' > 0 (depending
on g only) such that for every f € C{(R?) and every k € N*, we have

En(ha) = AR oo < Cllfllgoo/n" (9)

We also introduce a short time error approximation assumption for test functions with polynomial
growth: If f € Cgol(Rd), then there exists C' > 1 and 8 € N such that for every k € N*,

Enpoi(hiq) = Ve eR |ALf(2)] < O+ Jzf)/n" L. (10)

Moreover, we assume that there exists C' > 1 and 8 € N such that for every f € C/(R?) and every
k € N*,

npol(ha) = Ve e R ALf(@)] < C(L+ [27) 1 f llgo0/n" . (11)
At this point, we establish weak convergence results for smooth test functions.

Proposition 2.1. Let q,h € N be fized.

A. Assume that ™ satisfies (6) for this q, ™ satisfy (5)) and that we have E,(h,q) (see (9)). Then,
there exists C > 1 such that for every f € Cg(Rd), we have

sup [|P'f — QF fllo < CHqum/nh. (12)

t€7rT n

B. Assume that p™ and v™ satisfy respectively Po (see () and By, and that Ey, po1(h, q) (see [10))
holds. Then, for every f € Cpol( 4) | there exists C > 1 and B € N such that

ve eRY, sup |P'f(x) - Q7 f(2)] < O(L+ |z]”)/n”. (13)

T
tETK'T’n

C. Assume that u' and V" satisfy respectively Po (see (K?])) and B, (see (@)} and that E npol(h7q)
(see ) holds. Then, there exists C' > 1 and [ € N such that for every f € Cg(Rd), we have
Ve e R, sup [P f(x) - Q7 f(2)] < C(1+ |2[7)[| fllg.00/n" (14)

T
tEﬂ'Tm

Proof. We simply prove and .The proof of is similar but simpler so we leave it to the
reader. Let m € N*, m < n. Using the Lindeberg decomposition, we have from the semigroup

property

m—1

B f() — Qi F)l < 3 IPRPR o Qb n ()~ PR Qb Qe n @) (1)
k=0
m—1

[P Af1 Qi o [ ()]

i}
o
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Now, we prove 1} Since f € Cpol(Rd) then, using B, (see ) for Q™, we have Qtn i fe Cpol( d)
(10

and then using ) and the linearity of the semigroup P™ together with g (see (|7 ) we obtain

\Pt%Az+1Q?ZH,mf<x>| <O+ faff) .

Summing over k =0, ..., m—1, ylelds . In order to prove , we use to obtain |Agy1 Qtn+17tn f(z)] <
C(1+1z%)Q% . f||q700/nh+1 where C and [ do not depend on f. Usmg once again the linearity of

k+1''m
the semigroup P™ and Py (see ), it follows that |Pt’% AkJFthhpt?nf(x)’ (1+|x|f8)\|QtZ ot fllg.oo/n L.
Finally, the assumption 7 (see ) for Q™ gives . O

2.1.2 Measurable test functions (convergence in total variation distance)

The estimates , and require quite strong regularity properties for the test function f.
We aim to show that, if the underlying semigroups have a regularization property, then we may
obtain estimates of the error for simply bounded and measurable test functions. In this section, we
describe how the regularization properties of a semigroup lead to total variation convergence based
on results from [5]. Our purpose is then to obtain similar results when regularization properties only
holds closely to the terminal date T

A first hypothesis concerns the adjoint semigroup approximation. Let ¢ € N. We assume that there
exists a constant C' > 1 such that for every bounded and measurable function f and every g € C4(R%)

Ey(hg) = [{g, A8 | < Cligllgall flloo/n' " (16)
where (g, f) = [ g(z)f(z)dz is the scalar product in L*(R?).

Our regularization hypothesis is the following. Let ¢ € N, § > 0 and let n : Ry — Ry be an
increasing function. We assume that there exists a constant C' > 1 such that for every bounded and
measurable function f,

R, n(S) = Vi, s € T, with S <s—t, ||PLf

lg.00 < IIfHoo (17)

We also consider the "adjoint regularization hypothesis”. We assume that there exists an adjoint

. %
semigroup (Pts )t.semr ait<s, defined by

\V/t,SGﬂ'T,n,t<57 <Pts 9, >:<g’Pt7?5f>

for every bounded and measurable function f and every function g € C3°(R?). In addition we suppose
that for every g € L*(R%), we have

* _ : 7% C
Ry, (S) = Vi, s € T, with S <s—t, [P gllg1 < WHng. (18)

Notice that a sufficient condition for Ry, (S) to hold is the following: For every bounded and mea-
surable function f € Cl*/(R%) and for every multi index o with |a| < g, assume that

: n C
Vt,s € mrp, with S <s—1t,  ||[P0afllco < WHfHOO
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Indeed, for every g € L!(RY), it follows that

10aP gl < sup [(BaPi g, )| = sup [(g, Ps(0af))]

| oo ‘f‘OO\

n C
< gl sup 1 (0af)llee < o llglh-

[fllo<1

Finally, we consider the following stronger regularization property: For every multi-index «, § with
|| + |8 = ¢ and every bounded and measurable function f € C?(R%),

RQ:U(S) = Vt, S € TTn, with S § S — t, Haapt,saﬁf“oo § W”f“m (19)

We notice that R, (S) implies both Ry, (S) and R (S) and that a semigroup satisfying Ry, is
absolutely continuous with respect to the Lebesgue measure.

Now we can state our first result concerning total variation convergence between P™ and Q™.

Proposition 2.2. Let g€ N, h >0, S € [T/n,T/2) and let n: Ry — Ry be an increasing function.
Assume that Eyn(h,q) (see (9)) and Ei(h,q) (see (16)) hold for P" and Q™. Also assume that P"
satisfies Ry, (S) (see ) and Q" satisfies Ry (S) (see @)} and that (E‘S]) and (E6]) with ¢ = 0 hold

for both of them. Then, for every bounded and measurable function f, we have

n n c h
sup 1P = Qflloe < gy 1 flloo/ "

tGTI'T’;L

In concrete applications the following slightly more general variant of the above proposition will be
useful.

Proposition 2.3. Let g€ N, h >0, S € [T/n,T/2) and let n : Ry — Ry be an increasing function.
Assume that Ey(h,q) (see (9)) and E}(h,q) (see (16])) hold for P" and Q™. Moreover, assume that
there exists (Ptrfg’n)tvsewT’n;tgs which satisfies Rq ,(S) (see) and (ngg’n)t’s@ﬂn;t@ which satisfies
Ry ,(S) (see @)) and such that (E‘F]) and ([6]) with ¢ = 0 hold for both of them. Also assume that for
every bounded and measurable function f and every t,s € nr, with s —t > S, we have

Q1 f — Q1" Flloo + 1P — PL7" flloo < CSTMD|f|l oo /n"F1. (20)

Then, for every bounded and measurable function f,

sup | PP f = Q flloo < Csup(|pg] + [v1)S ™D ]| oo /n".
28,T k<n

tETrTJ’L

Remark 2.1. Notice that P"9" and Q"9" are not supposed to satisfy the semigroup property and
are not directly related to u™ and v™.

The proof of those results can be found in [5] (see Proposition 2.3 and Proposition 2.4) and follows
similar ideas from the one of Proposition combined with regularizations properties.

2.1.3 Total variation convergence under mixing regularization properties

In this section, we consider semigroups with mixing regularization properties. In particular, we study
two semigroups P™ and Q™ which satisfy the regularization properties only closely to the date T and
we show that the convergence for bounded and measurable test functions still holds.
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Theorem 2.1. Let (P)t senp.it<s and (QF¢)t.seny t<s be two semigroups with transition measures
w" and v". Let g €N, h, § € 2T /n,T) and let n: Ry — Ry be an increasing function. Also define

Oy = inf{t;t > 6,7 —t € mrp}, tom =T — O kspn =tsnn/T. (21)

On the interval [0, t5,], assume that E}, |, (h, q) (see ) holds between (Pt,s)t senl®n ey and (QZS)ME
)

and that one of those semigroups satisfies Po (see while the other satisfies ‘Bq (see (@)) Then

we have the following properties:

A. 0n the interval [tsn, T, assume that both (13 )ke(1,...ks,.} A4 (V) k{1, ... ks.) SOTISSY (@) and that

(h C] (566 @)) and E*(h q (566 (H)) hold between (Pt s)t s€7rT HERNA] and (Qt s)t SETK‘T HEREN AN

Also assume that there exists some ( Z:ig’ )t75€7rT 45 <t<s Which satisfies Ry, (5/2) (see )

and (P, trseg, )t,sew%’ 45 <t<s Which satisfies Ry (6/2) (see ) and such that @) holds.
Then, there exists C > 1 and B € N, such that for every bounded and measurable
R?, we have

function f on

1+|x\

Ll

ve €RY,|PRf(z) - QFf(2)] < C

B. On the interval [ts,, T|, assume that for everym € nN* = {nk,k € N*}, both (U} ke {ks..m/n+1,....m

and (V") ke ks ym/nt1,....m} Satisfy @), and that Ep,(h,q) (see @) and E (h,q) (see @)} hold
between (Pt5 +t t5n+s) Py it t5n+s)t Seﬂsn 4<s and (Qg,n+t,t§,n+s)tvseﬂ§%m;t<5' Also

-y t<s)m€nN* which satisfies Ry ,(5/2) (see
(.)) and R (0/2) (see @) (with n replaced by m for every m € nN*) and such that @)
holds between ((Qt(gynth,t(g’nJrs)t,sewg?m;tgs)mGnN* and ((Qt&,n+t7t5,n+3)t75€7rfls]fm;t§s)menN* (with n

replaced by m for every m € nN*).

t867r6" RAEE]

suppose that there exists a family ((Qt5n+t t5n+s)

Then, there exists C > 1 and 8 € N, such that for every bounded and measurable function f on
R?, we have

1 + |z|?
on(a)

ve e RY,|Ppf(2) — Q1 f(2)] < 1£lloo/n".

Proof. We prove For sake of clarity, assume that P'®8 = P and that Q'®® = ). The proof is very
similar otherwise. Using the semigroup property, it follows that

[P0 f(2) = Qo (@) =|Foy, P, wf(x) = Qo Qi mf ()]
:|P0'r§t6,nPt1Zn Tf(x) - P(;Ltts nQZS,nny(I) + P&té,an,anf(x) - ngt(s,nQ%,n»nf(x)‘
:|P62t6,n( t6 nyTv Qtén )f(x) + (ngté,n - ngté,n)QZS,nsz(x)|

Since P" and Q" satisty () @[) ,and Ry, (6/2) (see ) holds for Q" while R;, (6/2) (see )

holds for P™ (with ¢, s € [t(;n,T]) using Proposition [2.2) we derive: ‘P&ta,n(Pg},n,T - Py r)f(@)] <
(P A O ) fllee < C5 9| flloo/n™. In order to bound the second term of the r.h.s of the

above equation, we use Proposition together with [|QF, 7fllg0 < C5 D] f|lo Which follows
from R, (6/2).

t5,n
T A
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Now, we prove Using the same decomposition as for the proof of [A.] we observe that the only
change in the proof concerns the study of the term H(QZS,”,T — Pt’;mT)fHOO. First, we notice that
t € mrm for every t € mr,, and every m € nN*. We introduce the sequence of discrete semigroups
(( ?7m)tew§’m;t>t5,n)mEN* defined in the following way: For every t € m‘:ﬁ,nm,t > ton, let Q" f(z) =
QP f(x). In the same way, let ((Pt"’m)teﬂ;m;gté Jmen+ the sequence of discrete semigroups such

that for every ¢ € mppm,t > ts5, we have ’P”’mf( ) := P f(x) = P.f(z). Let m" > m. Since

nv = tr for every m € N* and every k € N, it follows that
_ n,m’
L I o P P
||Qtnm tnTk+l f P”::Z, (k 1)f||00 + ||Pt”::£ tnm/ f Qtnm tnm’ f”007

/k’ /(k:+1) /k7 /(k+1)

Since Q"™ and Q™" verify respectively Enm(h q) and E,,(h,q) and both Q™" and Q”m/ sat-
isfy @, we use the Lindeberg decomposition in order to derive: HQtn W = Qi flleo <

k+1 k7 k41
C||fllge0/ (n"*+m™). In the same way we obtain | (g, Qs f— Qtntn I < Cllgllvgll flloo/ (n+1m").

k’ k+1
Now, since both Q"m and Q™ have modifications, Q¢&mm and Q*e8mm’ - which satisfy both
Ry, (6/2) (see (1 ) and Ry (0/2) (see ) (with n replaced by mn and by m/n), we can show

that: ||Qf5 f = QY Tf||oo < CO D f|lso/(nm"). The sequence (@) 1)men= is thus Cauchy
and it converges toward Pl r for smooth test functions using Proposition In particular, taking

m = 1 and letting m’ tend to infinity in the previous inequality we have

||Qt(5 Tf Pt(g,TfHOO B Cé—n(q)HfHOO/nha

where the [.h.s of the above inequality is exactly the term that we study and then the proof is
completed. 0

This result is crucial to prove the weak convergence for bounded and measurable test functions for
diffusion processes with simply locally smooth coefficients. The idea consists in introducing a regu-
larized version of the underlying process in the neighborhood of T with smooth coefficients in C/ (R)
and then to consider scheme of this regularized process. This scheme (or its modification) has mixing
regularization properties and we can use Theorem It then remains to control the error committed
between the real process and its modification.

Notice also that from point[B.]we can focus exclusively on proving the regularization properties for the
modification of the approximation semigroup Q™. In particular there is no regularization property to
prove on P" (or its modification) which is very useful. This is the method we employ in the following.
Based on Theorem we now present our method to prove total variation convergence of numerical
schemes of diffusion processes with singularities.
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3 Total variation convergence for locally smooth diffusions

A main application of Theorem concerns the use of Markov chains with form for the approxi-
mation, in total variation distance, of d-dimensional diffusion processes with form

N
dX; = Vo(Xo)dt + Y Vi(Xy) 0 dWF, (22)
=1

with (W})s=0 a standard Brownian motion and odW} the Stratonovich integral with respect to W,
Moreover, we assume that the coefficients V; € C°(D;R?) for a subset D of R%. The innovation of
our approach relies on the regularity of the coefficients V;. Existing results concerning total variation
convergence require that V; € C/ (R4 R%) for some ¢ large enough whereas in our approach we simply
assume that V; € Cg(D; R%). In the same way we will denote Vo,1to such that

N
dX; = Vouo(Xo)dt + > Vi(Xy)dW;. (23)
=1

The infinitesimal generator of this Markov process reads

1 N
=V E ‘72
A= 0 2 ¢ - 70

with the notation V f(x) = (V(z), Vf(x)). In the latter, when it is relevant, we denote by X;(z) the
process starting from x. Moreover we denote by (P;)i>0 (see [31]) the semigroup of this process.

We now introduce a discrete time approximation process for (X;);>o. Let n € N* be the number of
time steps between 0 and T" equipped with the time grid 77, = {t} = kT'/n,k € N}. We consider a
sequence of independent random variables Z7' = (Z,?’l, e Z,?’N) € RN k€ {1,...,n} and we denote
Z" = (47, ..., Z)). We assume that Z" is centered and that there exists two deterministic sequences
(B (Z™))kens < (BU(Z™))ken+ such that for every k € {ksy,...,n}, P(Z} € [bL(Z27),b%(Z2")]) = 1,
with ks, defined in . We also assume that n and Z satisfy

n> swp TPOET) - (M), (24)
ke{k‘g’n,...,n}

Finally, we consider the sequence of independent random variables x; € R, k € N*| (and independent
from Z") and we define the R? valued Markov chain

zr, .
X&H = w(ﬁk—s—lancv T;;, bl — tﬁ)7 keN, with V(k,z)€ R x R, Y(k,z,0,0) = z. (25)

In this section we provide an approach to show the convergence (as n tends to infinity), for the total
variation distance, of (X7)nen+ to X7 defined in .

Remark 3.1. The reason to consider the random variables ki is the following. In the Victoir Ni-
nomiya scheme, at each time step k, one throws a coin ky € {1,—1} and employs different form of
the function ¢ according to the fact that ky is equal to 1 or to —1.
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Now let QF,f(z) = E[f(X{")|Xg = 7], s,t € mrn, s < t. This semigroup is not supposed to
have mixing regularization properties and to satisfy every required approximation assumptions with
(P )tenr,,» (with notation (P")iens,, = (Pt)tenr,) to use Theorem Let 6 € [2T'/n,T] and con-
sider ¢, defined in . In our approach, we simply suppose that Q™ and P satisfy the assumptions
from Theorem on the time interval [0, t5,]. The next step thus consists in introducing regularized
modifications for Q™ and P™ which satisfy the hypotheses of Theorem on [0,t5,] but also on the
interval (ts,,, 7).

First we introduce a regularized version of (X;);>¢ with smooth coefficients such that we can simulate
an approximation Markov chain with suitable regularization and approximation properties. Let v >
0 and D C R% We begin by defining D? := {z € D,inf cga\p |7 — y| > v} with the convention
inf,cp |z — y| = +o0o0. Now we introduce ¢F € C®(R% D) such that ¢2'(z) = z if € DV and has
null derivatives when 2 € R%\ D. Moreover we assume that for every multi-index o with |a| > 1,
Do 9T € C°(RT\ DY; D) and that for every z € R?\ DY, we have

1062 (2)] < <,
v U|a\

where C' does not depend on v. Now, we can introduce a regularized version of (X;)i>o (see (22)).
Fori=0,...,N, we denote V;""" = V; 0 ¢? € C°(R%RY) and consider

N
dXP = VO (X0 dt+ Y VPN (XPY) 0 dW. (26)
i=1

Using this regularized process with smooth coefficients, we build the following locally regularized

version of (X¢)=o (see (22)):

X () = {

Xi(x), ift<ts,,

. 27)
X208 (X, (@), 0 t>ts,,

with ¢, defined in |D We denote by (Ftp’v)t>0, the semigroup of this process such that ?Z;vf(x) =

E[f(X")|X? = z] , s < t and also denote (ﬁtp’v’n)teﬂnn = (ff’v)te,mn. At this point, it simply re-

mains to introduce a Markov chain approximation for (Ytp’v(w))@o which is well suited to the use
of Theorem [2.I] Since our approach requires regularization properties, we introduce a modifica-
tion (Z)gen+ of (Z)ren+ as a sequence of centered and independent random variables with Zp =
(ZP, ..., ZN) € RN such that for every k € {ksn,...,n}, P(ZP € [bL(Z"),b4(Z™)]) = 1. This se-
quence varies from (Z}')ren+ in the following way. Let €4, 7, > 0. We assume that for every m € nN*,
the sequence (Z]")ren- satisfies the following Doeblin property: There exists (2% Jken € (RV)®N*
such that for every Borel set A ¢ RV and every k € N*

Lon(es,ms) = IP’(Z,Z” € A) = e MAN B, (%)), (28)

and we denote L, (e, 7«) = NmennLzm (€4, 7). In the sequel, we will denote

My = Ex /RN <]l|z\<m/2 + exp <1 - 7"2 — (2‘Z| — r*)Q)]lT*/2<|Z‘<T*>dZ (29)

*
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Moreover, we assume that the following moment finiteness assumption holds:

Vp =1, My(Z) := 1V sup sup E[|Z}|P] < +o0. (30)
neN* k<n

We construct the R? valued Markov chain approximation of (XtD o (see ) as follows

X7 =P (kg X7 Zist g —t7) keN (31)
tk+1 - k+1; tro \/ﬁ » V41 k) 9

where

P eC®RxRIxRY xRy ;RY) and V(k,z) e R xR 4)(k,,0,0) = 2.

The semigroup of this discrete process reads: ~;"tf(a:) =E[f(X])| XD =], s,t € 71, s < t. Using
this regular approximation we construct the locally regularized version of (X}")ier,.,, (see ) which

we will use to approximate (Y?’U)@g (see ) for the total variation distance with Theorem .

Let
—n ( {1#(’%»)(?;(95)’ ZI:;L+1/\/57 752+1 — 1), ity <tis,, (32)
€Tr) =

?z(’ik»ygg ('T)a Zl?—&—l/\/ﬁv tZ-’-l - tZ) if t(Sm < tZ < T’

We define its semigroup: @th(x) = E[f(X})|X, = z] ,5,t € Trn, s < t. Notice that for
= ( ?t)

—m ~m . . . . . .
5 = 5 and similar identifications holds when @ is re-
(Qt&n +t:t6,n+5)t,s€7rgf"m;t<s (Qté,n +tots,, +3)t,s€ﬂ'gﬂm;t§s Q

every n € N* we have (@:t) and for every m € nN*, we have

t t
st is<t sitem o s<t

placed by P. Notice also that from this definition, the Doeblin assumption is only necessary for
every m € nN* and every k € {ks,m/n,...,m}. At this point, we introduce the following quantities:
Let r € N* and let 1) € C"(R x R? x RN x R, ;R%) and define

r—|af

oo =1V Y > (1080207
loe|=0 | B|+|v[=1
For r € N*| we also denote
R (@) = (1 + [|[9]]1,r00) exp(|[ ] 3.00)- (33)

Before we establish our main result concerning numerical schemes, some assumptions are still to be
introduced. Assume that

311300 , Ms(Z)

1
_ 2 p—
pye + - + exp(—mind/(4T)) < 5 (34)
Moreover we assume that there exists Ay > 0 such that
N - 2
inf inf inf <az. ,,o,o,>>x*. 35
inf inf inf 2 (K, 2,0,0), € (35)

1
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and

nl/?2 >3

(36)

We now introduce our main hypothesis concerning the fact that (Y?)teﬂnn (see 1’ is a well adapted
modification for (X{")iery.,, (see ):
D UM =N

(SGReg(P Q h,q,n,d,T,D,v))

Assume that L., (e, 7.) (see . ., ., and (| . ) hold and that:

I) Localized identity of the regularized approximation. Let us denote Qxn =
~n ~n
{Supt67r§"n | XT, ¢ — X7 <wv}and Qg = {Suptewinn [ Xt5.,,+¢ — X7 <v} and assume

that:

Law ,~n

(XZ;”HHQX”) = (Xté,n+t]197n)t

on 5n s
tE’R‘Tyn €7rT,n

D,u,n

on the event {X}} = Y;n} N{X}, X7 € D}, with 6, defined in 1)
II) Approximation. On the interval (0,5, ], assume that (P, and (Q. ;)

t t
>s,tew7§’,’; ;sét Vs pemnis<t

satisfy respectively Py (see (7)) and P! (see (8)) and E’ h,q) (see (11))) holds be-
q n,pol

tween them.

On the interval [t5,, T, assume that for every m € nN*, the assumptions E,,(h, q) (see

" —D,v,m
(@)) and E* (h,q) (see ) hold between (Py;” "y 1) s and (Qt5 s, +s)

We now establish the total variation convergence result that we derive from this approach and from
Theorem 211

Theorem 3.1. Let T >0 and n € N*. Let g € N, h >0 and 6 € [2T/n,T). Assume that and
(SGReg(P o Q" h,q,n,8,T,D,v)) hold. Then, there exists | € N*, C, 8 > 1 such that we have for
every bounded and measurable function f: R? — R, with supp(f) C D?",

tsET t,sEmyl t<s’

L7 (X () — FOXR )| <8 (e (- P2 T baobonlley oy (o Cantyypy

TE, Viton STton 71
01+ af B2 )t (37)

-----

with 1(q) = q(q+ 1), Czn = nfye (g, T/(12(64(Z7) = b}.(Z2™))?) and R, (¢), r € N*, defined in

(EE2

Remark 3.2. Notice that from Lemma then remains true if we replace V by VP or if we
replace Czp/ 1001} 1,00 29 Con/ 1013 1,00 07 by Cs /1910011 005 C /10113100 as so0m as
holds with Z™ replaced by Z™ (when those quantities are finite).
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Remark 3.3. We can obtain the same result as for bounded and measurable test functions f with
supp(f) C R In order to do it, we simply have to assume that P(Xr ¢ D*) and P(X% ¢ D?°) are
small enough. In this case we can rigorously speak of total variation distance estimation. However,
there is no particular interest in doing it if we cannot ezplicit P(Xr ¢ D?") or P(X%} ¢ D?'). That is
why, we simply provide and consider this result as o total variation distance estimation between
the process and its scheme.

In this section we present the tools from which we derive Theorem We first present a generic class
of Markov chains which have regularization properties and can be used to simulate (Xt")t@r; Aty

This provides appropriate mixing regularization properties for (Y?)teﬂ% necessary to use Theorem

point with P” replaced by PP and Q" replaced by Q". Finally we give concentration
inequalities for Markov diffusion processes and for Markov chains to control the total variation distance

between P and P~ """ and between Q™ and Q". We conclude by establishing Theorem

3.1 Regularization semigroups

In this section, we present a class of approximation Markov chains that can be used to build a
semigroup and its modification with adapted regularization properties. In particular this class is large
enough to contain classical numerical schemes (Euler, Ninomiya-Victoir...) for diffusion processes
with smooth coefficients such as (X?’”(:n))t>0. In this section we fix n € N*. We are going to build

(st)tseﬂnn;tgs and prove that there exists a family of kernels ( N;ig’n)t,sewT,n;tgs which satisfies Rg,,

(see ) and R . (see ) and such that holds between Q™ and Qe8".

3.1.1 A class of random tools

First, we present the random tools that appear in the construction of our class of Markov chains and
which provide regularization properties through Doeblin properties. Let n € N* and NV € N* be fixed.
We consider a sequence of independent random variables 2 = (Z,?’l, e ZZN) eRN ke {l,...,n}
and we denote Z" = (Z0, ..., Z").

Our aim is to settle an integration by parts formula based on the law of Z™. Let e, 7, > 0. The
basic assumption is the Doeblin condition L. (e, 74) (see with this fixed n) that reads: There

exists z}) € RN, k € {1,...,n}, such that for every Borel set A C RY and every k € {1,...,n}:
P(Zp € A) > e.\(AN B, (21'y)). We also say that the random variables Znk € {1,...,n} are
lower bounded by the Lebesgue measure. We also suppose that holds. It is easy to check that
L.» (g4, 74) holds if and only if there exists some non negative measures 7} with total mass WZ(RN ) <1
and a lower semi-continuous function ¢" > 0 such that P(Z} € dz) = 7(dz) + ¢" (2 — ;' )dz. Notice
that the random variables (Z{l, ..., Z") are not assumed to be identically distributed. However, the
fact that r, > 0 and e, > 0 are the same for every k (and also for every n) represents a mild substitute
of this property. From L.n(e«,74), we introduce a variant of @™ (which does not depend on n) for the
representation of the law of Z™. Let ¢, /o : RN — R be the function defined by

2

.
G ) i< (38)

Or,j2(2) = o<, j2 + XD (1 —

Then ¢, /2 € C3° (RM), 0 < ¢r./2 < 1 and we have the following crucial property: For every p,q € N
there exists a universal constant C,, such that for every z € RV and every i1,...,i, € {1,..., N},
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we have Py C
p
er.22)| g M er ) ()| < T8

with the convention In ¢, /o(2) = 0 for [z| > r.. As an immediate consequence of L.n(e«,7s) (see
), for every non negative function f : RV — R, , we have

B > 2 [ orpal == 2 M)

By a change of variables, it follows that

E[f(zg)} > ey /RN nN/QcpT*/g(\/ﬁ(Z — 'i;’?’z))f(z)dz =&, o bn(2)f(2)dz, (39)

with ¢, (2) = nN/ng,.*/Q(\/ﬁz). We notice that [ ¢, (2)dz = mse;?, with m, defined in 1’

We consider a sequence of independent random variables x; € {0,1}, Uy, Vi € RY, k€ {1,...,n}
with laws given by

P(xx = 1) = ma, P(xx = 0) =1 — mx,
Z

—0

%)dz,

P(Vy € d2) = - _lm* (]P’(\Z/’% c dz) — ertn (z - i;g)dz).
0.

Notice that guarantees that P(V}, € dz) >

P(Uy, € dz) = ;—*qbn (z -

Then a direct computation shows that

Zn
P(xxUr + (1 — xx) Vi € dz) = P(\/—% € dz).
This is the splitting procedure for Z—\/’% and the regularization properties follow from the following
representation,

Zn
—E = xwUk + (1= x0)Va,

Vn
through the random variables Uy, k € N*.
Remark 3.4. The above splitting procedure has already been widely used in the litterature and is called
the Nummelin splitting: In [30] and [25], it is used to prove convergence to equilibrium of Markov
processes. In [8], [9] and [36], it is used to study the Central Limit Theorem. Besides, in [29], the
above splitting method (with 1 (274 instead of ¢ (2 — %)) is used in a framework which is similar
to the one in this paper. Last in [Jl], this exact framework is used to prove total variation convergence
under a reqular setting.

3.1.2 A class of Markov chains

We now present the class of discrete time random processes that is used to build the semigroup

= . . . Areg,n . . . . .
(QF,)t.senp.i<s and its modification (Q} &™)y sexp. s<s which satisfies regularization properties. We
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recall that n € N* is the number of time steps between 0 and 7" equipped with the time grid 7 ,. We
consider two sequences of independent random variables Z” € RN k, € R, k € N* and we assume
that ZJ are centered and verifies L., (e.,7) (see ( . and . As in ., we construct the RY
valued Markov chain

ZTL
k+1
Xtr,Lc+1 = ¢(/€k+1,X" —t [ —tZ), keN,

tr \/ﬁ

where

P eC®RxRIxRY xRy;RY) and V(k,z) e Rx R 4(k,,0,0) =

3.1.3 The regularization property

In the following, we will not work under P, but under a localized probability measure defined as
follows. For t,s € T, t < s, we consider the set

Avs = {(s—tn/T Z Xk = *}

i<ty <s

Using the Hoeffding inequality and the fact that E[yz] = m., it can be checked that
P(Af,) < exp(—mi(s — t)n/(2T)).

We consider also the localization function ¢,,1/4 /25 defined as in 1) with r, replaced by n'/%, and
we construct the random variable

n
@t,s,n = ]lAt,s X H ¢n1/4/2(Zl?)'
k=1

Since Z; has finite moments of any order, one can show the following inequality: For every [ € N, we
have

Z
P(Orm = 0) < P(AL,) + Y P(ZE] 3 i) < exp(-m(s — n/(27)) + ”Zz)()
k=1

with the notation M4(H_1)(Z ) introduced in . We define the probability measure

1

dPs,, = ———
et,s,n E[@t7s7n]

O¢,5ndP.

We consider the Markov chain (th)tew,n: defined in and we introduce (Qts )t.semp ait<s (that
replace notation Q"®8") such that,

Vi, semlit<s, Q9 = Fo, [FXMX' =] = ——
78 7TT’ S t,s f<x) et,.s,n {f( S)‘ t ‘T] E[C_)tsn]

199

Notice that (Qggn)t,seme;tgs is not a semigroup, but this is not necessary. We are not able to prove

the regularization property for Q™ but for its modification Q©" that we now establish. Notice that
considering the hypotheses of Theorem [2.1] this is sufficient to obtain total variation convergence.
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Proposition 3.1. A. Let T > 0 and n € N*. We assume that n € N* and t,s € 7['%:”, t < s,
satisfy:

310|300 Mg(Z™
H!i\l\}f n 82 )+exp( m2n(s —t)/(2T)) <

N | =

and

nl/?2 >

Moreover we assume that
N _ 2
inf inf inf <a Bk, 2,0,0), > > A
ffint it > (057,00
Then for every q € N and multi index o, with |a| + |B| < q, there exists | € N* and C >

which depend on m.., . and on the moments of Z"™ such that, for every bounded and measumble
function f € CI(R?), we have

l
(A*{iqf?}(;f;(qm 171l (40)

with 8,($), r € N*, defined in (33). In particular, Q7" (z,dy) = p{"®(z,y)dy and (z,y)
P (x,y) belongs to C°(R% x RY).

1007205 flee < C

B. Foreveryl € N and everyt,s € W%n;t < s, we have, for every bounded and measurable function

f

G — G il < 4(exp(cmin(s — /1)) + D@y gy

Remark 3.5. The estimation (@) means that the strong reqularization property Ry, (see @, with

n(q) = q(q + 1), holds for (Q?s’n)t,s@m“tgs. In particular Ry, (0/2) (see ) and R (6/2) (see
Q ~®7 y y y ; e

) hold for (Qy n+t s, +5>t senin 1< which is a modification of (Qu; 1445 +S)ts€7rTn,t<s

39) for definition). Moreover, using this result we deduce from L. (4, 1y) (see (28)), (34), (54,
55) and (36 that for every m € nN* then R,,(6/2) and R} (0/2) hold, with n replaced by m, for

~0,m . . . . —m
5 which is a modification o 5 .
(Qt&n+t:t6,n+5)t,se7r‘}"m;t<s fi f (Qt&n+t7t5-,n+S)t,s€7rg!?m;t<s

. ' ~0, —
. it follows that that holds between <Qt6,T+tat6,n+5>t,sew§n s and (Q:;"+t7t5,7l+5)t,s€7r§," s’
with n replaced by m. 7 7

(see

Finally using point

3.2 Concentration inequalities

The concentration inequalities are crucial tools in the proof of Theorem In particular, they
provide a solution to estimate the total variation distance between P™ and P2 and between Q"
and Q". We begin with a first practical lemma.

Lemma 3.1. Let T C Ry and let (Hy)ie and (K;)ieT two processes taking values in RY. Let y € R?
andv > 0. We define the processes (H(y,v)t)ieT and (K (y,v)i)ieT with H(y,v); = Hilgup, r |Hi—y|<v
and K(y,v)t = Kilgup, . |K,—y|<v- We assume that (H(y,v)e)ier and (K(y,v)i)ier follow the same
law. Then

P(sup [Hy — y| < v) =P(sup |K; — y| < v).
teT teT
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Proof. We consider that (H;)ie7 and (Ky)ier are non null processes. Otherwise the proof is straight-
forward. We have {sup,cr|H: —y| < v} = {supyer|H: —y| < v} N ({H = H(y,v)} U{H =
Hlgyp, |H,—y|>v}). Moreover, since the process H is not zero, we have {H = H]lsupteT\Hﬁy\%} =
{supser [He — y| > v} and {supyer |Hy —y| < v} N{H = Hlgyp, . |H,—y>o} = 0. We thus derive

P(sup |[Hy — y| < v) =P(sup |H(y,v): — y| < v) = P(sup |K (y,v); — y| <v) = P(sup |K; —y| < v),
teT teT teT teT

where we use the fact that (H(y,v)¢)ie7 and (K (y,v):)ie7 follow the same law.

We now establish concentration inequalities for both continuous and discrete time processes.

3.2.1 The continuous case - The Bernstein’s inequality

Proposition 3.2. Let (M;)i=0 be a continuous local martingale such that My =0 and (M) = +00
a.s. Then, for every ¢ > 0 and every v = 0,

2
P( sup |M| > v[(M); < c) §2exp<—;}—). (41)
c

0<s<t

Proof. In order to prove , we will use the following result which concerns the specific case of the
Brownian motion.

Lemma 3.2. Let (Wi)i>>0 a standard Brownian motion. Then, for every v > 0,

2
Vt >0, P(sup |WS|>U)<26Xp<—%t>. (42)

0<s<t

Proof of Lemma|[3.4 We recall that for every o > 0, £*(W); = exp(aW; — O‘TQt) is a o(Ws,s < t)-
martingale. Using the symmetry of the Brownian motion and the Doob maximum inequality for non
negative martingales, we derive

ot ot
P( sup |Ws| = v) =2P(sup W5 >v) = 2P<exp (a sup W, — —) > exp (av - ))

0<s<t 0<s<t 0<s<t 2 2

<2P< sup £Y(W)s > exp <omf a2t>> < QM Qexp(oeraQt).

0<s<t 2 exp(awv %) 2

The function « +— exp(—awv + ath) being convex, we obtain inf,~gexp(—av + %%) = exp(—%) and

follows. O

Now, since My = 0 and (M) = +00, we can use the Dambis-Dubins-Schwarz Theorem. Let us

define T; = inf{s : (M)s > t}. Then Wy = Mr, is a Fr,- Brownian motion and M; = Wy, It

follows from Lemma [3.2] that

P( sup [Ms| > v[(M); <) =P( sup [Wi| > o[(M); <¢) =E[P( sup [W| = v[(M),)[{M); < ]
O<s<t 0<s<(M)y 0<s<(M)y

1)2 2

<E[2e0 - 2(M>t>’<M>t <c| <2em(-5)
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Applying this result to Markov diffusions we derive the following result.
Corollary 3.1. Let 6 € (0,T]. Let (X¢)i>0 be a diffusion process with form with Vo 1t0, Vi €
CO(REGRY), i€ {1,...,N}. Then, for every v >0, we have

v?/2 = 62| Vo 101 2
with B.(x) = {y € R, |y — z| < r} for every x € R? and every r > 0.
Proof. Applying Lemma we derive
P( sup |Xp— X¢| Z>v|Xp)= sup ‘ / Vo 110 (Xs)ds + Z/ $)dW? ’XT)
T—6<t<T T S<LLT
sup ’ / Vo,1t0(Xs) 1 B, (x7) (Xs)ds + Z/ X)), (xm) (X )dWl ‘XT>
T 5<I<T

N T
<P(_ s |37 [ V)L, (X)W > vf5||vouonBi,XT>||oo)

T—6<t<T ' 5

Now, follows from Proposition with (Mp)o<i<s = Doiq fT Vi X)L, (xp) (Xs)dW! using
that (M), < 675, Vil g, (xp) l%-

O]

3.2.2 The discrete case - The Hoeffding inequality

Before we establish a well adapted concentration inequality for our discrete time approximation, we
recall the Hoeffding inequality.

Proposition 3.3. (The Hoeffding inequality). Let (M,)nen be a discrete centered Markov process
such that there exists two sequences (b))neny < (b)nen such that for every n € N*, P(M,, — M, €
[bL,b4]) = 1. Then, for every v >0,

n»vn

202
P(IM| > 0) < 2exp ( — = ).
2 k=1 (0 = by)
Corollary 3.2. We fir T >0 and n € N*. Let 6 € [2T/n,T]. Assume that (X{')ieny,, is defined as
with ¢ € CHR x RY x RN x R ;RY) and P(Z} € [bL.(Z2™),b%(Z™)]) = 1 and such that holds.
Then, for every v > 0,

C 2
P swp |XP - X[| > 0lXp) < 2exp (- ) (44)

tETl'%:JL;t}T—Sn 5”17[}]le(XT)H%,1,OO
with 6, defined in and Czp = infke{k(;,n _____ n} T/(12(b(Z") — bi(Z"))Q)-

Proof. Let N =1 for sake of clarity in the writing. Using twice the Taylor expansion at order one of
1) with respect to the third variable and then to the fourth variable, we derive

1 1
X =X = wgﬂfo (1= N0 (kgy XT2, Ay 1wy )dA + w;+1/() (1= N (kk, XTI, 0, Awy 1 )dA,

k+1
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with v}, = T/n and wj, € [b,,(Z")/v/n, b}, (Z")/v/n]. We apply Lemma (3.1 and Proposition
B3l in order to obtain

PC sup X7 — X[ > 0] X7)
tenl  t>T—by,

< 2exp< _U2/4 )
S (10 g, lloo)? + (EEED g 11 1 e loo)?
2 By (X2) VD By (X7)
—R§n

with ks, = n(T —6,)/T defined in (21). Since |6 —,| < T/n and 2T /n < 1t follows that n — ks <
3nd/(2T). Therefore, using (24), we rearrange the terms and the proof of (44)) is completed. O

3.3 Proof of Theorem [3.1]

Using those different presented tools we are now able to prove our main result concerning total
variation approximation for diffusion processes with locally smooth coefficients.

Proof of Theorem [3.1] In a first step we decompose the total variation distance |E[(f(X1)— f(X7))]|.
Then, using Theorem and concentration inequalities (see Corollary and Corollary , we
study each terms appearing in this decomposition.

Step 1. Decomposition of the total variation distance. Let us define Qy = {SUPT_Sngth | X —
re) 7D7 7D7

Xr| < v} N {sup,_ Sn<t"<T‘th — X7| < v} and Qx = {sup;_; o |X¢ Y- X7 < vl

{SUPT—S,LgtggﬂXt X7 < v}. From (SGRreg(P Dvn,@n,h,q, n,6,T,D,v)) and since supp(f) C

2v it follows that
E[(f(X1) — f(X})1ay] = E[(f(X7") — F(X7)1g, ],

which yields

E[(f(Xr) — FOXED]] <IELF(XTY) = F] + 2 flloo (P X7, X € D) + PQ% X1, X € D¥)).

Step 2. Analysis of the terms composing the total variation distance estimation. To
complete the proof, it remains to estimate each term of the r.h.s. of this inequality. We focus on the
first one. As a direct consequence of Proposﬂ;ion 3 (see Remark [3.5) and Theorem [2.1] - (which follow

from L., (e.,r.) (see (28)), (4), (30), (B6) and (35) and ( SGReg(P " Q" hyg,n,8,T,D,v)) [ID),

we deduce from the mixing regularlzatlon properties of (X )teﬂTn that

ELFXP) — SO0 < OO+l ST
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Now, we study the second term of the r.h.s of the decomposition of the error. First, let us observe
that

P(Q%|X7, X7 € D*) <P( sup  |X; — X7| > v|Xr € D)
T—38, <t<T
TP sup  [XP - XP| > 0|X} € DP),
T-§.<tp<T

and
=c Dy <n 2 <7D,v ~Dyv ¥ 2v
PO X, X e D ) <P( sup  [XDY - X2 > 0[Xp € D)

T—8,<t<T
+P( sup Xy — X7| > 0[X7 € D¥).

T—bn<tp<T

Now, we notice that for every € D', then B,(r) C D’. Using Lemma and Corollary we

derive
P(  sup ]Ytp’v — YZF)’U\ >0 X € D) =P( sup |X;— X7|>=0|Xr € D¥)
T—6,<t<T T—6,<t<T
_vP/2— 52!!%,Itoﬂvv\|§o)
N )
6 it [IVilpe |13

<2exp (

In the same way, using Lemma with the hypothesis (SGReg(FD’v’n,@n, h,q,n,6,T,D,v)) , it
follows from Corollary [3.2], that

P( sup |Y?Z — X7| > v|X7 € D*) =P( sup | Xjn — X7 2 v[X7 € D)
T—6n<tp<T T—6n<tp<T
Cy 02
croxp(~ — Can )
Yool
Gathering all the terms together yields . O

4 Second order total variation convergence towards CIR processes

In this section, we apply Theorem obtained in a general setting to the case of a second weak
order scheme for the CIR process. This scheme was first introduced in 2] and is built using cubature
methods. It is inspired from the approach proposed in [28] to build the so called Ninomiya Victoir
schemes for SDE with smooth coefficients. Finally, in [23] or [5], the authors showed that the total
variation convergence occurs for those cubature schemes as soon as the coefficients of the SDE are
smooth. In this section, our purpose is to exploit and extend those results in order to obtain total
variation convergence results for the CIR diffusion process which is singular in the neighborhood of
Zero.
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4.1 The Ninomiya Victoir scheme

We begin by presenting the Ninomiya Victoir scheme (see [28]). Let us define exp(V)(z) := @y (x, 1)
where ®y, solves the deterministic equation

Oy (z,t) =z + [V (Dy(x, 5))ds. (45)

By a change of variables, we obtain ®.y (z,t) = @y (x,et) so we have
exp(eV)(x) := Poy(2,1) = Py (z,€).

We also notice that the semigroup of the above Markov process is given by PY f(x) = f(®y (,t)) and
has the infinitesimal generator Ay f(z) = V f(x). In particular the relation P} Ay = Ay P} reads

Vf(®y(z,t) =AyPY f=PVAyf =V (2)d, (f o ®y) (z,1).

Using m times Dynkin’s formula P f(z) = f(z) + fot PY Ay f(z)ds we obtain

F@y(e.) = 1)+ 30 5V i@ + o [ =y e paas (46)

We present now a second order scheme introduced in [28] and also used in [2]. We consider a sequence
ki, k € N*, of independent Bernoulli random variables. Let us define 1 : Z x R? x RN x R, — R¢
by:

(47)

bl wh ) = { exp(w’Vp) o exp(w Vi) o - o exp(wh N Vi) o exp(w’Vp) (), if k=1,

exp(°15) o exp(tVVy) o -+ 0 exp(w V1) o exp(uw®Vo)(z), if k= 1.
Moreover, we denote w{ = T/2n and w} = (w;’i)izlw,]\/ with wi = VTZi/\/n,i=1,...,N and we
assume that Z, k € N are independent random variables which are lower bounded by the Lebesgue
measure i.e. L (e,7%) (see ) holds: There exists z, ) € RY and e,,r, > 0 such that for every

Borel set A C RY and every k € N*: P(Z), € A) > e, \(AN By, (24)). Finally, we assume that the
sequence Zj, satisfies the following moment condition:

E[Z}] = E[(Z,)’] = E[(Z)°] =0,  E[(Z) =1, E[(Z)"=3,
Vp=1,  E[|Z)] < co. (48)

We recall that T > 0, n € N*, and that ¢} = Tk/n. One step of the scheme for diffusion with regular
coefficients (between times tj and tx1) is thus given by

XZ%H = 1/1(/<;k,XfZ,w,1€+1,w2+1). (49)

4.1.1 Convergence results for diffusion with smooth coefficients

We begin by recalling some convergence results concerning this numerical scheme.
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Smooth test functions

Here, we assume that the test functions are smooth. We state a first result, which is the starting
point in order to prove the convergence for the total variation distance.
Theorem 4.1. Let (X;)i>0 be the process defined by and (X{")teny,, given by @) Assume that
@ holds. We have the following properties:

A. Assume that for everyl < 3, we have V{ ngl(Rd; RY) — ngl(Rd; R?) and for everyi=1,...N,

we have V2, Al . ngl(Rd;Rd) — ngl(Rd;Rd). We also assume that Y0 o Vi(z) < C(1+ |z|)
and that sup,cpo |Pv;(2,1)] < Ci(1 + |2|%), Ci,B; = 1. Then, E,p01(2,6) (see @)} and

El (2,6) (see ) are satisfied between (Xi)iery,, and (X{')iery.,,-

n,pol

B. Suppose that V; € C{,’O(Rd;Rd). Then, there exists some universal constants C,l > 1 such that
for every f € Cg(]Rd), we have

sup [E[f(Xe)] — E[f(XP)]| < CC6(V)'|| flle.00/n”, (50)

t@r%n

with C (V) 1= sup,—q,. n [|Vil

k,o00-

Proof. We prove only point The proof of |B.|can be found in [4] (see Theorem 5.1.). We focus on
the proof of E, (2,6) (see ) We assume that N = 1 and T = 1 for sake of clarity, the proof

n
being similar otherwise. It is sufficient to prove that the schemes X&Zl = Py, (ch’",tkﬂ — tx) and

1
thk’zl = Oy, (thk’”, %), k € N, are weak second order schemes. We prove that they are in fact h-weak

order schemes, for every integer h € N* ag soon as Zj = Z,% matches the 2h 4+ 1-th moments of the
centered normal distribution and has finite moments of any order. First, we notice that the sublinear
growth of the coefficients implies that for every ¢ € R, the moments functions = — E[|X;(x)|9],

q € N, belong to Cgol(Rd) (see [1]). Let us consider f € C°(RY). According to the definition of Vj,

we notice that for every I € N, VI f € legl(Rd). In this case, expansion reads

h
VhEN, f(Oy(e,0) = f(@)+ D] TVEf@) + RE ()
=1 "

with

h
r s = [ s s

As already mentioned, VOth € ngl(]Rd). Moreover, for every z € R?, supyeo,r [P (2, 8)] < Co(1 +

|z|%0) and then for every t € [0, 1], there exists 3 € N such that

[RET (@) < O+ |2l 1,00

The scheme with transition function ®vy; is thus a h-weak order scheme for the operator V. Now, let
Hy, = \/tZ,. Still using , we derive

t'E[| Zi)*]

B @ (Heo) = 3 =g

21<2h+1

VP f(z) + BRI, f(a)]
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with

h+1 ngthQ ! 2h+1y,2h+2
Ry f(2) = I (L= )TV f (B, (2, sH))ds.

(2h +1

Moreover, V22 f ¢ ngl(Rd;]R) and for every z € R?, supyepo,r) |Pw (2, 1) < Ci(1 + |z|%1). Once

again, there exists g1 € N*, C7 > 0, such that

E[’Hk‘2h+2]

oy L Dl lnsose < OO+ o)) flanso

h+1
E[|Ry 3, f(2)]] <
and the scheme with transition function ®y; is a h-order scheme for the operator V.

Finally, for every f € Ci%) then Af € %) and we obtain E! p01(2, 6) (see ) using the Ninomiya,
Victoir composition (47) and the polynomial control of the moments of the diffusion and of @y,

i € {0,...,N}. The proof of E, 01(2,6) (see (10)) is very similar and left to the reader. O

Remark 4.1. Notice that property B (see (E?l)) has already been studied in [1f for the CIR and since
SUPyeo,7] Dy (1) € Cgol(Rd), we can use Property i order to obtain the weak convergence for
smooth test functions with polynomial growth.

Bounded measurable test functions

Under an ellipticity condition, we can control the total variation distance between a diffusion process
with form and its second order scheme (49)).
Theorem 4.2. Assume that V; € C°(RGRY),i=0,...,N, and

N

‘gnfl Vi(x),6* > A >0  VeeRL (51)
=1

Let S € (0,T/2). Then there exists ng € N*, 1 € N* and C > 1 such that for every n > ng and for
every bounded and measurable function f defined on R?,

Co(V) Ro(v)!
sup [B17060)] — B0 < e

tEWT,n

£l /7. (52)

Remark 4.2. This result has already been obtained in [5]. The result signifies the convergence
in total variation distance for the weak error with order 2. We notice that, the key point of this
proof does not rely on the weak order of the scheme. This is the fact that, the splitting procedure

in order to build the scheme, always includes a diffusion part (through exp(%vi)) together

with the ellipticity condition . Consequently, o similar procedure could be used in order to prove
the convergence in total variation for even higher order schemes as soon as we control this error for
smooth test functions. Finally, it is important to notice that the generic property L., (e.,7+) (see (28))
is cructal here. On the one hand, it enables to apply a Malliavin inspired calculus crucial to achieve
total variation convergence. On the other hand, since the random variables (Zy)ren+ do not have a
specific law but only satisfy the Doeblin condition L, (4,74) (see (@) and the moment condition
(@, the result can be seen as an invariance principle.
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4.2 The CIR model

The CIR process is an R -valued diffusion process driven by the following SDE,
dXt = (CL — ka)dt + o/ Xtth. (53)

This model was first presented in 1985 in [I3] and was inspired by Vasicek (1977) models [35] by
modifying the volatility term introducing a ’square root’ term, among others in order to guarantee
non-negativity. In this paper, we suppose that a,k,c > 0. In this case, it is important to notice that
the model does not reach 0 for 2a > o2.

4.2.1 Second weak order scheme for the CIR process

The Ninomiya Victoir scheme for the CIR
Applying the notations from , we have

Ve eR, Vocrf(z)=(a—kx— f)@xf(x)

Vz € Ry, ‘/l,cirf(x) - U\/Eaxf(x)

Solving the PDE yields the following flows

2 1— —kt
Ve eR, ®geur(t,z) = ze ™+ (a— %)Te
VzeRy, ®ap(tz) = (Vo+ %t>2-

At this point, we distinguish two cases. Indeed, we notice that if 02 > 4a and x < 2*(t) := k:_l(%2 —
a)(e* —1), then ®§TF (¢, ) takes negative values and then the scheme is not well defined anymore.
In this case, we have to introduce another scheme in the neighborhood of zero (when = < x*(¢)) and
to use a switching procedure in this area. Otherwise, we will prove that, as soon as the scheme

is well defined, then it is a second weak order scheme. As a consequence, if 4a > o2, we define
Yeir(x, W', W) = exp(wOVp i) 0 exp(w Vi eir) 0 exp(wOVy eir ) (). (54)

Now, we introduce w = T'/n(=t} — 2 |) and w} = VT Z),/\/n, where Zy, k € N*, are independent
R-valued random variables which are lower bounded by the Lebesgue measure i.e. L, (ex,74) (see
(28))) holds. Finally, we assume that the sequence Zj satisfies the moment conditions and that
P(Zy, € [-V/3,V/3]) = 1 for every k € N*.

Ome step of the scheme for the CIR diffusion (between times ¢! and t ;) is given by

XZZH = wcir(nkngc7wli+lvw2+l)' (55)

4.2.2 Second weak order scheme in the neighborhood of zero

This section is dedicated to the introduction of a specific scheme in the neighborhood of zero when
02 > 4a. In this case, the scheme defined in is indeed not well defined. First of all, we have to
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identify the threshold such that, for every time step we use the scheme or we introduce another
scheme. To this end, we consider some bounded random variables Zj, in order to use the following
result that determine this switching threshold.

Lemma 4.1. Assume that 0® > 4a. Lett >0, A >0, w' € [-A, A] and define

2 1— e 2 1—e % i
kt g — € kt g — € o
K(t,A)=e2 |[> —a) —— B —a)———+ 24 |.
(t,A)=e> (4 a> —+ \/62 (4 a) 5 (56)

Then
t 1 t
Vo > K(t, A), (I)O,cir(ga ) o (I)l,cir(w s ) o (1)0701'7"(57 I) = 0.

Proof. We first notice that K (¢, A) > 2*(%) and then for every ¢ € [0,1], the function z — ®¢ cir(5,.)0
D1 cir (wt, .)o<1>07m(%, x), x € [K(t,A),+00), is well defined. Moreover, ®q ., is increasing with respect
to its space variable z and

t ke (02 1—e 2
olpn) = ()

Since all the terms inside the parenthesis are positive and w!' > —A, we deduce that

2

2| Q

2 okt
By gip(w,.) 0 B (2, K (1, A)) = \/e’é‘ <”—a) Lo + 2 (A+w!)

57
S o2 o? 1—67%_ *(t>
= e L@ B =z'\3)

Finally, notice that ®; .; is increasing with respect to its space variable  and the proof is completed.
O

Now, it remains to introduce the scheme that we will use in the neighborhood of zero.

Moments matching approach. Our approach consists in checking, at each step of the Ninomiya
Victoir scheme, if it may take negative values. In this case, we switch with a scheme based on
moment matching approach and inspired from Andersen [3] and introduced in [2]. One step of this
scheme consists in simulating a discrete random process ((;)i=0 € {y1,v2} € R?, which depends on
the current position, at the selected date t > 0 which corresponds to the time step. We recall that
the first two moments of the CIR starting from Xg = x € Ry, are given by

E%[X;] = ze ™+ %(1 —e M)
2 o’ k 2k o’ kt\2 2
E*[X[] = x?(e_ t_ e~ t) + a@(l —e” t) + E*[Xy]",

and we denote u,(z,t) = E*[X/]. In the neighborhood of zero, one step of the scheme (X[‘)ter; ,
between ¢} and tj,; consists in simulating a random variable distributed under the same law as
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Ct’,;+1—tg with (y1,y2) given by the solution of the following equation:

{ P(¢=y1)yn + PG = y2)y2 = ui(x,t)
PG =y)yi + P(G=v2)y3 = ua(z,t),

—

on the event {Y?k = z}. In this equation the only fixed parameters are u;(t,z) and wus(t, =), and
obviously P({; = y2) = 1 — P(¢; = y1) €]0,1[. Thus we can fix values for y; and ys to solve the
first equation and then the second one gives a second order equation to solve to find P(Y; = y1). For
instance, let v €]0, 1[ and let us choose

. uy(t, ) (1o uy(t, x)
Y1 = ]P)(Ct:yl)va_(l )P(Ct:y2)

The second equation then rewrites
ug(t, 2)P(G = y1)? + [(1 — 20)uy (t, ) — ua(t, )| PG = 1) + v2ui (¢, z)? = 0.

We thus consider the second order equation which depends on the parameter v:

us(t, 2)p® + [(1 — 20)uy (t, ©) — ua(t, z)] p + v2ui(t, z)? = 0. (57)
We want to find a couple (p(v), v), where p(v) is a solution of the equation above, such that p(v) €]0, 1.
Let us denote

Ay(t,x) =[(1 —2v)ui(t, z) — ua(t, :1:)]2 — 4v%uy (¢, z)ug(t, )
Now we chose v = % We compute the following solution for 1}

ug(t,z) £ ua(t, z)(uz(t, z) — ui(t, z)?)
2ua(t, z)

p(1/2) =

At this point, we thus put

P(¢, = 1) :% (1 i u1(t,:1:)2> |

ua(t, x)

Since wy (t, ) > max <a2 (1_?“) 2z (e — e*%t)>, we derive the following lower bound,

P(Ct=y1)>l<1— 1- 2 >

2 a4+ o?

This provides the following crucial property in order to prove the second order convergence: Assume
that there exists C' > 0 such that 0 < K (¢, A) < Ct. Then, for every q € N,

vt €]0,1],Vz € [0, K(t, A)], 3C > LE[{]] < Ct?

We define the transition function in the neighborhood of zero by

(0, 2) N
a /. 0\ 1 p = )
~ 9 0
¢CiT(p7x7w0) = p<1j:7(7v7vl)0) x)
LS if p=—1,

2(1 = p(z, w?))’
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with p(z,w®) = (1 — /1 — "l(wo’x)Q). Now let w) = T'/N. We define a step of the second order

uz (w0,x)

scheme for the CIR in the neighborhood of zero by

n

b 0
th+1 = wcir(/)k, Xtr,i ) wk+1)7

with (pr)ken the sequence of random variables such that P(p, = 1|1X]") = p(X[, w}, ) and P(p; =
—1|X7) =1 —p(X{*,w) ). Finally in the case 0® > 4a, we use the Lemma and we define the
CIR scheme by

o {wm(mk,xg,w,iﬂ,wg 4),  HX] > K(T/n,/3T/n), (58)

t - -~ .
e Yeir (Pr, X1 i), if X[ < K(T/n,/3T/n),

where w,}/, = \/TZk/\/ﬁ is defined as in 1}

4.3 Convergence results
4.3.1 Smooth test functions

We focus on the convergence of the CIR schemes defined in and . Using Property . In
order to apply this result we have to establish the following straightforward property.
Lemma 4.2. Letl € N. Then, we have

Proof. Notice that it is sufficient to show the result for [ = 1. In this case, the result is straightforward
since

0.2
Y ECRRY, Vil (o) = 0V (5 z0nf (o) + VEEI() ) = T 0uf(a) + a0k ).

f

O
The property leads the following short time estimate.
Theorem 4.3. Let (X;)i>0 be the process defined by and let (X})) be defined by (55) if 4a >
and by @ otherwise. Then, there exists | € N*, C, 5 > 1, such for every f € CS(R+;R) E! pol( 6)
(see (11])) holds and
Ve € Ry, |E[f(Xr(2)] - E[f(X2(2)]] < C(1+ [2]”)] (60)

Proof. First we recall that the proof of ‘}3’ (se) for the CIR diffusion and its scheme are given in

[2]. If 4a > 02, it is sufﬁ(nent touse T heorem 4.1 point [A.] to obtain and then (60 follows from
Property - Now let 02 > 4a. Here, the only thing we still have to check is that 1.} is satisfied

for the moment matching scheme as soon as z € [0, K(T'/n, /3T /n)] with K defined in . This is
a consequence of the two following results.

Lemma 4.3. Let 02 > 4a. Let K be the function defined in (@ and let A € R. Then, for every
qeN,

3C, > 0,t, €[0,1], Vt€[0,t,],Vx € [0, K(t, \Wt)[, E[X]|Xo=z] < C,t
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Proof. Let us consider the function g(x) = 297!, x € R. Applying Ito’s formula to g for the CIR
process gives:

t 1 t
X0t = gl 4 / [(q + D)X (a— kXo) + 5alg+ 1)02)(4 ds + / (q+ DX 2 gaw,.
0 0

Using localization by considering the stopping time 7, = inf{t > 0 : |X;| > m} and the Fubini
theorem, yields

tATm
E[IXH ] < 2%+ E[\ /0 [(¢g+1)X(a— kX,) + %q(q +1)0*X{] ds\]

t 1
< @ [l Dot pata + 10%| BIXE, ] - KEIXED Jas

Reasoning by induction, we assume that: 3C; > 0,¢, € [0,1], E[XZ,, | < Cyt?. Since z € [0, K (t, \V1)[
with K (t, \Wt) = tOO(t), there exists to41 € [0, 1] such that
—

vt € 0ty ) BIXEE [ < K (6 WD +Cy (g + a+ g+ 1)0?) 071+ [ kE| XL [1ds

Applying Gronwall’s lemma and the fact that ¢t € [0,t,41], and that there exists C' > 0 such that
K(t,\W/t) < Ct, we deduce that

1
IE[|X3AJ;}RH < (Cq [(q + 1)a + §q(q + 1)02] + C> eheatl

Finally, the continuity of the flow and Fatou’s lemma give the result. O

Using this result the property £}, (2,6) (see (L1)) is a consequence of the following theorem

n,pol
Lemma 4.4. Let h € N, z € [0,C*(¢)[ with C*(t) = tOO(t) and let ((¢)i>0 be a Ry valued random
_>
process such that ¥q = 1,...,h,E[(]] = E[X[] with (Xi)i=0 the CIR process defined in and that
for every g < h+1, there exists Cy > 0 and tc € [0, 1], such that for every t € [O,tg],]Equ} < Cytl.

Then the scheme with transition probability P({T/n € dx) satisfies E! mpol(fs b+ 1) (see )

Proof. Let us write the Taylor expansion of f at order h:

Gt _.\h
Z fl) /0 (G h!y) £ () dy.

Since ((¢)i=0 matches the first A moments of the CIR we have :
Xt _ .N\h
w00 — @) = | [ gy - [ GV i,
0 : 0

Moreover f € C;°(Ry), so using the Lemma it follows that

h+1 h+1

B/ (X0) ~ F(G)] < Ol o | 71— + S]] < Ol oot

and the proof is completed.
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The proof of is a direct application of this theorem for A = 2 and ( is replaced by X" defined

by . O

4.3.2 Convergence for measurable test function

Using the results from the previous sections (in particular Theorem , we are now able to study the
total variation convergence of the CIR scheme with almost order 2. We prove that convergence for
bounded and measurable functions but with support D, strictly contained in R;. We now introduce
this support. Let da > d; > 0 and define

Dcir - [d17 d2]

From Theorem we deduce the following total variation distance estimation for the CIR process.
Theorem 4.4. Let T > 0. Let § € (0,T) and let n € N* such that 2T /n < 0. Let (X¢)i=0 be the
process defined by E and let (X")teﬂT . be the process defined by (55) if 4a > o2 and otherwise.

Let wm the function defined as in with Vo cir and V1 ¢y replaced by VPeirv und V0o Assume

0,cir 1,cir

that v < (dg — dy)/4, (K (T/n,~\/3T/n) — 2v)4 < di and that assumptions and @ hold with
s—1t=10/2 and ¢ replaced by iy that respectively read in this case

Mg(Z 1
+ 875 ) + exp(—m?2nd /(4T)) < B and n'/? > 24/\7‘

nl/4

with Ay cir := infp Vll,)(:‘%if"v(x) > ody. Then, there exists [, € N*, C, 8 > 1 such that we have for every
bounded and measurable function f :R? — R, with supp(f) C D% = [dy + 2v,ds — 2v],

v?)2 — 6%a% Vv (kd2)? v?
B (X)) - SR ) <5 oxp (=2 502d2~V( ) e (- iz Teir oy, ?,1,oo>>Hf”°°
# O+ o)

with Ry (Yeir), 7 € N*, defined in .

Now, we give a structural result in order to obtain convergence for the total variation distance for
the CIR process with almost order 2.

Corollary 4.1. Let T > 0,n € N*, v € (0,1], 0 < dy < dg and 6 > 0. We assume that the hypotheses
from Theorem are fulfilled with those parameters and that there exists a sequence (pp)nen taking
strictly positive values such that,

0 S [é(n,U,dl,dQ),g(n,’U,dl,dQ)] (61)
with
ﬁg(";c' )[*/42
\ 1/42

*,cirPn

é(na v, d17 d2) —
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and

— v? In(p,)o?ds v

3(n,v,dy, ds) =
(n,0,dvsde) = st " (@ v kda)? 122(|¢peir Lo,

cir

2

%,l,oo ln(n)

Then, there exists C, 3 > 0, such that for every bounded and measurable function f with supp(f) C
D2 = [dy + 2v,dy — 2v),

ELf(Xr(2) = F(XR@)]| < O+ [2]%)] flloopn/n”.

The reader may first notice that for p, = In(n)¢, ¢ > 42, we have §(n,v,dy,ds) < 6(n,v,dy,ds) for
n large enough and we can find § which satisfies the hypotheses from Theorem and and for
every bounded and measurable test function f with supp(f) C [d1 + 2v,ds — 2v],

ELf (Xr(2)) = F(XE@)]| < O+ [2]%)] flloo In(n)* /n®. (62)

Moreover, through the sequence (pp)nen, this result shows that we can consider asymptotic cases
that are v — 0, d; — 0 or do — oo. For instance, it is possible to do it expressing those parameters as
functions of n. Using the definition of § and &, we can identify the rates of convergence of v(n) — 0,
di(n) — 0 or d2(n) — oo, with respect to n, such that and the hypotheses of Theorem hold
and then obtain similar results as .

In particular, let € > 0 and define p,, = n°. We fix d; and v and choose da(n) such that d(n,v,di, da(n)) =
On—000(n,v,dy,dz(n)) and that we can find § > 0 which satisfies the hypotheses from Theoremand
(61). Moreover, since (X;)>0 is a CIR process, we have P(X; > da(n)—v) < E[exp(AX;)] exp(—A(da(n)—
v)), with, for every t > 0, Elexp(AX;(z))] < Cexp(Cx) < +oo for every A < 2(1 — exp(—kt))/(ko?).
Now assume that there exists € € (0,2) and such a A := A\, ¢, such that dy(n) satisfies exp(—Ay ¢ (d2(n)—
v)) < C/n?~¢. Then, there exists ng € N, C,3 > 0, such that for every bounded and measurable
function f with supp(f) C [d1 + 2v,00), and n > ng, we obtain

[Elf (X7(2)) = Y7 (@)]l < C(L+ [2]) [ flloo/n* ™ + C exp(B2) || flloo/n* (63)

with Y (z) = f(X:?(x))]IX%(x)e[dﬁdeQ(n)_gv}. It is much more difficult to obtain this type of re-
sult for test functions with support contained in (0, 00) since we do not have such estimates in the
neighborhood of zero.
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