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Approximation of Markov semigroups in total variation

distance under an irregular setting: An application to

the CIR process

Clément Rey 1

Abstract

In this paper, we propose a method to prove the total variation convergence of approximation of
Markov semigroups with singularities. In particular our approach is adapted to the study of numerical
schemes for Stochastic Di�erential Equation (SDE) with simply locally smooth coe�cients. First we
present this method and then, we apply it to the CIR process. In particular, we consider the weak
second order scheme introduced in [2] and we prove that it also converges towards the CIR di�usion
process for the total variation distance. This convergence occurs with almost order two.

1 Introduction

In this paper we study the total variation distance between a Markov process presenting singularities
and its approximation based on a discrete Markov chain. In this purpose, we follow two steps. First,
we extend a result from [5]. Then, we apply this result to a second weak order scheme for CIR
di�usion process based on a cubature method and introduced in [2]. While, this scheme has second
weak order for smooth test functions, in this paper we are able to prove that the convergence for a
class of bounded and measurable functions occurs with almost order 2. Let us be more speci�c. For
N ∈ N∗, we consider the Rd-valued di�usion process

dXt = V0(Xt)dt+
N∑
i=1

Vi(Xt) ◦ dW i
t (1)

with Vi ∈ C∞(Rd;Rd) ∩ C∞b (D;Rd), where D is a subset of Rd, (Wt)t>0 a standard Brownian motion
and ◦dW i

t denotes the Stratonovich integral with respect to W i
t . We �x T > 0 and n ∈ N∗ and we

introduce the time grid πT,n = {tnk = kT/n, k ∈ N}. We consider the d-dimensional approximation
Markov chain

Xn
tnk+1

= ψk(X
n
tnk
,
Zk+1√
n
, δnk+1), k ∈ N, (2)

where ψk : Rd × RN × R+ → Rd is a function such that ψk(x, 0, 0) = x, and Zk ∈ RN , k ∈ N∗, is
a sequence of independent and centered random variables and supk∈N∗ δ

n
k 6 C/n. So far, we do not
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1 INTRODUCTION 2

discuss the regularity of ψk. We aim to study the convergence of the law of Xn to the law of the
Markov process (Xt)t>0 de�ned in (1). More precisely, we aim to estimate the weak error distance

εn(f) = |E[f(Xn
t )]− E[f(Xt)]| .

In order to obtain total variation convergence for (εn)n∈N∗ , we have to show that εn(f)→ 0 for every
bounded and measurable function f . The method we adopt in this paper is inspired from [5] and is
based on the semigroup approach.

First, we introduce some notations. The semigroup of the Markov chain (Xn
t )t∈πT,n is denoted by

(Qnt )t∈πT,n and its transition probabilities are given by νnk+1(x, dy) = P(Xn
tnk+1
∈ dy|Xn

tnk
= x), k ∈ N.

We recall that for t ∈ πT,n, Qnt f(x) = E[f(Xn
t )|Xn

0 = x]. We also consider a Markov process in
continuous time (Xt)t>0 with semigroup (Pt)t>0 (see [31]) and we de�ne µnk+1(x, dy) = P(Xtnk+1

∈
dy|Xtnk

= x).

Moreover, for f ∈ C∞(Rd) and for a multi-index α = (α1, . . . , αd) ∈ Nd, we denote |α| = α1 + ...+αd
and ∂αf = (∂1)α1 . . . (∂d)

αdf = ∂αx f(x) = ∂α1
x1 . . . ∂

αd
xd
f(x). We include the multi-index α = (0, ..., 0)

and in this case ∂αf = f. Let us introduce the norms

‖f‖q,∞ = sup
x∈Rd

∑
06|α|6q

|∂αf(x)|, ‖f‖q,1 =
∑

06|α|6q

∫
Rd
|∂αf(x)|dx.

In particular ‖f‖0,∞ = ‖f‖∞ is the usual supremum norm and we denote by Cqb (Rd) = {f ∈
Cq(Rd), ‖f‖q,∞ < +∞} and by Cqc (Rd) ⊂ Cq(Rd) the set of functions with compact support. More-
over, we say that a function f ∈ Cq(Rd) has polynomial growth of order q ∈ N with degree βq ∈ N if
there exists Cq > 1 such that

∀x ∈ Rd,
∑

06|α|6q

|∂αf(x)| 6 Cq(1 + |x|βq). (3)

Finally, we denote by Cqpol(R
d) the set of functions satisfying (3).

A �rst standard result is the following. Let us assume that there exists h > 0 and q ∈ N such that
for every f ∈ Cq(Rd) and every k ∈ N∗,

sup
x∈Rd

∣∣µnkf(x)− νnk f(x)
∣∣ = sup

x∈Rd

∣∣∫ f(y)µnk(x, dy)−
∫
f(y)νnk (x, dy)

∣∣ 6 C‖f‖q,∞/n1+h.

Then, for every t ∈ πT,n, we have

‖Ptf −Qnt f‖∞ = sup
x∈Rd

|E[f(Xn
t )|Xn

0 = x]− E[f(Xt)|X0 = x]| 6 C‖f‖q,∞/nh. (4)

It means that (Xn
t )t∈πT,n is an approximation scheme of weak order h for the Markov process (Xt)t>0.

In the case of the Euler scheme for di�usion processes, this result, with h = 1, was initially proved
in the seminal papers of Milstein [27] and of Talay and Tubaro [34] (see also [19]). Later, similar
results were obtained in various situations: Di�usion processes with jumps (see [32], [17]) or di�usion
processes with boundary conditions (see [14], [11], [15]). An overview of this subject is given in [18].
More recently, approximation schemes of higher orders (e.g., h = 2), based on cubature methods,
have been introduced and studied by Kusuoka [23], Lyons [26], Ninomiya, Victoir [28] or Alfonsi [2].
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The reader may also refer to the work of Kohatsu-Higa and Tankov [20] for a higher weak order
scheme for jump processes. Despite the fact that most of these results concern di�usions with regular
coe�cients, some papers treat more exotic cases. For instance, in [2], Alfonsi studied the weak error
for di�usion processes with coe�cients that belong to Cqpol(R

d) as well as for the test functions.

Another result concerns convergence in total variation distance: We want to obtain (4) with ‖f‖∞
instead of ‖f‖q,∞, when f is a bounded and measurable function. In the case of the Euler scheme for
di�usion processes, a �rst similar result was obtained by Bally and Talay [6], [7] using the Malliavin
calculus (see also Guyon [16]). Afterwards Konakov, Menozzi and Molchanov [21], [22] obtained sim-
ilar results using a parametrix method. Later, Kusuoka [24] obtained estimates of the error in total
variation distance for the Victoir Ninomiya scheme (which corresponds to the case h = 2). More
recently, in [5], a generic result ensures the total variation distance convergence for smooth schemes
and for random variables Zk, k ∈ N∗, which satisfy the Doeblin condition. In [33], this method is
used to prove total variation convergence with order 3 for a numerical scheme for one dimensional SDE.

However, none of the results mentioned above concerns the case of di�usion processes with irregular
coe�cients. In particular, in [5], the regularity in space for the functions ψk, which often rely on the
regularity of the functions Vi, is essential to prove the total variation convergence result. The main
idea of our approach is to consider that these functions Vi, i ∈ {1, . . . , N}, are smooth only on a
subset D of Rd. Simply using this local regularity, we prove the convergence for every bounded and
measurable test functions with support strictly contained in D. In order to do it, we combine some
results of convergence for smooth test functions for singular di�usions on Rd with the total variation
convergence proven in [5] for a modi�cation of (Xt)t>0 with coe�cients localized on D. In a �rst step,
we propose an abstract approach based on semigroups that leads to Theorem 2.1. Then we apply
this result to the case of Markov chain approximations of di�usion processes with locally smooth
coe�cients and obtain Theorem 3.1. It provides an estimation of the weak error for simply bounded
and measurable test functions with support contained in D. In the rest of this paper we sometimes
take the liberty to say that this is the convergence for the total variation distance.2 It is important
to notice that Theorem 3.1 is not restricted to speci�c di�usions or schemes.

Using this approach, we then study the CIR process. In this case, the di�usion coe�cient is given
by V1(x) = σ

√
x, σ ∈ R+, and is singular in zero. That is why, standard estimation methods can

not be applied. However, some papers manage to develop numerical analysis of this scheme using
among other the close link that exists with Bessel processes. The reader may refer to [12], [3], [1], [2]
or [10] for a non exhaustive list of studies concerning numerical approximation for the CIR process.
In particular, in [2], the author proves the weak convergence with order 2 for smooth test functions
(under polynomial growth assumptions for the test function and its derivatives), of a scheme based
on cubature method (and also inspired by [3]). In [10], the authors propose an expansion of the
weak error for Lipschitz test functions. However, so far, there is no study concerning the total
variation convergence of a numerical scheme toward the CIR di�usion. Since the di�usion process
has a singularity in zero, the result from [5] can not apply directly. Despite this singularity, we use
and extend the result from [2] and [5], and prove that (4) is also satis�ed for the scheme introduced
in [2] under some hypotheses on the support of the test functions. More speci�cally we obtain the

2The total variation distance concerns every bounded and measurable test function with support in Rd (and not
simply in D). However, the total variation convergence can be deduced straightly from our result if we suppose that
P(XT /∈ D) and P(Xn

T /∈ D) are small enough.
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following results:

First (see (62)), there exists C, β > 0 such that for every bounded and measurable test function f
with supp(f) ⊂ [d1, d2], 0 < d1 6 d2 < +∞ and every n large enough, we have

|E[f(XT (x))− f(Xn
T (x))]| 6 C(1 + |x|β)‖f‖∞ ln(n)ζ/n2,

with (Xn
kT/n(x))k∈N the scheme introduced in [2].

Moreover, using the �niteness of some exponential moments of the CIR process, we obtain the fol-
lowing result under some appropriate assumptions (see (63)): There exists ε ∈ (0, 2) such that for
every bounded and measurable test function f with supp(f) ⊂ [d1,∞), d1 > 0, and for every n large
enough, we have

|E[f(XT (x))− Y n
T (x)]| 6 C exp(β|x|)‖f‖∞/n2−ε,

with Y n
T (x) a σ(Xn

t (x), t 6 T )-measurable random variable introduced in (63).

We begin by presenting the abstract semigroup framework of this paper in Section 2. In the same
Section, we obtain Theorem 2.1 that is the abstract total variation convergence result under localized
regularization properties of the semigroups. Then, in Section 3 we apply the abstract framework
to the case of generic numerical schemes for di�usion processes with locally smooth coe�cients and
obtain Theorem 3.1. The paper ends with a theoretical application in order to obtain total variation
convergence results for the scheme presented in [2] for the CIR process.

2 The distance between two semigroups

Throughout this section the following notations prevail. We �x T > 0 and we denote by n ∈ N∗, the
number of time steps between 0 and T . Then, for k ∈ N we de�ne tnk = kT/n and we introduce the

homogeneous time grid πT,n = {tnk = kT/n, k ∈ N} and its bounded version πT̃T,n = {t ∈ πT,n, t 6 T̃}
for T̃ > 0. Finally, for S ∈ [0, T̃ ) we denote πS,T̃T,n = {t ∈ πT̃T,n, t > S}. Notice that all the results from
this paper remain true with non homogeneous time steps but, for sake of clarity, we do not consider
this case.

2.1 Convergence of semigroups

In this section we show how regularity properties and estimation properties of the semigroups interact
to lead to weak convergence results. First, we establish estimation results for smooth test functions.
Then, under regularization properties of the semigroups, we provide total variation distance estimation
results, i.e. for simply bounded and measurable test functions. We conclude by establishing Theorem
2.1 which is the main abstract result of this paper and provide an approach for total variation
convergence when regularization properties are only valid in the neighborhood of the terminal date
T .
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2.1.1 Smooth test functions

We consider a sequence of �nite transition measures µnk(x, dy), k ∈ N∗ from Rd to Rd. This means
that for each �xed x and k, µnk(x, dy) is a �nite measure on Rd with the borelian σ �eld and for each
bounded and measurable function f : Rd → R, the application

x 7→ µnkf(x) :=

∫
Rd
f(y)µnk(x, dy)

is measurable. We also denote

∀x ∈ Rd, |µnk(x)| := sup
‖f‖∞61

∣∣ ∫
Rd
f(y)µnk(x, dy)

∣∣ and |µnk | := sup
x∈Rd

sup
‖f‖∞61

∣∣ ∫
Rd
f(y)µnk(x, dy)

∣∣,
and we assume that all the sequences of measures we consider in this paper satisfy

sup
k∈N∗
|µnk | <∞. (5)

Although the main application concerns the case where µnk(x, dy) is a probability measure, we do not
make such assumption. We allow µnk(x, dy) to be a signed measure of �nite (but arbitrary) total mass.
This is because one may use the results from this section not only in order to estimate the distance
between two semigroups but also in order to obtain an expansion of the error. Now we associate the
sequence of measures to the time grid πT,n and we de�ne the following discrete semigroup,

Pn0 f(x) = f(x), Pntnk+1
f(x) = Pntnk

µnk+1f(x) = Pntnk

∫
Rd
f(y)µnk+1(x, dy).

More generally, we de�ne (Pt,s)t,s∈πT,n;t6s by

Pntnk ,t
n
k
f(x) = f(x), ∀k, r ∈ N∗, k 6 r, Pntnk ,t

n
r+1
f(x) = Pntnk ,tnr

µnr+1f(x).

We notice that for t, s, u ∈ πT,n, t 6 s 6 u, we have the semigroup property: Pnt,uf = Pnt,sP
n
s,uf . We

consider the following hypothesis: Let q ∈ N and t, s ∈ πT,n, t 6 s. If f ∈ Cq(Rd) then Pt,sf ∈ Cq(Rd)
and when f ∈ Cqb (Rd),

sup
t,s∈πT,n;t6s

‖Pnt,sf‖q,∞ 6 C‖f‖q,∞. (6)

Notice that (5) implies that (6) holds for q = 0. We also consider the following hypothesis: Let q ∈ N
and t, s ∈ πT,n, t 6 s. If f ∈ Cqpol(R

d) then Pt,sf ∈ Cqpol(R
d) and there exists C > 1, β ∈ N such that

Pq ≡ ∀x ∈ Rd, sup
t,s∈πT,n;t6s

∑
06|α|6q

|∂αPnt,sf(x)| 6 C(1 + |x|β). (7)

Moreover we assume that there exists C > 1 and β ∈ N such that for every f ∈ Cqb (Rd), we have

P′q ≡ ∀x ∈ Rd, sup
t,s∈πT,n;t6s

∑
06|α|6q

|∂αPnt,sf(x)| 6 C(1 + |x|β)‖f‖q,∞. (8)
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We consider now a second sequence of �nite transition measures νnk (x, dy), k ∈ N∗ and the corre-
sponding semigroup (Qnt )t∈πT,n de�ned as above. We aim to estimate the distance between Pnf and
Qnf in terms of the distance between the transition measures µnk(x, dy) and νnk (x, dy), so we denote

∆n
k = µnk − νnk .

(Pnt )t∈πT,n can be seen as a semigroup in continuous time (Pt)t>0 considered on the time grid πT,n,
while (Qt)t∈πT,n would be its approximation discrete semigroup. Let q ∈ N and h > 0 be �xed. We
introduce a short time error approximation assumption: There exists a constant C > 0 (depending
on q only) such that for every f ∈ Cqb (Rd) and every k ∈ N∗, we have

En(h, q) ≡ ‖∆n
kf‖∞ 6 C‖f‖q,∞/nh+1. (9)

We also introduce a short time error approximation assumption for test functions with polynomial
growth: If f ∈ Cqpol(R

d), then there exists C > 1 and β ∈ N such that for every k ∈ N∗,

En,pol(h, q) ≡ ∀x ∈ Rd, |∆n
kf(x)| 6 C(1 + |x|β)/nh+1. (10)

Moreover, we assume that there exists C > 1 and β ∈ N such that for every f ∈ Cqb (Rd) and every
k ∈ N∗,

E′n,pol(h, q) ≡ ∀x ∈ Rd, |∆n
kf(x)| 6 C(1 + |x|β)‖f‖q,∞/nh+1. (11)

At this point, we establish weak convergence results for smooth test functions.
Proposition 2.1. Let q, h ∈ N be �xed.

A. Assume that νn satis�es (6) for this q, µn satisfy (5) and that we have En(h, q) (see (9)). Then,
there exists C > 1 such that for every f ∈ Cqb (Rd), we have

sup
t∈πTT,n

‖Pnt f −Qnt f‖∞ 6 C‖f‖q,∞/nh. (12)

B. Assume that µn and νn satisfy respectively P0 (see (7)) and Pq, and that En,pol(h, q) (see (10))
holds. Then, for every f ∈ Cqpol(R

d), there exists C > 1 and β ∈ N such that

∀x ∈ Rd, sup
t∈πTT,n

|Pnt f(x)−Qnt f(x)| 6 C(1 + |x|β)/nh. (13)

C. Assume that µn and νn satisfy respectively P0 (see (7)) and P′q (see (8)) and that E′n,pol(h, q)

(see (11)) holds. Then, there exists C > 1 and β ∈ N such that for every f ∈ Cqb (Rd), we have

∀x ∈ Rd, sup
t∈πTT,n

|Pnt f(x)−Qnt f(x)| 6 C(1 + |x|β)‖f‖q,∞/nh. (14)

Proof. We simply prove (13) and (14).The proof of (12) is similar but simpler so we leave it to the
reader. Let m ∈ N∗, m 6 n. Using the Lindeberg decomposition, we have from the semigroup
property

|Pntnmf(x)−Qntnmf(x)| 6
m−1∑
k=0

|PntnkP
n
tnk ,t

n
k+1

Qntnk+1,t
n
m
f(x)− PntnkQ

n
tnk ,t

n
k+1

Qntnk+1,t
n
m
f(x)| (15)

=

m−1∑
k=0

|Pntnk∆n
k+1Q

n
tnk+1,t

n
m
f(x)|.
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Now, we prove (13). Since f ∈ Cqpol(R
d) then, using Pq (see (7)) for Qn, we have Qntnk+1,t

n
m
f ∈ Cqpol(R

d)

and then using (10) and the linearity of the semigroup Pn together with P0 (see (7)), we obtain

|Pntnk∆n
k+1Q

n
tnk+1,t

n
m
f(x)| 6 C(1 + |x|β)/nh+1.

Summing over k = 0, ...,m−1, yields (13). In order to prove (14), we use (10) to obtain |∆k+1Q
n
tnk+1,t

n
m
f(x)| 6

C(1+ |x|β)‖Qntnk+1,t
n
m
f‖q,∞/nh+1 where C and β do not depend on f . Using once again the linearity of

the semigroup Pn andP0 (see (7)), it follows that |Pntnk∆k+1Q
n
tnk+1,t

n
m
f(x)| 6 C(1+|x|β)‖Qntnk+1,t

n
m
f‖q,∞/nh+1.

Finally, the assumption P′q (see (8)) for Q
n gives (14).

2.1.2 Measurable test functions (convergence in total variation distance)

The estimates (12), (13) and (14) require quite strong regularity properties for the test function f .
We aim to show that, if the underlying semigroups have a regularization property, then we may
obtain estimates of the error for simply bounded and measurable test functions. In this section, we
describe how the regularization properties of a semigroup lead to total variation convergence based
on results from [5]. Our purpose is then to obtain similar results when regularization properties only
holds closely to the terminal date T .

A �rst hypothesis concerns the adjoint semigroup approximation. Let q ∈ N. We assume that there
exists a constant C > 1 such that for every bounded and measurable function f and every g ∈ Cq(Rd)

E∗n(h, q) ≡ | 〈g,∆n
kf〉 | 6 C‖g‖q,1‖f‖∞/n1+h. (16)

where 〈g, f〉 =
∫
g(x)f(x)dx is the scalar product in L2(Rd).

Our regularization hypothesis is the following. Let q ∈ N, S > 0 and let η : R+ → R+ be an
increasing function. We assume that there exists a constant C > 1 such that for every bounded and
measurable function f ,

Rq,η(S) ≡ ∀t, s ∈ πT,n, with S 6 s− t, ‖Pnt,sf‖q,∞ 6
C

Sη(q)
‖f‖∞. (17)

We also consider the "adjoint regularization hypothesis". We assume that there exists an adjoint
semigroup (Pn,∗t,s )t,s∈πT,n;t6s, de�ned by

∀t, s ∈ πT,n, t 6 s,
〈
Pn,∗t,s g, f

〉
=
〈
g, Pnt,sf

〉
for every bounded and measurable function f and every function g ∈ C∞c (Rd). In addition we suppose
that for every g ∈ L1(Rd), we have

R∗q,η(S) ≡ ∀t, s ∈ πT,n, with S 6 s− t, ‖Pn,∗t,s g‖q,1 6
C

Sη(q)
‖g‖1. (18)

Notice that a su�cient condition for R∗q,η(S) to hold is the following: For every bounded and mea-

surable function f ∈ C|α|(Rd) and for every multi index α with |α| 6 q, assume that

∀t, s ∈ πT,n, with S 6 s− t, ‖Pnt,s∂αf‖∞ 6
C

Sη(q)
‖f‖∞.
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Indeed, for every g ∈ L1(Rd), it follows that

‖∂αPn,∗t,s g‖1 6 sup
‖f‖∞61

|
〈
∂αP

n,∗
t,s g, f

〉
| = sup

‖f‖∞61
|
〈
g, Pnt,s(∂αf)

〉
|

6 ‖g‖1 sup
‖f‖∞61

‖Pnt,s(∂αf)‖∞ 6
C

Sη(q)
‖g‖1.

Finally, we consider the following stronger regularization property: For every multi-index α, β with
|α|+ |β| = q and every bounded and measurable function f ∈ Cq(Rd),

Rq,η(S) ≡ ∀t, s ∈ πT,n, with S 6 s− t, ‖∂αPnt,s∂βf‖∞ 6
C

Sη(q)
‖f‖∞. (19)

We notice that Rq,η(S) implies both Rq,η(S) and R∗q,η(S) and that a semigroup satisfying Rq,η is
absolutely continuous with respect to the Lebesgue measure.

Now we can state our �rst result concerning total variation convergence between Pn and Qn.
Proposition 2.2. Let q ∈ N, h > 0, S ∈ [T/n, T/2) and let η : R+ → R+ be an increasing function.
Assume that En(h, q) (see (9)) and E∗n(h, q) (see (16)) hold for Pn and Qn. Also assume that Pn

satis�es Rq,η(S) (see (17)) and Qn satis�es R∗q,η(S) (see (18)) and that (5) and (6) with q = 0 hold
for both of them. Then, for every bounded and measurable function f , we have

sup
t∈π2S,T

T,n

‖Pnt f −Qnt f‖∞ 6
C

Sη(q)
‖f‖∞/nh.

In concrete applications the following slightly more general variant of the above proposition will be
useful.
Proposition 2.3. Let q ∈ N, h > 0, S ∈ [T/n, T/2) and let η : R+ → R+ be an increasing function.
Assume that En(h, q) (see (9)) and E∗n(h, q) (see (16)) hold for Pn and Qn. Moreover, assume that
there exists (P

reg,n
t,s )t,s∈πT,n;t6s which satis�es Rq,η(S) (see(17)) and (Q

reg,n
t,s )t,s∈πT,n;t6s which satis�es

R∗q,η(S) (see (18)) and such that (5) and (6) with q = 0 hold for both of them. Also assume that for
every bounded and measurable function f and every t, s ∈ πT,n with s− t > S, we have

‖Qnt,sf −Q
reg,n
t,s f‖∞ + ‖Pnt,sf − P

reg,n
t,s f‖∞ 6 CS−η(q)‖f‖∞/nh+1. (20)

Then, for every bounded and measurable function f ,

sup
t∈π2S,T

T,n

‖Pnt f −Qnt f‖∞ 6 C sup
k6n

(|µnk |+ |νnk |)S−η(q)‖f‖∞/nh.

Remark 2.1. Notice that P reg,n and Qreg,n are not supposed to satisfy the semigroup property and
are not directly related to µn and νn.

The proof of those results can be found in [5] (see Proposition 2.3 and Proposition 2.4) and follows
similar ideas from the one of Proposition 2.1 combined with regularizations properties.

2.1.3 Total variation convergence under mixing regularization properties

In this section, we consider semigroups with mixing regularization properties. In particular, we study
two semigroups Pn and Qn which satisfy the regularization properties only closely to the date T and
we show that the convergence for bounded and measurable test functions still holds.
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Theorem 2.1. Let (Pnt,s)t,s∈πT,n;t6s and (Qnt,s)t,s∈πT,n;t6s be two semigroups with transition measures
µn and νn. Let q ∈ N, h, δ ∈ [2T/n, T ] and let η : R+ → R+ be an increasing function. Also de�ne

δ̃n = inf{t; t > δ, T − t ∈ πT,n}, tδ,n = T − δ̃n, kδ,n = tδ,nn/T. (21)

On the interval [0, tδ,n], assume that E′n,pol(h, q) (see (11)) holds between (Pnt,s)t,s∈π
tδ,n
T,n ;t6s

and (Qnt,s)t,s∈π
tδ,n
T,n ;t6s

and that one of those semigroups satis�es P0 (see (7)) while the other satis�es P′q (see (8)). Then
we have the following properties:

A. On the interval [tδ,n, T ], assume that both (µnk)k∈{1,...,kδ,n} and (νnk )k∈{1,...,kδ,n} satisfy (5) and that
En(h, q) (see (9)) and E∗n(h, q) (see (16)) hold between (Pnt,s)t,s∈πTT,n;tδ,n6t6s

and (Qnt,s)t,s∈πTT,n;tδ,n6t6s
.

Also assume that there exists some (Q
reg,n
t,s )t,s∈πTT,n;tδ,n6t6s

which satis�es Rq,η(δ/2) (see (17))

and (P
reg,n
t,s )t,s∈πTT,n;tδ,n6t6s

which satis�es R∗q,η(δ/2) (see (18)) and such that (20) holds.

Then, there exists C > 1 and β ∈ N, such that for every bounded and measurable function f on
Rd, we have

∀x ∈ Rd, |PnT f(x)−QnT f(x)| 6 C
1 + |x|β

δη(q)
‖f‖∞/nh.

B. On the interval [tδ,n, T ], assume that for everym ∈ nN∗ = {nk, k ∈ N∗}, both (µmk )k∈{kδ,nm/n+1,...,m}
and (νmk )k∈{kδ,nm/n+1,...,m} satisfy (5), and that Em(h, q) (see (9)) and E∗m(h, q) (see (16)) hold
between (Pmtδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

= (Ptδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s
and (Qmtδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

. Also

suppose that there exists a family ((Q
reg,m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

)m∈nN∗ which satis�es Rq,η(δ/2) (see

(17)) and R∗q,η(δ/2) (see (18)) (with n replaced by m for every m ∈ nN∗) and such that (20)

holds between ((Q
reg,m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

)m∈nN∗ and ((Qmtδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s
)m∈nN∗ (with n

replaced by m for every m ∈ nN∗).

Then, there exists C > 1 and β ∈ N, such that for every bounded and measurable function f on
Rd, we have

∀x ∈ Rd, |PnT f(x)−QnT f(x)| 6 C
1 + |x|β

δη(q)
‖f‖∞/nh.

Proof. We prove A. For sake of clarity, assume that P reg = P and that Qreg = Q. The proof is very
similar otherwise. Using the semigroup property, it follows that

|Pn0,T f(x)−Qn0,T f(x)| =|Pn0,tδ,nP
n
tδ,n,T

f(x)−Qn0,tδ,nQ
n
tδ,n,T

f(x)|

=|Pn0,tδ,nP
n
tδ,n,T

f(x)− Pn0,tδ,nQ
n
tδ,n,T

f(x) + Pn0,tδ,nQ
n
tδ,n,T

f(x)−Qn0,tδ,nQ
n
tδ,n,n

f(x)|

=|Pn0,tδ,n(Pntδ,n,n −Q
n
tδ,n,T

)f(x) + (Pn0,tδ,n −Q
n
0,tδ,n

)Qntδ,n,T f(x)|

Since Pn and Qn satisfy (5), (9), (16), and Rq,η(δ/2) (see (17)) holds for Qn while R∗q,η(δ/2) (see (18))
holds for Pn (with t, s ∈ [tδ,n, T ]), using Proposition 2.2, we derive: |Pn0,tδ,n(Pntδ,n,T − P

n
tδ,n,T

)f(x)| 6
‖(Pntδ,n,T − Q

n
tδ,n,T

)f‖∞ 6 Cδ−η(q)‖f‖∞/nh. In order to bound the second term of the r.h.s of the

above equation, we use Proposition 2.1 together with ‖Qntδ,n,T f‖q,∞ 6 Cδ−η(q)‖f‖∞ which follows
from Rq,η(δ/2).
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Now, we prove B. Using the same decomposition as for the proof of A. we observe that the only
change in the proof concerns the study of the term ‖(Qntδ,n,T − P

n
tδ,n,T

)f‖∞. First, we notice that
t ∈ πT,m for every t ∈ πT,n and every m ∈ nN∗. We introduce the sequence of discrete semigroups
((Qn,mt )t∈πTT,nm;t>tδ,n

)m∈N∗ de�ned in the following way: For every t ∈ πTT,nm, t > tδ,n, let Q
n,m
t f(x) :=

Qnmt f(x). In the same way, let ((Pn,mt )t∈πTT,nm;t>tδ,n
)m∈N∗ the sequence of discrete semigroups such

that for every t ∈ πT,nm, t > tδ,n we have Pn,mt f(x) := Pnmt f(x) = Ptf(x). Let m′ > m. Since
tnmmk = tnk for every m ∈ N∗ and every k ∈ N, it follows that

‖Qn,mtnk ,tnk+1
f −Qn,m

′

tnk ,t
n
k+1

f‖∞ = ‖Qn,mtnmmk ,tnmm(k+1)
f −Qn,m

′

tnm
′

m′k ,t
nm′
m′(k+1)

f‖∞

6 ‖Qnmtnmmk ,tnmm(k+1)
f − Pnmtnmmk ,tnmm(k+1)

f‖∞ + ‖Pnm′
tnm
′

m′k ,t
nm′
m′(k+1)

f −Qnm′
tnm
′

m′k ,t
nm′
m′(k+1)

f‖∞,

Since Qnm and Qnm
′
verify respectively Enm(h, q) and Enm′(h, q) and both Qnm and Qnm

′
sat-

isfy (6), we use the Lindeberg decomposition (15) in order to derive: ‖Qn,mtnk ,tnk+1
f − Qn,m

′

tnk ,t
n
k+1

f‖∞ 6

C‖f‖q,∞/(nh+1mh). In the same way we obtain |〈g,Qn,mtnk ,tnk+1
f−Qn,m

′

tnk ,t
n
k+1

f〉| 6 C‖g‖1,q‖f‖∞/(nh+1mh).

Now, since both Qnm and Qnm
′
have modi�cations, Qreg,nm and Qreg,nm

′
, which satisfy both

Rq,η(δ/2) (see (17)) and R∗q,η(δ/2) (see (18)) (with n replaced by mn and by m′n), we can show

that: ‖Qn,mtδ,n,T f − Q
n,m′

tδ,n,T
f‖∞ 6 Cδ−η(q)‖f‖∞/(nhmh). The sequence (Qn,mtδ,n,T )m∈N∗ is thus Cauchy

and it converges toward Pntδ,n,T for smooth test functions using Proposition 2.1. In particular, taking

m = 1 and letting m′ tend to in�nity in the previous inequality we have

‖Qn,1tδ,T f − P
n
tδ,T

f‖∞ 6 Cδ−η(q)‖f‖∞/nh,

where the l.h.s of the above inequality is exactly the term that we study and then the proof is
completed.

This result is crucial to prove the weak convergence for bounded and measurable test functions for
di�usion processes with simply locally smooth coe�cients. The idea consists in introducing a regu-
larized version of the underlying process in the neighborhood of T with smooth coe�cients in Cqb (Rd)
and then to consider scheme of this regularized process. This scheme (or its modi�cation) has mixing
regularization properties and we can use Theorem 2.1. It then remains to control the error committed
between the real process and its modi�cation.

Notice also that from pointB. we can focus exclusively on proving the regularization properties for the
modi�cation of the approximation semigroup Qn. In particular there is no regularization property to
prove on Pn (or its modi�cation) which is very useful. This is the method we employ in the following.
Based on Theorem 2.1, we now present our method to prove total variation convergence of numerical
schemes of di�usion processes with singularities.
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3 Total variation convergence for locally smooth di�usions

A main application of Theorem 2.1 concerns the use of Markov chains with form (2) for the approxi-
mation, in total variation distance, of d-dimensional di�usion processes with form

dXt = V0(Xt)dt+
N∑
i=1

Vi(Xt) ◦ dW i
t , (22)

with (Wt)t>0 a standard Brownian motion and ◦dW i
t the Stratonovich integral with respect to W i

t .
Moreover, we assume that the coe�cients Vi ∈ C∞b (D;Rd) for a subset D of Rd. The innovation of
our approach relies on the regularity of the coe�cients Vi. Existing results concerning total variation
convergence require that Vi ∈ Cqb (Rd;Rd) for some q large enough whereas in our approach we simply
assume that Vi ∈ Cqb (D;Rd). In the same way we will denote V0,Ito such that

dXt = V0,Ito(Xt)dt+
N∑
i=1

Vi(Xt)dW
i
t . (23)

The in�nitesimal generator of this Markov process reads

A = V0 +
1

2

N∑
i=1

V 2
i ,

with the notation V f(x) = 〈V (x),∇f(x)〉. In the latter, when it is relevant, we denote by Xt(x) the
process starting from x. Moreover we denote by (Pt)t>0 (see [31]) the semigroup of this process.

We now introduce a discrete time approximation process for (Xt)t>0. Let n ∈ N∗ be the number of
time steps between 0 and T equipped with the time grid πT,n = {tnk = kT/n, k ∈ N}. We consider a
sequence of independent random variables Znk = (Zn,1k , . . . , Zn,Nk ) ∈ RN , k ∈ {1, . . . , n} and we denote
Zn = (Zn1 , ..., Z

n
n ). We assume that Zn is centered and that there exists two deterministic sequences

(blk(Z
n))k∈N∗ 6 (buk(Zn))k∈N∗ such that for every k ∈ {kδ,n, . . . , n}, P(Znk ∈ [blk(Z

n), buk(Zn)]) = 1,
with kδ,n de�ned in (21). We also assume that n and Z satisfy

n > sup
k∈{kδ,n,...,n}

T 2/(buk(Zn)− blk(Zn))2. (24)

Finally, we consider the sequence of independent random variables κk ∈ R, k ∈ N∗, (and independent
from Zn) and we de�ne the Rd valued Markov chain

Xn
tk+1

= ψ
(
κk+1, X

n
tk
,
Znk+1√
n
, tnk+1 − tnk

)
, k ∈ N, with ∀(κ, x) ∈ R× Rd, ψ(κ, x, 0, 0) = x. (25)

In this section we provide an approach to show the convergence (as n tends to in�nity), for the total
variation distance, of (Xn

T )n∈N∗ to XT de�ned in (22).
Remark 3.1. The reason to consider the random variables κk is the following. In the Victoir Ni-
nomiya scheme, at each time step k, one throws a coin κk ∈ {1,−1} and employs di�erent form of
the function ψ according to the fact that κk is equal to 1 or to −1.
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Now let Qns,tf(x) = E[f(Xn
t )|Xn

s = x], s, t ∈ πT,n, s 6 t. This semigroup is not supposed to
have mixing regularization properties and to satisfy every required approximation assumptions with
(Pnt )t∈πT,n , (with notation (Pnt )t∈πT,n = (Pt)t∈πT,n) to use Theorem 2.1. Let δ ∈ [2T/n, T ] and con-
sider tδ,n de�ned in (21). In our approach, we simply suppose that Qn and Pn satisfy the assumptions
from Theorem 2.1 on the time interval [0, tδ,n ]. The next step thus consists in introducing regularized
modi�cations for Qn and Pn which satisfy the hypotheses of Theorem 2.1 on [0, tδ,n ] but also on the
interval (tδ,n , T ].

First we introduce a regularized version of (Xt)t>0 with smooth coe�cients such that we can simulate
an approximation Markov chain with suitable regularization and approximation properties. Let v >
0 and D ⊂ Rd. We begin by de�ning Dv := {x ∈ D, infy∈Rd\D |x − y| > v} with the convention
infy∈∅ |x − y| = +∞. Now we introduce φDv ∈ C∞(Rd;D) such that φDv (x) = x if x ∈ Dv and has
null derivatives when x ∈ Rd \ D. Moreover we assume that for every multi-index α with |α| > 1,
∂αφ

D
v ∈ C∞b (Rd \ Dv;D) and that for every x ∈ Rd \ Dv, we have

|∂αφDv (x)| 6 C

v|α|
,

where C does not depend on v. Now, we can introduce a regularized version of (Xt)t>0 (see (22)).
For i = 0, . . . , N , we denote V D,vi = Vi ◦ φDv ∈ C∞b (Rd;Rd) and consider

dXD,vt = V D,v0 (XD,vt )dt+
N∑
i=1

V D,vi (XD,vt ) ◦ dW i
t . (26)

Using this regularized process with smooth coe�cients, we build the following locally regularized
version of (Xt)t>0 (see (22)):

X
D,v
t (x) =

{
Xt(x), if t 6 tδ,n ,

XD,vt−tδ,n (Xtδ,n
(x)), if t > tδ,n ,

(27)

with tδ,n de�ned in (21). We denote by (P
D,v
t )t>0, the semigroup of this process such that P

D,v
s,t f(x) =

E[f(Xn
t )|Xn

s = x] , s 6 t and also denote (P
D,v,n
t )t∈πT,n = (P

D,v
t )t∈πT,n . At this point, it simply re-

mains to introduce a Markov chain approximation for (X
D,v
t (x))t>0 which is well suited to the use

of Theorem 2.1. Since our approach requires regularization properties, we introduce a modi�ca-
tion (Z̃nk )k∈N∗ of (Znk )k∈N∗ as a sequence of centered and independent random variables with Z̃nk =

(Z̃n,1k , . . . , Z̃n,Nk ) ∈ RN such that for every k ∈ {kδ,n, . . . , n}, P(Z̃nk ∈ [blk(Z̃
n), buk(Z̃n)]) = 1. This se-

quence varies from (Znk )k∈N∗ in the following way. Let ε∗, r∗ > 0. We assume that for every m ∈ nN∗,
the sequence (Z̃mk )k∈N∗ satis�es the following Doeblin property: There exists (zm∗,k)k∈N∗ ∈ (RN )⊗N

∗

such that for every Borel set A ⊂ RN and every k ∈ N∗

Lzm∗ (ε∗, r∗) ≡ P(Z̃mk ∈ A) > ε∗λ(A ∩Br∗(zm∗,k)), (28)

and we denote Lz∗(ε∗, r∗) ≡ ∩m∈nNLzm∗ (ε∗, r∗). In the sequel, we will denote

m∗ = ε∗

∫
RN

(
1|z|6r∗/2 + exp

(
1− r2

∗
r2
∗ − (2|z| − r∗)2

)
1r∗/2<|z|<r∗

)
dz (29)
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Moreover, we assume that the following moment �niteness assumption holds:

∀p > 1, Mp(Z̃) := 1 ∨ sup
n∈N∗

sup
k6n

E[|Z̃nk |p] < +∞. (30)

We construct the Rd valued Markov chain approximation of (XD,vt )t>0 (see (26)) as follows

X̃n
tk+1

= ψ̃
(
κk+1, X̃

n
tk
,
Z̃nk+1√
n
, tnk+1 − tnk

)
, k ∈ N, (31)

where

ψ̃ ∈ C∞(R× Rd × RN × R+;Rd) and ∀(κ, x) ∈ R× Rd, ψ̃(κ, x, 0, 0) = x.

The semigroup of this discrete process reads: Q̃ns,tf(x) = E[f(X̃n
t )|X̃n

s = x], s, t ∈ πT,n, s 6 t. Using
this regular approximation we construct the locally regularized version of (Xn

t )t∈πT,n (see (25)) which

we will use to approximate (X
D,v
t )t>0 (see (27)) for the total variation distance with Theorem 2.1.

Let

X
n
tnk+1

(x) =

{
ψ(κk, X

n
tnk

(x), Znk+1/
√
n, tnk+1 − tnk), if tnk 6 tδ,n ,

ψ̃(κk, X
n
tnk

(x), Z̃nk+1/
√
n, tnk+1 − tnk) if tδ,n 6 tnk 6 T,

(32)

We de�ne its semigroup: Q
n
s,tf(x) = E[f(X

n
t )|Xn

s = x] ,s, t ∈ πT,n, s 6 t. Notice that for

every n ∈ N∗ we have (Q
n
s,t)s,t∈π

tδ,n
T,n ;s6t

= (Qns,t)s,t∈π
tδ,n
T,n ;s6t

and for every m ∈ nN∗, we have

(Q
m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

= (Q̃mtδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s
and similar identi�cations holds when Q is re-

placed by P . Notice also that from this de�nition, the Doeblin assumption (28) is only necessary for
every m ∈ nN∗ and every k ∈ {kδ,nm/n, . . . ,m}. At this point, we introduce the following quantities:
Let r ∈ N∗ and let ψ̃ ∈ Cr(R× Rd × RN × R+;Rd) and de�ne

‖ψ̃‖1,r,∞ = 1 ∨
r∑
|α|=0

r−|α|∑
|β|+|γ|=1

‖∂αx ∂βz ∂
γ
t ψ̃‖∞.

For r ∈ N∗, we also denote

Kr(ψ̃) = (1 + ‖ψ̃‖1,r,∞) exp(‖ψ̃‖21,3,∞). (33)

Before we establish our main result concerning numerical schemes, some assumptions are still to be
introduced. Assume that

3‖ψ̃‖1,3,∞
n1/4

+
M8(Z̃)

n
+ exp(−m2

∗nδ/(4T )) 6
1

2
. (34)

Moreover we assume that there exists λ∗ > 0 such that

inf
κ∈R

inf
x∈Rd

inf
|ξ|=1

N∑
i=1

〈
∂ziψ̃(κ, x, 0, 0), ξ

〉2
> λ∗. (35)
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and

n1/2 > 3
2N+2

λ∗
‖ψ̃‖21,3,∞. (36)

We now introduce our main hypothesis concerning the fact that (X
n
t )t∈πT,n (see (32)) is a well adapted

modi�cation for (Xn
t )t∈πT,n (see (31)):

(SGReg(P
D,v,n

, Q
n
, h, q, n, δ, T,D, v))
≡

Assume that Lz∗(ε∗, r∗) (see (28)), (30), (34), (35) and (36) hold and that:

I) Localized identity of the regularized approximation. Let us denote ΩXn =
{sup

t∈πδ̃nT,n
|Xn

tδ,n+t−Xn
T | < v} and ΩX

n = {sup
t∈πδ̃nT,n

|Xn
tδ,n+t−X

n
T | < v} and assume

that:

(Xn
tδ,n+t1ΩXn )

t∈πδ̃nT,n

Law
= (X

n
tδ,n+t1ΩXn

)
t∈πδ̃nT,n

,

on the event {Xn
tδ,n

= X
n
tδ,n
} ∩ {Xn

T , X
n
T ∈ D2v}, with δ̃n de�ned in (21).

II) Approximation. On the interval [0, tδ,n ], assume that (P
D,v,n
s,t )

s,t∈π
tδ,n
T,n ;s6t

and (Q
n
s,t)s,t∈π

tδ,n
T,n ;s6t

satisfy respectively P0 (see (7)) and P′q (see (8)) and E
′
n,pol(h, q) (see (11)) holds be-

tween them.

On the interval [tδ,n , T ], assume that for everym ∈ nN∗, the assumptions Em(h, q) (see

(9)) andE∗m(h, q) (see (16)) hold between (P
D,v,m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

and (Q
m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

.

We now establish the total variation convergence result that we derive from this approach and from
Theorem 2.1.
Theorem 3.1. Let T > 0 and n ∈ N∗. Let q ∈ N, h > 0 and δ ∈ [2T/n, T ). Assume that (24) and

(SGReg(P
D,v,n

, Q
n
, h, q, n, δ, T,D, v)) hold. Then, there exists l ∈ N∗, C, β > 1 such that we have for

every bounded and measurable function f : Rd → R, with supp(f) ⊂ D2v,

|E[f(XT (x))− f(Xn
T (x))]| 68

(
exp

(
−
v2/2− δ2‖V0,Ito1Dv‖2∞
δ
∑N

i=1 ‖Vi1Dv‖2∞

)
+ exp

(
−

CZ,nv
2

δ‖ψ1Dv‖21,1,∞

))
‖f‖∞

+ C(1 + |x|β)
Kq+3(ψ̃)l

(λ∗δ)η(q)
‖f‖∞/nh (37)

with η(q) = q(q + 1), CZ,n = infk∈{kδ,n,...,n} T/(12(buk(Zn)− blk(Zn))2) and Kr(ψ), r ∈ N∗, de�ned in
(33).
Remark 3.2. Notice that from Lemma 3.1, then (37) remains true if we replace V by V D,v or if we
replace CZ,n/‖ψ1Dv‖21,1,∞ by CZ,n/‖ψ‖21,1,∞ or by CZ̃,n/‖ψ̃1Dv‖

2
1,1,∞, CZ̃,n/‖ψ̃‖

2
1,1,∞ as soon as (24)

holds with Zn replaced by Z̃n (when those quantities are �nite).
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Remark 3.3. We can obtain the same result as (37) for bounded and measurable test functions f with
supp(f) ⊂ Rd. In order to do it, we simply have to assume that P(XT /∈ D2v) and P(Xn

T /∈ D2v) are
small enough. In this case we can rigorously speak of total variation distance estimation. However,
there is no particular interest in doing it if we cannot explicit P(XT /∈ D2v) or P(Xn

T /∈ D2v). That is
why, we simply provide (37) and consider this result as a total variation distance estimation between
the process and its scheme.

In this section we present the tools from which we derive Theorem 3.1. We �rst present a generic class
of Markov chains which have regularization properties and can be used to simulate (X̃n

t )t∈πTT,n;t>tδ,n
.

This provides appropriate mixing regularization properties for (X
n
t )t∈πTT,n

necessary to use Theorem

2.1 point B. with Pn replaced by P
D,v,n

and Qn replaced by Q
n
. Finally we give concentration

inequalities for Markov di�usion processes and for Markov chains to control the total variation distance
between Pn and P

D,v,n
and between Qn and Q

n
. We conclude by establishing Theorem 3.1.

3.1 Regularization semigroups

In this section, we present a class of approximation Markov chains that can be used to build a
semigroup and its modi�cation with adapted regularization properties. In particular this class is large
enough to contain classical numerical schemes (Euler, Ninomiya-Victoir...) for di�usion processes
with smooth coe�cients such as (XD,vt (x))t>0. In this section we �x n ∈ N∗. We are going to build
(Q̃nt,s)t,s∈πT,n;t6s and prove that there exists a family of kernels (Q̃

reg,n
t,s )t,s∈πT,n;t6s which satis�es Rq,η

(see (17)) and R∗q,η (see (18)) and such that (20) holds between Q̃n and Q̃reg,n.

3.1.1 A class of random tools

First, we present the random tools that appear in the construction of our class of Markov chains and
which provide regularization properties through Doeblin properties. Let n ∈ N∗ and N ∈ N∗ be �xed.
We consider a sequence of independent random variables Z̃nk = (Z̃n,1k , . . . , Z̃n,Nk ) ∈ RN , k ∈ {1, . . . , n}
and we denote Z̃n = (Z̃n1 , ..., Z̃

n
n ).

Our aim is to settle an integration by parts formula based on the law of Z̃n. Let ε∗, r∗ > 0. The
basic assumption is the Doeblin condition Lzn∗ (ε∗, r∗) (see (28) with this �xed n) that reads: There
exists zn∗,k ∈ RN , k ∈ {1, . . . , n}, such that for every Borel set A ⊂ RN and every k ∈ {1, . . . , n}:
P(Z̃nk ∈ A) > ε∗λ(A ∩ Br∗(zn∗,k)). We also say that the random variables Z̃nk , k ∈ {1, . . . , n} are
lower bounded by the Lebesgue measure. We also suppose that (30) holds. It is easy to check that
Lzn∗ (ε∗, r∗) holds if and only if there exists some non negative measures πnk with total mass πnk (RN ) < 1

and a lower semi-continuous function ϕn > 0 such that P(Z̃nk ∈ dz) = πnk (dz) +ϕn(z− zn∗,k)dz. Notice
that the random variables (Z̃n1 , . . . , Z̃

n
n ) are not assumed to be identically distributed. However, the

fact that r∗ > 0 and ε∗ > 0 are the same for every k (and also for every n) represents a mild substitute
of this property. From Lzn∗ (ε∗, r∗), we introduce a variant of ϕn (which does not depend on n) for the
representation of the law of Zn. Let ϕr∗/2 : RN → R be the function de�ned by

ϕr∗/2(z) = 1|z|6r∗/2 + exp
(

1− r2
∗

r2
∗ − (2|z| − r∗)2

)
1r∗/2<|z|<r∗ . (38)

Then ϕr∗/2 ∈ C∞b (RN ), 0 6 ϕr∗/2 6 1 and we have the following crucial property: For every p, q ∈ N
there exists a universal constant Cq,p such that for every z ∈ RN , and every i1, . . . , iq ∈ {1, . . . , N},
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we have

ϕr∗/2(z)
∣∣∣ ∂q

∂zi1 ...∂ziq
(lnϕr∗/2)(z)

∣∣∣p 6 Cq,p
rpq∗

,

with the convention lnϕr∗/2(z) = 0 for |z| > r∗. As an immediate consequence of Lzn∗ (ε∗, r∗) (see
(28)), for every non negative function f : RN → R+, we have

E[f(Z̃nk )] > ε∗

∫
RN

ϕr∗/2( z − zn∗,k )f(z)dz.

By a change of variables, it follows that

E
[
f
( Z̃nk√

n

)]
> ε∗

∫
RN

nN/2ϕr∗/2
(√
n(z −

z∗,k√
n

)
)
f(z)dz = ε∗

∫
RN

φn(z)f(z)dz, (39)

with φn(z) = nN/2ϕr∗/2(
√
nz). We notice that

∫
φn(z)dz = m∗ε

−1
∗ , with m∗ de�ned in (29).

We consider a sequence of independent random variables χk ∈ {0, 1}, Uk, Vk ∈ RN , k ∈ {1, . . . , n}
with laws given by

P(χk = 1) = m∗, P(χk = 0) = 1−m∗,

P(Uk ∈ dz) =
ε∗
m∗

φn

(
z −

zn∗,k√
n

)
dz,

P(Vk ∈ dz) =
1

1−m∗

(
P
( Z̃nk√

n
∈ dz

)
− ε∗φn

(
z −

zn∗,k√
n

)
dz
)
.

Notice that (39) guarantees that P(Vk ∈ dz) > 0. Then a direct computation shows that

P(χkUk + (1− χk)Vk ∈ dz) = P
( Z̃nk√

n
∈ dz

)
.

This is the splitting procedure for
Z̃nk√
n
and the regularization properties follow from the following

representation,

Z̃nk√
n

= χkUk + (1− χk)Vk,

through the random variables Uk, k ∈ N∗.
Remark 3.4. The above splitting procedure has already been widely used in the litterature and is called
the Nummelin splitting: In [30] and [25], it is used to prove convergence to equilibrium of Markov
processes. In [8], [9] and [36], it is used to study the Central Limit Theorem. Besides, in [29], the

above splitting method (with 1Br∗ (zn∗,k) instead of φn(z− zn∗,k√
n

)) is used in a framework which is similar

to the one in this paper. Last in [5], this exact framework is used to prove total variation convergence
under a regular setting.

3.1.2 A class of Markov chains

We now present the class of discrete time random processes that is used to build the semigroup
(Q̃nt,s)t,s∈πT,n;t6s and its modi�cation (Q̃

reg,n
t,s )t,s∈πT,n;t6s which satis�es regularization properties. We
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recall that n ∈ N∗ is the number of time steps between 0 and T equipped with the time grid πT,n. We
consider two sequences of independent random variables Z̃nk ∈ RN , κk ∈ R, k ∈ N∗ and we assume
that Z̃nk are centered and veri�es Lz∗(ε∗, r∗) (see (28)) and (34). As in (31), we construct the Rd
valued Markov chain

X̃n
tk+1

= ψ
(
κk+1, X

n
tk
,
Z̃nk+1√
n
, tnk+1 − tnk

)
, k ∈ N,

where
ψ̃ ∈ C∞(R× Rd × RN × R+;Rd) and ∀(κ, x) ∈ R× Rd, ψ̃(κ, x, 0, 0) = x.

3.1.3 The regularization property

In the following, we will not work under P, but under a localized probability measure de�ned as
follows. For t, s ∈ πT,n, t < s, we consider the set

Λt,s =
{ 1

(s− t)n/T
∑

t6tnk6s

χk >
m∗
2

}
.

Using the Hoe�ding inequality and the fact that E[χk] = m∗, it can be checked that

P(Λct,s) 6 exp(−m2
∗(s− t)n/(2T )).

We consider also the localization function ϕn1/4/2, de�ned as in (38) with r∗ replaced by n1/4, and
we construct the random variable

Θt,s,n = 1Λt,s ×
n∏
k=1

ϕn1/4/2(Z̃nk ).

Since Znk has �nite moments of any order, one can show the following inequality: For every l ∈ N, we
have

P(Θt,s,n = 0) 6 P(Λct,s) +
n∑
k=1

P(|Z̃nk | > n1/4) 6 exp(−m2
∗(s− t)n/(2T )) +

M4(l+1)(Z̃)

nl
,

with the notation M4(l+1)(Z̃) introduced in (30). We de�ne the probability measure

dPΘt,s,n =
1

E[Θt,s,n]
Θt,s,ndP.

We consider the Markov chain (X̃n
t )t∈πT,n , de�ned in (31) and we introduce (Q̃Θ,n

t,s )t,s∈πT,n;t6s (that

replace notation Q̃reg,n) such that,

∀t, s ∈ πnT ; t 6 s, Q̃Θ,n
t,s f(x) := EΘt,s,n [f(X̃n

s )|X̃n
t = x] =

1

E[Θt,s,n]
E[Θt,s,nf(X̃n

s )|X̃n
t = x].

Notice that (Q̃Θ,n
t,s )t,s∈πT,n;t6s is not a semigroup, but this is not necessary. We are not able to prove

the regularization property for Q̃n but for its modi�cation Q̃Θ,n that we now establish. Notice that
considering the hypotheses of Theorem 2.1, this is su�cient to obtain total variation convergence.
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Proposition 3.1. A. Let T > 0 and n ∈ N∗. We assume that n ∈ N∗ and t, s ∈ πTT,n, t < s,
satisfy:

3‖ψ̃‖1,3,∞
n1/4

+
M8(Z̃n)

n
+ exp(−m2

∗n(s− t)/(2T )) 6
1

2
and

n1/2 > 3
2N+2

λ∗
‖ψ̃‖21,3,∞.

Moreover we assume that

inf
κ∈R

inf
x∈Rd

inf
|ξ|=1

N∑
i=1

〈
∂ziψ̃(κ, x, 0, 0), ξ

〉2
> λ∗.

Then for every q ∈ N and multi index α, β with |α| + |β| 6 q, there exists l ∈ N∗ and C > 1
which depend on m∗, r∗ and on the moments of Z̃n such that, for every bounded and measurable
function f ∈ Cq(Rd), we have

‖∂αQ̃n,Θt,s ∂βf‖∞ 6 C
Kq+3(ψ̃)l

(λ∗(s− t))q(q+1)
‖f‖∞ (40)

with Kr(ψ̃), r ∈ N∗, de�ned in (33). In particular, Q̃n,Θt (x, dy) = pn,Θt (x, y)dy and (x, y) 7→
pn,Θt (x, y) belongs to C∞(Rd × Rd).

B. For every l ∈ N and every t, s ∈ πTT,n; t 6 s, we have, for every bounded and measurable function
f ,

‖Q̃nt,sf − Q̃
n,Θ
t,s f‖∞ 6 4

(
exp(−m2

∗n(s− t)/(2T )) +
M4(l+1)(Z̃)

nl

)
‖f‖∞.

Remark 3.5. The estimation (40) means that the strong regularization property Rq,η (see 19), with

η(q) = q(q + 1), holds for (Q̃Θ,n
t,s )t,s∈πT,n;t6s. In particular Rq,η(δ/2) (see (17)) and R∗q,η(δ/2) (see

(18)) hold for (Q̃Θ,n
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,n;t6s

which is a modi�cation of (Q
n
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,n;t6s

. (see

(32) for de�nition). Moreover, using this result we deduce from Lz∗(ε∗, r∗) (see (28)), (30), (34),
(35) and (36 that for every m ∈ nN∗ then Rq,η(δ/2) and R∗q,η(δ/2) hold, with n replaced by m, for

(Q̃Θ,m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

which is a modi�cation of (Q
m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

. Finally using point

B.; it follows that that (20) holds between (Q̃Θ,m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

and (Q
m
tδ,n+t,tδ,n+s)t,s∈πδ̃nT,m;t6s

,

with n replaced by m.

3.2 Concentration inequalities

The concentration inequalities are crucial tools in the proof of Theorem 3.1. In particular, they
provide a solution to estimate the total variation distance between Pn and P

D,v,n
and between Qn

and Q
n
. We begin with a �rst practical lemma.

Lemma 3.1. Let T ⊂ R+ and let (Ht)t∈T and (Kt)t∈T two processes taking values in Rd. Let y ∈ Rd
and v > 0. We de�ne the processes (H(y, v)t)t∈T and (K(y, v)t)t∈T with H(y, v)t = Ht1supt∈T |Ht−y|<v
and K(y, v)t = Kt1supt∈T |Kt−y|<v. We assume that (H(y, v)t)t∈T and (K(y, v)t)t∈T follow the same
law. Then

P(sup
t∈T
|Ht − y| < v) =P(sup

t∈T
|Kt − y| < v).
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Proof. We consider that (Ht)t∈T and (Kt)t∈T are non null processes. Otherwise the proof is straight-
forward. We have {supt∈T |Ht − y| < v} = {supt∈T |Ht − y| < v} ∩ ({H = H(y, v)} ∪ {H =
H1supt∈T |Ht−y|>v}). Moreover, since the process H is not zero, we have {H = H1supt∈T |Ht−y|>v} =
{supt∈T |Ht − y| > v} and {supt∈T |Ht − y| < v} ∩ {H = H1supt∈T |Ht−y|>v} = ∅. We thus derive

P(sup
t∈T
|Ht − y| < v) =P(sup

t∈T
|H(y, v)t − y| < v) = P(sup

t∈T
|K(y, v)t − y| < v) = P(sup

t∈T
|Kt − y| < v),

where we use the fact that (H(y, v)t)t∈T and (K(y, v)t)t∈T follow the same law.

We now establish concentration inequalities for both continuous and discrete time processes.

3.2.1 The continuous case - The Bernstein's inequality

Proposition 3.2. Let (Mt)t>0 be a continuous local martingale such that M0 = 0 and 〈M〉∞ = +∞
a.s. Then, for every c > 0 and every v > 0,

P
(

sup
06s6t

|Ms| > v|〈M〉t 6 c
)
6 2 exp

(
− v2

2c

)
. (41)

Proof. In order to prove (41), we will use the following result which concerns the speci�c case of the
Brownian motion.

Lemma 3.2. Let (Wt)t>>0 a standard Brownian motion. Then, for every v > 0,

∀t > 0, P( sup
06s6t

|Ws| > v) 6 2 exp
(
− v2

2t

)
. (42)

Proof of Lemma 3.2. We recall that for every α > 0, ξα(W )t = exp(αWt − α2t
2 ) is a σ(Ws, s 6 t)-

martingale. Using the symmetry of the Brownian motion and the Doob maximum inequality for non
negative martingales, we derive

P( sup
06s6t

|Ws| > v) =2P( sup
06s6t

Ws > v) = 2P
(

exp
(
α sup

06s6t
Ws −

α2t

2

)
> exp

(
αv − α2t

2

))
62P

(
sup

06s6t
ξα(W )s > exp

(
αv − α2t

2

))
6 2

E[ξα(W )t]

exp(αv − α2t
2 )

= 2 exp
(
− αv +

α2t

2

)
.

The function α 7→ exp(−αv + α2t
2 ) being convex, we obtain infα>0 exp(−αv + α2t

2 ) = exp(−v2

2t ) and
(42) follows.

Now, since M0 = 0 and 〈M〉∞ = +∞, we can use the Dambis-Dubins-Schwarz Theorem. Let us
de�ne Tt = inf{s : 〈M〉s > t}. Then Wt = MTt is a FTt- Brownian motion and Mt = W〈M〉t . It
follows from Lemma 3.2 that

P( sup
06s6t

|Ms| > v|〈M〉t 6 c) =P( sup
06s6〈M〉t

|Ws| > v|〈M〉t 6 c) = E[P( sup
06s6〈M〉t

|Ws| > v|〈M〉t)|〈M〉t 6 c]

6E
[
2 exp

(
− v2

2〈M〉t

)∣∣∣〈M〉t 6 c
]
6 2 exp

(
− v2

2c

)
.
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Applying this result to Markov di�usions we derive the following result.
Corollary 3.1. Let δ ∈ (0, T ]. Let (Xt)t>0 be a di�usion process with form (23) with V0,Ito, Vi ∈
C0
b (Rd;Rd), i ∈ {1, . . . , N}. Then, for every v > 0, we have

P( sup
T−δ6t6T

|XT −Xt| > v|XT ) 6 2 exp
(
−
v2/2− δ2‖V0,Ito1Bv(XT )‖2∞
δ
∑N

i=1 ‖Vi1Bv(XT )‖2∞

)
. (43)

with Br(x) = {y ∈ Rd, |y − x| < r} for every x ∈ Rd and every r > 0.

Proof. Applying Lemma 3.1, we derive

P( sup
T−δ6t6T

|XT −Xt| > v|XT ) = P
(

sup
T−δ6t6T

∣∣∣ ∫ T

t
V0,Ito(Xs)ds+

N∑
i=1

∫ T

t
Vi(Xs)dW

i
s

∣∣∣ > v
∣∣∣XT

)
=P
(

sup
T−δ6t6T

∣∣∣ ∫ T

t
V0,Ito(Xs)1Bv(XT )(Xs)ds+

N∑
i=1

∫ T

t
Vi(Xs)1Bv(XT )(Xs)dW

i
s

∣∣∣ > v
∣∣∣XT

)
6P
(

sup
T−δ6t6T

∣∣∣ N∑
i=1

∫ T

t
Vi(Xs)1Bv(XT )(Xs)dW

i
s

∣∣∣ > v − δ‖V0,Ito1Bv(XT )‖∞
)
.

Now, (43) follows from Proposition 3.2 with (Mt)06t6δ =
∑N

i=1

∫ T
T−t Vi(Xs)1Bv(XT )(Xs)dW

i
s using

that 〈M〉t 6 δ
∑N

i=1 ‖Vi1Bv(XT )‖2∞.

3.2.2 The discrete case - The Hoe�ding inequality

Before we establish a well adapted concentration inequality for our discrete time approximation, we
recall the Hoe�ding inequality.
Proposition 3.3. (The Hoe�ding inequality). Let (Mn)n∈N be a discrete centered Markov process
such that there exists two sequences (bln)n∈N 6 (bun)n∈N such that for every n ∈ N∗, P(Mn −Mn−1 ∈
[bln, b

u
n]) = 1. Then, for every v > 0,

P(|Mn| > v) 6 2 exp
(
− 2v2∑N

k=1(bul − blk)2

)
.

Corollary 3.2. We �x T > 0 and n ∈ N∗. Let δ ∈ [2T/n, T ]. Assume that (Xn
t )t∈πT,n is de�ned as

(25) with ψ ∈ C1(R×Rd×RN ×R+;Rd) and P(Znk ∈ [blk(Z
n), buk(Zn)]) = 1 and such that (24) holds.

Then, for every v > 0,

P( sup
t∈πTT,n;t>T−δ̃n

|Xn
T −Xn

t | > v|Xn
T ) 6 2 exp

(
−

CZ,nv
2

δ‖ψ1Bv(XT )‖21,1,∞

)
, (44)

with δ̃n de�ned in (21) and CZ,n = infk∈{kδ,n,...,n} T/(12(buk(Zn)− blk(Zn))2).

Proof. Let N = 1 for sake of clarity in the writing. Using twice the Taylor expansion at order one of
ψ with respect to the third variable and then to the fourth variable, we derive

Xn
tnk+1
−Xn

tnk
= w0

k+1

∫ 1

0
(1− λ)∂tψ(κk, X

n
tk
, λw0

k+1, w
1
k+1)dλ+ w1

k+1

∫ 1

0
(1− λ)∂zψ(κk, X

n
tk
, 0, λw1

k+1)dλ,



3 TOTAL VARIATION CONVERGENCE FOR LOCALLY SMOOTH DIFFUSIONS 21

with w0
k+1 = T/n and w1

k+1 ∈ [blk+1(Zn)/
√
n, buk+1(Zn)/

√
n]. We apply Lemma 3.1 and Proposition

3.3 in order to obtain

P( sup
t∈πTT,n;t>T−δ̃n

|Xn
T −Xn

t | > v|Xn
T )

6 2 exp
( −v2/4

n∑
k=kδ,n

(Tn ‖∂tψ1Bv(Xn
T )‖∞)2 + (

buk(Zn)−blk(Zn)√
n

‖∂zψ1Bv(Xn
T )‖∞)2

)
,

with kδ,n = n(T − δ̃n)/T de�ned in (21). Since |δ− δ̃n| 6 T/n and 2T/n 6 δ, it follows that n− kδ 6
3nδ/(2T ). Therefore, using (24), we rearrange the terms and the proof of (44) is completed.

3.3 Proof of Theorem 3.1

Using those di�erent presented tools we are now able to prove our main result concerning total
variation approximation for di�usion processes with locally smooth coe�cients.

Proof of Theorem 3.1. In a �rst step we decompose the total variation distance |E[(f(XT )−f(Xn
T ))]|.

Then, using Theorem 2.1 and concentration inequalities (see Corollary 3.1 and Corollary 3.2), we
study each terms appearing in this decomposition.

Step 1. Decomposition of the total variation distance. Let us de�ne ΩX = {supT−δ̃n6t6T |Xt−
XT | < v} ∩ {supT−δ̃n6tnk6T

|Xn
t − Xn

T | < v} and ΩX = {supT−δ̃n6t6T |X
D,v
t − X

D,v
T | < v} ∩

{supT−δ̃n6tnk6T
|Xn

t − X
n
T | < v}. From (SGReg(P

D,v,n
, Q

n
, h, q, n, δ, T,D, v)) and since supp(f) ⊂

D2v, it follows that

E[(f(XT )− f(Xn
T ))1ΩX ] = E[(f(X

D,v
T )− f(X

n
T ))1ΩX

],

which yields

|E[(f(XT )− f(Xn
T ))]| 6|E[f(X

D,v
T )− f(X

n
T )]|+ 2‖f‖∞

(
P(Ωc

X |XT , X
n
T ∈ D2v) + P(Ω

c
X |X

D,v
T , X

n
T ∈ D2v)

)
.

Step 2. Analysis of the terms composing the total variation distance estimation. To
complete the proof, it remains to estimate each term of the r.h.s. of this inequality. We focus on the
�rst one. As a direct consequence of Proposition 3.1 (see Remark 3.5) and Theorem 2.1 (which follow

from Lz∗(ε∗, r∗) (see (28)), (34), (30), (36) and (35) and (SGReg(P
D,v,n

, Q
n
, h, q, n, δ, T,D, v)) II)),

we deduce from the mixing regularization properties of (X
n
t )t∈πT,n that

|E[f(X
D,v
T )− f(X

n
T )]| 6 C(1 + |x|β)

Kq+3(ψ̃)l

(λ∗δ)η(q)
‖f‖∞/nh



4 SECOND ORDER TOTAL VARIATION CONVERGENCE TOWARDS CIR PROCESSES 22

Now, we study the second term of the r.h.s of the decomposition of the error. First, let us observe
that

P(Ωc
X |XT , X

n
T ∈ D2v) 6P( sup

T−δ̃n6t6T
|Xt −XT | > v|XT ∈ D2v)

+ P( sup
T−δ̃n6tnk6T

|Xn
tnk
−Xn

T | > v|Xn
T ∈ D2v),

and

P(Ω
c
X |X

D,v
T , X

n
T ∈ D2v

)
6P( sup

T−δ̃n6t6T
|XD,vt −XD,vT | > v|XT ∈ D2v)

+ P( sup
T−δ̃n6tnk6T

|Xn
tnk
−Xn

T | > v|Xn
T ∈ D2v).

Now, we notice that for every x ∈ D2v, then Bv(x) ⊂ Dv. Using Lemma 3.1 and Corollary 3.1, we
derive

P( sup
T−δ̃n6t6T

|XD,vt −XD,vT | > v|XT ∈ D2v) =P( sup
T−δ̃n6t6T

|Xt −XT | > v|XT ∈ D2v)

62 exp
(
−
v2/2− δ2‖V0,Ito1Dv‖2∞
δ
∑N

i=1 ‖Vi1Dv‖2∞

)
,

In the same way, using Lemma 3.1 with the hypothesis (SGReg(P
D,v,n

, Q
n
, h, q, n, δ, T,D, v)) I), it

follows from Corollary 3.2, that

P( sup
T−δ̃n6tnk6T

|Xn
tnk
−Xn

T | > v|Xn
T ∈ D2v) =P( sup

T−δ̃n6tnk6T
|Xn

tnk
−Xn

T | > v|Xn
T ∈ D2v)

62 exp
(
−

CZ,nv
2

δ‖ψ1Dv‖21,1,∞

)
.

Gathering all the terms together yields (37).

4 Second order total variation convergence towards CIR processes

In this section, we apply Theorem 3.1 obtained in a general setting to the case of a second weak
order scheme for the CIR process. This scheme was �rst introduced in [2] and is built using cubature
methods. It is inspired from the approach proposed in [28] to build the so called Ninomiya Victoir
schemes for SDE with smooth coe�cients. Finally, in [23] or [5], the authors showed that the total
variation convergence occurs for those cubature schemes as soon as the coe�cients of the SDE are
smooth. In this section, our purpose is to exploit and extend those results in order to obtain total
variation convergence results for the CIR di�usion process which is singular in the neighborhood of
zero.
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4.1 The Ninomiya Victoir scheme

We begin by presenting the Ninomiya Victoir scheme (see [28]). Let us de�ne exp(V )(x) := ΦV (x, 1)
where ΦV solves the deterministic equation

ΦV (x, t) = x+
∫ t

0V (ΦV (x, s))ds. (45)

By a change of variables, we obtain ΦεV (x, t) = ΦV (x, εt) so we have

exp(εV )(x) := ΦεV (x, 1) = ΦV (x, ε).

We also notice that the semigroup of the above Markov process is given by P Vt f(x) = f(ΦV (x, t)) and
has the in�nitesimal generator AV f(x) = V f(x). In particular the relation P Vt AV = AV P

V
t reads

V f(ΦV (x, t)) = AV P
V
t f = P Vt AV f = V (x)∂x (f ◦ ΦV ) (x, t).

Using m times Dynkin's formula P Vt f(x) = f(x) +
∫ t

0 P
V
s AV f(x)ds we obtain

f(ΦV (x, t)) = f(x) +
m∑
r=1

tr

r!
V rf(x) +

1

m!

∫ t

0
(t− s)mV m+1P Vs f(x)ds. (46)

We present now a second order scheme introduced in [28] and also used in [2]. We consider a sequence
κk, k ∈ N∗, of independent Bernoulli random variables. Let us de�ne ψ : Z × Rd × RN × R+ → Rd
by:

ψ(κ, x, w1, w0) =

{
exp(w0V0) ◦ exp(w1,1V1) ◦ · · · ◦ exp(w1,NVN ) ◦ exp(w0V0)(x), if κ = 1,

exp(w0V0) ◦ exp(w1,NVN ) ◦ · · · ◦ exp(w1,1V1) ◦ exp(w0V0)(x), if κ = −1.
(47)

Moreover, we denote w0
k = T/2n and w1

k = (w1,i
k )i=1,..,N with wik =

√
TZik/

√
n, i = 1, . . . , N and we

assume that Zk, k ∈ N are independent random variables which are lower bounded by the Lebesgue
measure i.e. Lz∗(ε∗, r∗) (see (28)) holds: There exists z∗,k ∈ RN and ε∗, r∗ > 0 such that for every
Borel set A ⊂ RN and every k ∈ N∗: P(Zk ∈ A) > ε∗λ(A ∩ Br∗(z∗,k)). Finally, we assume that the
sequence Zk satis�es the following moment condition:

E[Zik] = E[(Zik)
3] = E[(Zik)

5] = 0, E[(Zik)
2] = 1, E[(Zik)

4] = 3,

∀p > 1, E[|Zk|p] <∞. (48)

We recall that T > 0, n ∈ N∗, and that tnk = Tk/n. One step of the scheme for di�usion with regular
coe�cients (between times tk and tk+1) is thus given by

Xn
tnk+1

= ψ(κk, X
n
tnk
, w1

k+1, w
0
k+1). (49)

4.1.1 Convergence results for di�usion with smooth coe�cients

We begin by recalling some convergence results concerning this numerical scheme.
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Smooth test functions

Here, we assume that the test functions are smooth. We state a �rst result, which is the starting
point in order to prove the convergence for the total variation distance.
Theorem 4.1. Let (Xt)t>0 be the process de�ned by (22) and (Xn

t )t∈πT,n given by (49). Assume that
(48) holds. We have the following properties:

A. Assume that for every l 6 3, we have V l
0 : C∞pol(Rd;Rd)→ C∞pol(Rd;Rd) and for every i = 1, . . . N ,

we have V 2l
i , A

l : C∞pol(Rd;Rd) → C∞pol(Rd;Rd). We also assume that
∑N

i=0 Vi(x) 6 C(1 + |x|)
and that supt∈[0,T ] |ΦVi(x, t)| 6 Ci(1 + |x|βi), Ci, βi > 1. Then, En,pol(2, 6) (see (10)) and
E′n,pol(2, 6) (see (11)) are satis�ed between (Xt)t∈πT,n and (Xn

t )t∈πT,n .

B. Suppose that Vi ∈ C∞b (Rd;Rd). Then, there exists some universal constants C, l > 1 such that
for every f ∈ C6

b (Rd), we have

sup
t∈πTT,n

|E[f(Xt)]− E[f(Xn
t )]| 6 CC6(V )l‖f‖6,∞/n2, (50)

with Ck(V ) := supi=0,...,N ‖Vi‖k,∞.

Proof. We prove only point A. The proof of B. can be found in [4] (see Theorem 5.1.). We focus on
the proof of E′n,pol(2, 6) (see (10)). We assume that N = 1 and T = 1 for sake of clarity, the proof

being similar otherwise. It is su�cient to prove that the schemes X0,n
tk+1

= ΦV0(X0,n
tk
, tk+1 − tk) and

X1,n
tk+1

= ΦV1(X1,n
tk
,
Z1
k√
n

), k ∈ N, are weak second order schemes. We prove that they are in fact h-weak

order schemes, for every integer h ∈ N∗ as soon as Zk = Z1
k matches the 2h + 1-th moments of the

centered normal distribution and has �nite moments of any order. First, we notice that the sublinear
growth of the coe�cients implies that for every t ∈ R+, the moments functions x 7→ E[|Xt(x)|q],
q ∈ N, belong to C0

pol(Rd) (see [1]). Let us consider f ∈ C∞b (Rd). According to the de�nition of V0,

we notice that for every l ∈ N, V l
0f ∈ C∞pol(Rd). In this case, expansion (46) reads

∀h ∈ N, f(ΦV0(x, t)) = f(x) +

h∑
l=1

tl

l!
V l

0f(x) +Rh+1
0,t f(x)

with

Rh+1
0,t f(x) =

∫ t

0

(t− s)h

h!
V h+1

0 f(ΦV0(x, s))ds

As already mentioned, V h+1
0 f ∈ C∞pol(Rd). Moreover, for every x ∈ Rd, supt∈[0,T ] |ΦV0(x, t)| 6 C0(1 +

|x|β0) and then for every t ∈ [0, 1], there exists β ∈ N such that

|Rh+1
0,t f(x)| 6 C(1 + |x|β)th+1‖f‖h+1,∞.

The scheme with transition function ΦV0 is thus a h-weak order scheme for the operator V0. Now, let
Hk =

√
tZk. Still using (46), we derive

E[f(ΦV1(Hk, x))] =
∑

2l62h+1

tlE[|Zk|2l]
(2l)!

V 2l
1 f(x) + E[Rh+1

1,Hk
f(x1)]
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with

Rh+1
1,Hk

f(x) =
H2h+2
k

(2h+ 1)!

∫ 1

0
(1− s)2h+1V 2h+2

1 f(ΦV1(x, sHk))ds.

Moreover, V 2h+2
1 f ∈ C∞pol(Rd;R) and for every x ∈ Rd, supt∈[0,T ] |ΦV1(x, t)| 6 C1(1 + |x|β1). Once

again, there exists β1 ∈ N∗, C1 > 0, such that

E[|Rh+1
1,Hk

f(x)|] 6 E[|Hk|2h+2]

(2h+ 1)!
C1(1 + |x|β1 ])‖f‖2h+2,∞ 6 C(1 + |x|β1)th+1‖f‖2h+2,∞,

and the scheme with transition function ΦV1 is a h-order scheme for the operator V1.

Finally, for every f ∈ C∞pol then Af ∈ C∞pol and we obtain E′n,pol(2, 6) (see (11)) using the Ninomiya
Victoir composition (47) and the polynomial control of the moments of the di�usion and of ΦVi ,
i ∈ {0, . . . , N}. The proof of En,pol(2, 6) (see (10)) is very similar and left to the reader.

Remark 4.1. Notice that property P′q (see (8)) has already been studied in [1] for the CIR and since

supt∈[0,T ] ΦVi(., t) ∈ C0
pol(Rd), we can use Property 2.1 in order to obtain the weak convergence for

smooth test functions with polynomial growth.

Bounded measurable test functions

Under an ellipticity condition, we can control the total variation distance between a di�usion process
with form (22) and its second order scheme (49).
Theorem 4.2. Assume that Vi ∈ C∞b (Rd;Rd), i = 0, . . . , N , and

inf
|ξ|=1

N∑
i=1

〈Vi(x), ξ〉2 > λ∗ > 0 ∀x ∈ Rd. (51)

Let S ∈ (0, T/2). Then there exists n0 ∈ N∗, l ∈ N∗ and C > 1 such that for every n > n0 and for
every bounded and measurable function f de�ned on Rd,

sup
t∈π2S,T

T,n

|E[f(Xt)]− E[f(Xn
t )]| 6 C

C6(V )lK9(ψ)l

(λ∗S)42
‖f‖∞ /n

2. (52)

Remark 4.2. This result has already been obtained in [5]. The result (52) signi�es the convergence
in total variation distance for the weak error with order 2. We notice that, the key point of this
proof does not rely on the weak order of the scheme. This is the fact that, the splitting procedure

(47) in order to build the scheme, always includes a di�usion part (through exp(
Zik√
n
V i)) together

with the ellipticity condition (51). Consequently, a similar procedure could be used in order to prove
the convergence in total variation for even higher order schemes as soon as we control this error for
smooth test functions. Finally, it is important to notice that the generic property Lz∗(ε∗, r∗) (see (28))
is crucial here. On the one hand, it enables to apply a Malliavin inspired calculus crucial to achieve
total variation convergence. On the other hand, since the random variables (Zk)k∈N∗ do not have a
speci�c law but only satisfy the Doeblin condition Lz∗(ε∗, r∗) (see (28)) and the moment condition
(48), the result can be seen as an invariance principle.
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4.2 The CIR model

The CIR process is an R+-valued di�usion process driven by the following SDE,

dXt = (a− kXt)dt+ σ
√
XtdWt. (53)

This model was �rst presented in 1985 in [13] and was inspired by Vasicek (1977) models [35] by
modifying the volatility term introducing a 'square root' term, among others in order to guarantee
non-negativity. In this paper, we suppose that a, k, σ > 0. In this case, it is important to notice that
the model does not reach 0 for 2a > σ2.

4.2.1 Second weak order scheme for the CIR process

The Ninomiya Victoir scheme for the CIR

Applying the notations from (22), we have

∀x ∈ R, V0,cirf(x) = (a− kx− σ2

4
)∂xf(x)

∀x ∈ R+, V1,cirf(x) = σ
√
x∂xf(x)

Solving the PDE (45) yields the following �ows

∀x ∈ R, Φ0,cir(t, x) = xe−kt + (a− σ2

4
)
1− e−kt

k

∀x ∈ R+, Φ1,cir(t, x) = (
√
x+

σ

2
t)2.

At this point, we distinguish two cases. Indeed, we notice that if σ2 > 4a and x 6 x∗(t) := k−1(σ
2

4 −
a)(ekt−1), then ΦCIR

0 (t, x) takes negative values and then the scheme (49) is not well de�ned anymore.
In this case, we have to introduce another scheme in the neighborhood of zero (when x 6 x∗(t)) and
to use a switching procedure in this area. Otherwise, we will prove that, as soon as the scheme (49)
is well de�ned, then it is a second weak order scheme. As a consequence, if 4a > σ2, we de�ne

ψcir(x,w
1, w0) = exp(w0V0,cir) ◦ exp(w1V1,cir) ◦ exp(w0V0,cir)(x). (54)

Now, we introduce w0
k = T/n(= tnk − tnk−1) and w1

k =
√
TZk/

√
n, where Zk, k ∈ N∗, are independent

R-valued random variables which are lower bounded by the Lebesgue measure i.e. Lz∗(ε∗, r∗) (see
(28)) holds. Finally, we assume that the sequence Zk satis�es the moment conditions (48) and that
P(Zk ∈ [−

√
3,
√

3]) = 1 for every k ∈ N∗.

One step of the scheme for the CIR di�usion (between times tnk and tnk+1) is given by

Xn
tk+1

= ψcir(κk, X
n
tk
, w1

k+1, w
0
k+1). (55)

4.2.2 Second weak order scheme in the neighborhood of zero

This section is dedicated to the introduction of a speci�c scheme in the neighborhood of zero when
σ2 > 4a. In this case, the scheme de�ned in (55) is indeed not well de�ned. First of all, we have to
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identify the threshold such that, for every time step we use the scheme (55) or we introduce another
scheme. To this end, we consider some bounded random variables Zk, in order to use the following
result that determine this switching threshold.
Lemma 4.1. Assume that σ2 > 4a. Let t > 0, A > 0, w1 ∈ [−A,A] and de�ne

K(t, A) = e
kt
2

(σ2

4
− a
)

1− e
−kt
2

k
+

√e kt2 (σ2

4
− a
)

1− e−
kt
2

k
+
σ

2
A

2 . (56)

Then

∀x > K(t, A), Φ0,cir(
t

2
, .) ◦ Φ1,cir(w

1, .) ◦ Φ0,cir(
t

2
, x) > 0.

Proof. We �rst notice thatK(t, A) > x∗( t2) and then for every t ∈ [0, 1], the function x 7→ Φ0,cir(
t
2 , .)◦

Φ1,cir(w
1, .)◦Φ0,cir(

t
2 , x), x ∈ [K(t, A),+∞), is well de�ned. Moreover, Φ0,cir is increasing with respect

to its space variable x and

Φ0,cir

( t
2
,K(t, A)

)
=

√e kt2 (σ2

4
− a
)

1− e−
kt
2

k
+
σ

2
A

2

.

Since all the terms inside the parenthesis are positive and w1 > −A, we deduce that

Φ1,cir(w
1, .) ◦ Φ0,cir(

t

2
,K(t, A)) =

√e kt2 (σ2

4
− a
)

1− e
kt
2

k
+
σ

2
(A+ w1)

2

> e
kt
2

(
σ2

4
− a
)

1− e−
kt
2

k
= x∗

( t
2

)
.

Finally, notice that Φ1,cir is increasing with respect to its space variable x and the proof is completed.

Now, it remains to introduce the scheme that we will use in the neighborhood of zero.

Moments matching approach. Our approach consists in checking, at each step of the Ninomiya
Victoir scheme, if it may take negative values. In this case, we switch with a scheme based on
moment matching approach and inspired from Andersen [3] and introduced in [2]. One step of this
scheme consists in simulating a discrete random process (ζt)t>0 ∈ {y1, y2} ∈ R2

+, which depends on
the current position, at the selected date t > 0 which corresponds to the time step. We recall that
the �rst two moments of the CIR starting from X0 = x ∈ R+, are given by

Ex[Xt] = xe−kt +
a

k
(1− e−kt)

Ex[X2
t ] = x

σ2

k
(e−kt − e−2kt) + a

σ2

2k2
(1− e−kt)2 + Ex[Xt]

2,

and we denote uq(x, t) = Ex[Xq
t ]. In the neighborhood of zero, one step of the scheme (Xn

t )t∈πTT,n
,

between tnk and tnk+1 consists in simulating a random variable distributed under the same law as
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ζtnk+1−t
n
k
with (y1, y2) given by the solution of the following equation:{

P (ζt = y1)y1 + P (ζt = y2)y2 = u1(x, t)
P (ζt = y1)y2

1 + P (ζt = y2)y2
2 = u2(x, t),

on the event {Xn
tk

= x}. In this equation the only �xed parameters are u1(t, x) and u2(t, x), and
obviously P(ζt = y2) = 1 − P(ζt = y1) ∈]0, 1[. Thus we can �x values for y1 and y2 to solve the
�rst equation and then the second one gives a second order equation to solve to �nd P(Yt = y1). For
instance, let v ∈]0, 1[ and let us choose

y1 = v
u1(t, x)

P(ζt = y1)
, y2 = (1− v)

u1(t, x)

P(ζt = y2)
.

The second equation then rewrites

u2(t, x)P(ζt = y1)2 + [(1− 2v)u1(t, x)− u2(t, x)]P(ζt = y1) + v2u1(t, x)2 = 0.

We thus consider the second order equation which depends on the parameter v:

u2(t, x)ρ2 + [(1− 2v)u1(t, x)− u2(t, x)] ρ+ v2u1(t, x)2 = 0. (57)

We want to �nd a couple (ρ(v), v), where ρ(v) is a solution of the equation above, such that ρ(v) ∈]0, 1[.
Let us denote

∆v(t, x) = [(1− 2v)u1(t, x)− u2(t, x)]2 − 4v2u1(t, x)2u2(t, x)

Now we chose v = 1
2 . We compute the following solution for (57):

ρ(1/2) =
u2(t, x)±

√
u2(t, x)(u2(t, x)− u1(t, x)2)

2u2(t, x)

At this point, we thus put

P(ζt = y1) =
1

2

(
1−

√
1− u1(t, x)2

u2(t, x)

)
.

Since u1(t, x) > max
(
a2
(

1−e−kt
k

)
, 2xak (e−kt − e−2kt)

)
, we derive the following lower bound,

P (ζt = y1) >
1

2

(
1−

√
1− a

a+ σ2

)
.

This provides the following crucial property in order to prove the second order convergence: Assume
that there exists C > 0 such that 0 < K(t, A) < Ct. Then, for every q ∈ N,

∀t ∈]0, 1],∀x ∈ [0,K(t, A)], ∃C > 1,E[ζqt ] < Ctq

We de�ne the transition function in the neighborhood of zero by

ψ̂cir(ρ, x, w
0) =


u1(w0, x)

2p(x,w0)
, if ρ = 1,

u1(w0, x)

2(1− p(x,w0))
, if ρ = −1,
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with p(x,w0) = 1
2(1 −

√
1− u1(w0,x)2

u2(w0,x)
). Now let w0

k = T/N . We de�ne a step of the second order
scheme for the CIR in the neighborhood of zero by

Xn
tk+1

= ψ̂cir(ρk, X
n
tk
, w0

k+1),

with (ρk)k∈N the sequence of random variables such that P(ρk = 1|Xn
tk

) = p(Xn
tk
, w0

k+1) and P(ρk =
−1|Xn

tk
) = 1 − p(Xn

tk
, w0

k+1). Finally in the case σ2 > 4a, we use the Lemma 4.1 and we de�ne the
CIR scheme by

Xn
tk+1

=

{
ψcir(κk, X

n
tk
, w1

k+1, w
0
k+1), if Xn

tk
> K(T/n,

√
3T/n),

ψ̂cir(ρk, X
n
tk
, w0

k+1), if Xn
tk
< K(T/n,

√
3T/n),

(58)

where w1
k =
√
TZk/

√
n is de�ned as in (54).

4.3 Convergence results

4.3.1 Smooth test functions

We focus on the convergence of the CIR schemes de�ned in (55) and (58). Using Property 2.1. In
order to apply this result we have to establish the following straightforward property.
Lemma 4.2. Let l ∈ N. Then, we have

V 2l
1,cir : C∞p (R∗+)→ C∞p (R∗+). (59)

Proof. Notice that it is su�cient to show the result for l = 1. In this case, the result is straightforward
since

∀f ∈ C∞p (R∗+), V 2
1,cirf(x) = σ2√x

(
1

2
√
x
∂xf(x) +

√
x∂2

xf(x)

)
=
σ2

2
∂xf(x) + σ2x∂2

xf(x).

The property (59) leads the following short time estimate.
Theorem 4.3. Let (Xt)t>0 be the process de�ned by (53) and let (Xn

tk
) be de�ned by (55) if 4a > σ2

and by (58) otherwise. Then, there exists l ∈ N∗, C, β > 1, such for every f ∈ C6
b (R+;R), E′n,pol(2, 6)

(see (11)) holds and

∀x ∈ R+, |E[f(XT (x)]− E[f(Xn
T (x)]| 6 C(1 + |x|β)‖f‖6,∞/n2. (60)

Proof. First we recall that the proof of P′q (see (8)) for the CIR di�usion and its scheme are given in
[2]. If 4a > σ2, it is su�cient to use Theorem 4.1 point A. to obtain (11) and then (60) follows from
Property 2.1. Now, let σ2 > 4a. Here, the only thing we still have to check is that (11) is satis�ed
for the moment matching scheme as soon as x ∈ [0,K(T/n,

√
3T/n)] with K de�ned in (56). This is

a consequence of the two following results.

Lemma 4.3. Let σ2 > 4a. Let K be the function de�ned in (56) and let λ ∈ R. Then, for every
q ∈ N,

∃Cq > 0, tq ∈ [0, 1], ∀t ∈ [0, tq], ∀x ∈ [0,K(t, λ
√
t)[, E[Xq

t |X0 = x] 6 Cqt
q
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Proof. Let us consider the function g(x) = xq+1, x ∈ R+. Applying Ito's formula to g for the CIR
process gives:

Xq+1
t = xq+1 +

∫ t

0

[
(q + 1)Xq

s (a− kXs) +
1

2
q(q + 1)σ2Xq

s

]
ds+

∫ t

0
(q + 1)X

q+ 1
2

s σdWs.

Using localization by considering the stopping time τm = inf{t > 0 : |Xt| > m} and the Fubini
theorem, yields

E[|Xq+1
t∧τm |] 6 xq+1 + E

[∣∣ ∫ t∧τm

0

[
(q + 1)Xq

s (a− kXs) +
1

2
q(q + 1)σ2Xq

s

]
ds
∣∣]

6 xq+1 +

∫ t

0

[
(q + 1)a+

1

2
q(q + 1)σ2

]
E[|Xq

s∧τm |]− kE[Xq+1
s∧τm ]ds

Reasoning by induction, we assume that: ∃Cq > 0, tq ∈ [0, 1],E[Xq
s∧τm ] 6 Cqt

q. Since x ∈ [0,K(t, λ
√
t)[

with K(t, λ
√
t) = O

t→0
(t), there exists tq+1 ∈ [0, 1] such that

∀t ∈ [0, tq+1],E[|Xq+1
t∧τm |] 6 K(t, λ

√
t)q+1 + Cq

(
(q + 1)a+ 1

2q(q + 1)σ2
)
tq+1 +

∫ t
0 kE[|Xq+1

s∧τm |]ds

Applying Gronwall's lemma and the fact that t ∈ [0, tq+1], and that there exists C > 0 such that
K(t, λ

√
t) < Ct, we deduce that

E[|Xq+1
t∧τm |] 6

(
Cq

[
(q + 1)a+

1

2
q(q + 1)σ2

]
+ C

)
ektq+1

Finally, the continuity of the �ow and Fatou's lemma give the result.

Using this result the property E′n,pol(2, 6) (see (11)) is a consequence of the following theorem

Lemma 4.4. Let h ∈ N, x ∈ [0, C∗(t)[ with C∗(t) = O
t→0

(t) and let (ζt)t>0 be a R+ valued random

process such that ∀q = 1, . . . , h,E[ζqt ] = E[Xq
t ] with (Xt)t>0 the CIR process de�ned in (53) and that

for every q 6 h+ 1, there exists Cq > 0 and tζq ∈ [0, 1], such that for every t ∈ [0, tζq ],E[|ζt|q] 6 Cqt
q.

Then the scheme with transition probability P(ζT/n ∈ dx) satis�es E′n,pol(h, h+ 1) (see (11)).

Proof. Let us write the Taylor expansion of f at order h:

f(ζt) = f(0) +
h∑
l=1

ζ lt
l!
f (l)(0) +

∫ ζt

0

(ζt − y)h

h!
f (h+1)(y)dy.

Since (ζt)t>0 matches the �rst h moments of the CIR we have :

E[f(Xt)− f(ζt)] = E
[∫ Xt

0

(Xt − y)h

h!
f (h+1)(y)dy −

∫ ζt

0

(ζt − y)h

h!
f (h+1)(y)dy

]
Moreover f ∈ C∞b (R+), so using the Lemma 4.3 it follows that

E[f(Xt)− f(ζt)] 6 C‖f‖h+1,∞E
[∣∣∣Xh+1

t

h!
+
ζh+1
t

h!

∣∣∣] 6 C‖f‖h+1,∞t
h+1

and the proof is completed.
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The proof of (60) is a direct application of this theorem for h = 2 and ζ is replaced by Xn de�ned
by (58).

4.3.2 Convergence for measurable test function

Using the results from the previous sections (in particular Theorem 3.1), we are now able to study the
total variation convergence of the CIR scheme with almost order 2. We prove that convergence for
bounded and measurable functions but with support Dcir strictly contained in R+. We now introduce
this support. Let d2 > d1 > 0 and de�ne

Dcir = [d1, d2]

From Theorem 3.1 we deduce the following total variation distance estimation for the CIR process.
Theorem 4.4. Let T > 0. Let δ ∈ (0, T ) and let n ∈ N∗ such that 2T/n 6 δ. Let (Xt)t>0 be the
process de�ned by (53) and let (Xn

t )t∈πT,n be the process de�ned by (55) if 4a > σ2 and (58) otherwise.

Let ψ̃cir the function de�ned as in (54) with V0,cir and V1,cir replaced by V Dcir,v0,cir and V Dcir,v1,cir . Assume

that v 6 (d2 − d1)/4, (K(T/n,
√

3T/n) − 2v)+ < d1 and that assumptions (34) and (36) hold with
s− t = δ/2 and ψ̃ replaced by ψ̃cir that respectively read in this case

3‖ψ̃cir‖1,3,∞
n1/4

+
M8(Z)

n
+ exp(−m2

∗nδ/(4T )) 6
1

2
and n1/2 > 24

‖ψ̃cir‖21,3,∞
λ∗,cir

.

with λ∗,cir := infD V
Dcir,v

1,cir (x) > σd1. Then, there exists l∗ ∈ N∗, C, β > 1 such that we have for every

bounded and measurable function f : Rd → R, with supp(f) ⊂ D2v = [d1 + 2v, d2 − 2v],

|E[f(XT (x))− f(Xn
T (x))]| 68

(
exp

(
− v2/2− δ2a2 ∨ (kd2)2

δσ2d2

)
+ exp

(
− v2

δ122‖ψcir1Dvcir‖
2
1,1,∞

))
‖f‖∞

+ C(1 + |x|β)
K9(ψ̃cir)

l∗

(λ∗,cirδ)42
‖f‖∞/n2

with Kr(ψ̃cir), r ∈ N∗, de�ned in (33).

Now, we give a structural result in order to obtain convergence for the total variation distance for
the CIR process with almost order 2.
Corollary 4.1. Let T > 0, n ∈ N∗, v ∈ (0, 1], 0 < d1 6 d2 and δ > 0. We assume that the hypotheses
from Theorem 4.4 are ful�lled with those parameters and that there exists a sequence (ρn)n∈N taking
strictly positive values such that,

δ ∈ [δ(n, v, d1, d2), δ(n, v, d1, d2)] (61)

with

δ(n, v, d1, d2) =
K9(ψ̃cir)

l∗/42

λ∗,cirρ
1/42
n
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and

δ(n, v, d1, d2) =
v2

4σ2d2 ln(n)
∧ ln(ρn)σ2d2

(a ∨ kd2)2
∧ v2

122‖ψcir1Dvcir‖
2
1,1,∞ ln(n)

Then, there exists C, β > 0, such that for every bounded and measurable function f with supp(f) ⊂
D2v
cir = [d1 + 2v, d2 − 2v],

|E[f(XT (x))− f(Xn
T (x))]| 6 C(1 + |x|β)‖f‖∞ρn/n2.

The reader may �rst notice that for ρn = ln(n)ζ , ζ > 42, we have δ(n, v, d1, d2) 6 δ(n, v, d1, d2) for
n large enough and we can �nd δ which satis�es the hypotheses from Theorem 4.4 and (61) and for
every bounded and measurable test function f with supp(f) ⊂ [d1 + 2v, d2 − 2v],

|E[f(XT (x))− f(Xn
T (x))]| 6 C(1 + |x|β)‖f‖∞ ln(n)ζ/n2. (62)

Moreover, through the sequence (ρn)n∈N, this result shows that we can consider asymptotic cases
that are v → 0, d1 → 0 or d2 →∞. For instance, it is possible to do it expressing those parameters as
functions of n. Using the de�nition of δ and δ, we can identify the rates of convergence of v(n)→ 0,
d1(n)→ 0 or d2(n)→∞, with respect to n, such that (61) and the hypotheses of Theorem 4.4 hold
and then obtain similar results as (62).

In particular, let ε > 0 and de�ne ρn = nε. We �x d1 and v and choose d2(n) such that δ(n, v, d1, d2(n)) =
on→∞δ(n, v, d1, d2(n)) and that we can �nd δ > 0 which satis�es the hypotheses from Theorem 4.4 and
(61). Moreover, since (Xt)t>0 is a CIR process, we have P(Xt > d2(n)−v) 6 E[exp(λXt)] exp(−λ(d2(n)−
v)), with, for every t > 0, E[exp(λXt(x))] 6 C exp(Cx) < +∞ for every λ 6 2(1− exp(−kt))/(kσ2).
Now assume that there exists ε ∈ (0, 2) and such a λ := λv,ε, such that d2(n) satis�es exp(−λv,ε(d2(n)−
v)) 6 C/n2−ε. Then, there exists n0 ∈ N, C, β > 0, such that for every bounded and measurable
function f with supp(f) ⊂ [d1 + 2v,∞), and n > n0, we obtain

|E[f(XT (x))− Y n
T (x)]| 6 C(1 + |x|β)‖f‖∞/n2−ε + C exp(βx)‖f‖∞/n2−ε (63)

with Y n
T (x) = f(Xn

T (x))1Xn
T (x)∈[d1+2v,d2(n)−2v]. It is much more di�cult to obtain this type of re-

sult for test functions with support contained in (0,∞) since we do not have such estimates in the
neighborhood of zero.
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