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1 INTRODUCTION 1

Total variation convergence for numerical
schemes for diffusions with irregular coefficients:
An application to the CIR process

Clément Rey !

Abstract

In this paper, we propose a method to prove the total variation convergence for numerical
schemes for Stochastic Differential Equation (SDE) with irregular coefficient. In particular,
we will consider SDE with locally smooth coefficients. In a first part, we present this method
and in a second time, we apply it to the CIR process. We will consider the weak second
order scheme introduced in [2] and we will prove that this scheme also converges towards the
diffusion for the total variation distance. This convergence will take place with almost order
two.

1 Introduction

In this paper we study the total variation distance between a diffusion process with irregular
coeflicients and some numerical schemes. In order to do it, we will use a result from [4]. Then,
we apply this result to a second weak order scheme for CIR process based on a cubature
method and introduced in [2]. This scheme has second weak order for smooth test function
and we will prove that the convergence for a class of bounded measurable functions takes place
with almost order 2. Let us be more specific. For N € N*, we consider the R%valued diffusion
process

N
dX; = Vo(Xy)dt + Y Vi(X,) o dW} (1)

i=1
with V; € C°(R?% RY)NC2(D; RY), with D a subset of RY, (W};);>0 a standard Brownian motion
and odW,; the Stratonovich integral with respect to W;,. We fix T" > 0 and n € N* and we

introduce the time grid mr,, = {t} = kT'/n,k € N}. We consider the d dimensional Markov
chain

Z
= UnXf, T 00), kEN, (2)

where ¢, : R? x RY x R, — R? is a function such that ¢y (z,0,0) = z, and Z;, € RV, k € N*,
is a sequence of independent and centered random variables and sup,ey- 67 < C/n. For now,

Xp

k+1
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1 INTRODUCTION 2

we do not discuss the regularity of v;. Our aim is to study the convergence of the law of X"
to the law of a Markov process X. More precisely, we will give estimates of the weak error

en(f) = [ELF (X)) = E[f(X)]]-

In order to obtain total variation convergence for (&, )nen+, one has to show that ,(f) — 0
for every bounded and measurable function f. The method we adopt in this paper is inspired
from [4] and is based on the semigroup approach

First, we introduce some notations. The semigroup of the Markov chain (X7')iexy., is de-
noted by (Q})ier,, and its transition probabilities are given by v} (7, dy) = P(X[éﬂ €
dy|Xin = x), k € N. We recall that for t € mr,, Qf f(z) = E[f(X}")[Xg = 2]. We will also
consider a Markov process in continuous time (X;);>o with semigroup (P;);>o and we define
Py (2, dy) = ]P’(th“ € dy| X = ).

Moreover, for f € C*°(R?) and for a multi-index o = (ay, -+ ,aq) € N? we denote |a] = a; +
vt agand Oy f = (01)* ... (0a)f = 05 f(x) = Og} ... 0% f(x). We include the multi-index
a=(0,...,0) and in this case J,f = f. We will use the norms

Il =50, 3 105@L W= 3 [ 1ouf@)lde

d
7ER? h<lal<q 0<|al<q

In particular ||fllo.o = ||f|lco is the usual supremum norm and we will denote CJ(RY) =
{f € CURY), || fllgoo < 0o} and CZ(R?) € C?(R?) the set of functions with compact support.
Moreover , we say that a function f € C¢(R?) has polynomial growth of order ¢ € N with
degree e, € N if there exists C' > 1 such that

Ve eRY D |0uf(2)] < C(L+ |a|), (3)

0<|al<q

and we denote by Cl(R?) the set of function satisfying (3).
A first standard result is the following: let us assume that there exists h > 0, ¢ € N such that
for every f € C4(R?), k € N* and x € R?,

i f(2) = v ()] = | [ f )iz, dy) — [ fy)vi(z, dy)| < C[|fllge/n" " (4)

Then, for all t € 7p,,, we have

1P:f = Q7 flloo = sup [E[f(X{)| X5 = o] — E[f(X)| Xo = a]| < Cllflg0/n" (5)

zeRd

It means that (X}')iery, is an approximation scheme of weak order h for the Markov pro-
cess (Xi)i0- In the case of the Euler scheme for diffusion processes, this result, with A = 1,
has initially been proved in the seminal papers of Milstein [25] and of Talay and Tubaro [31]
(see also [17]). Similar results were obtained in various situations: diffusion processes with
jumps (see [29], [15]) or diffusion processes with boundary conditions (see [12], [10], [13]). An
overview of this subject is given in [16]. More recently, approximation schemes of higher orders
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(e.g., h = 2), based on cubature methods, have been introduced and studied by Kusuoka [21],
Lyons [24], Ninomiya, Victoir [26] or Alfonsi [2|. The reader may also refer to the work of
Kohatsu-Higa and Tankov [18] for a higher weak order scheme for jump processes. Despite
the fact that most of these results concern diffusions with regular coefficients, some authors
tackle some more exotic cases. For instance, in [2], Alfonsi has studied the weak error for
diffusions with coefficients that belong to Cgol(Rd) as well as for the test functions.

Another result concerns convergence in total variation distance: we want to obtain (5) with
| fllq.00 replaced by || f]loc when f is a bounded and measurable function. In the case of the
Euler scheme for diffusion processes, a first result of this type has been obtained by Bally and
Talay [5], [6] using the Malliavin calculus (see also Guyon [14]). Afterwards Konakov, Menozzi
and Molchanov [19], [20] obtained similar results using a parametrix method. Later,Kusuoka
[22] obtained estimates of the error in total variation distance for the Victoir Ninomiya scheme
(which corresponds to the case h = 2). More recently, in [4], a generic result ensures the to-
tal variation distance convergence as soon as we consider smooth schemes and the random
variables Zy, k € N* satisfy the Doeblin condition. In [30], this method is used to prove total
variation convergence with order 3 for a numerical scheme for one dimensional SDE.

However, none of the results mentioned above, have treated the case of diffusion processes
with irregular coefficients. In particular, in [4], the regularity in space for the functions )y,
which often rely on the regularity of the functions Vj;, is essential to prove the total variation
convergence result. The main difference here, is that we will consider that these functions are
smooth only on a subset D of R%. However, we will be able to exploit this local regularity in
order to prove the convergence for every bounded and measurable test function with support
strictly contained in D. In order to do it, we will mix some results of convergence for smooth
test functions for irregular diffusions on R? with the total variation convergence proven in [4]
for a modification of X with coefficients localized on D. The main result concerning this ap-
proach is given in Theorem 3.1 and provides a estimation of the weak error for simply bounded
measurable test function with support contained in D. In this paper we will sometimes take
the liberty to say that this is the convergence for the total variantion distance.? It is important
to notice that this result do not concern specific diffusions or scheme but treats general case.

Using this approach, we will focus on the CIR processes. In this case, the diffusion coefficient
is Vi(x) = 0y/x, 0 € R, and is singular in zero. That is why, standard estimation methods
do not apply straightly. However, some authors manage to develop numerical analysis of this
scheme using among other the close link that exists with Bessel processes. The reader may refer
to [L11], [3], [1], [2] or [9] for a non exhaustive list of study concerning numerical approximation
for the CIR processes. In particular, in [2|, the author proves the weak convergence with order
2 for smooth test function (polynomial growth for the test function and its derivaties), of a
scheme based on cubature method (and also inspired by [3]). In [9], the authors propose an
expansion of the weak error for Lipschitz test functions. However, until now, there is no study

2The total variation distance oncerns every bounded and measurable test function with support in R? (and
not simply in D). However, the total variation convergence can be deduced straightfully from our result if we
suppose that P(X7 ¢ D) and P(X}: ¢ D) are small enough
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concerning the total variation convergence of a numerical scheme toward the CIR diffusion.
Since the diffusion process has a singularity in zero, the result from [4| can not apply directly.
Despite this singularity, we will use and extend the result from [2] and [4] , and prove that (5)
is also satisfied for the scheme introduced in [2| under some hypothesi on the support of the
test function. More specifically we will obtain the following results:

First (see (104)), there exist C, 8 > 0 such that for every bounded and measurable test function
f with supp(f) C [d1,ds], 0 < dy < dy < 00 we obtain, for n large enough,

E[f(Xz()) = f(X7(2))] < C(+ [2”)]| flloe In(n) /0?, (6)

with (X}, (%)) ken the scheme introduced in [2].

Moreover (see (106)), using the finitness of some exponential moments for the CIR processes,
we also obtain the following result: There exists € € (0,2) such that for every bounded and
measurable test function f with supp(f) C [di,00), d; > 0, then, for n large enough, we have

Elf(Xr(z)) = Y7 (2))] < Cexp(Bla)[ flloe/n*, (7)
with YJ'(z) a o(X}(x))-measurable function defined in (106).

We will begin presenting the framework of this paper. In Section 3., we will give some
convergence results for smooth test functions and for bounded measurable test functions.
In the end of this Section, we give the main result of this paper concerning total variation
convergence for schemes with singular coefficients (see Theorem 3.1). The paper ends with a
theoretical application in order to obtain a total variation convergence result for the scheme
presented in [2] for the CIR process.

2 The distance between two Markov semigroups

Throughout this section the following notations will prevail. We fix T > 0 and we denote
n € N*, the number of time step between 0 and 7. Then, for &k € N we define t} = kT/n
and we introduce the homogeneous time grid 77, = {t§ = kT/n,k € N} and its bounded

version 7T%:n = {t € mpp,t < T for T > 0. Finally, for S € [0,T) we will denote 71';: ={te

7r£n,t > S}. Notice that, all the results from this paper remain true with non homogeneous
time step but, for sake of simplicity, we will not consider this case. First, we state some results
for smooth test functions.

2.1 Convergence of semigroups
2.1.1 Smooth test functions

We consider a sequence of finite transition measures pf(z,dy), k € N* from R? to R This
means that for each fixed z and k, u2(x, dy) is a finite measure on R? with the borelian o field
and for each bounded measurable function f : R? — R, the application

o i f@) = [ fuiled)
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is measurable. We also denote

Vo e R k@)= sw | [ fuiiedy
Rd

[ flloe<1

, (8)

and

il == sup sup | [ fly)pi(z,dy)
z€RY || flloo<l JR4

)

and, we assume that all the sequences of measures we consider in this paper satisfy the
following property:

sup ] < oo. Q
keN*

Although the main application concerns the case where u}(z, dy) is a probability measure, we
do not assume this here: we allow uf(z,dy) to be a signed measure of finite (but arbitrary)
total mass. This is because one may use the results from this section not only in order to
estimate the distance between two semigroups but also in order to obtain an expansion of the
error. Now we associate the sequence of measures to the time grid mp, and we define the
following discrete semigroup.

R = @) P fe) = Pt (e) = Py [ f)ua o),

k+1
More generally, we define (P )t senp ii<s DY
E%tgf(x) = f(z), Vk,r e N E<r ]Dgg,tglf(x) = Pt%,t;}ﬂ?—&-lf(x)‘

We notice that for ¢, s, u € 77, t < s < u, we have the semigroup property P, f = P/ P/, [.
We will consider the following hypothesis: let ¢ € N and t < s € 7p,,. If f € CY(R?) then
P, of € CY(R?) and

sup [P fllgeo < Ol fllg.00- (10)

t,SETT nit<s

Notice that (9) implies that (10) holds for ¢ = 0. We will also consider the following hypothesis:
let g€ Nand t < s € 7y, If f € CL (R?) then P, f € Cl (R?) and there exists C' > 1,8 € N
such that

Vz € R, sup Y 0Pl f(2)] < C(L+ [2l”). (11)

t,sem HAE]
T,n tx 0<‘Oé|<q

Moreover we assume that there exists C' > 1, 3 € N such that for every f € C/(R?), we have

veeRL  sup Y [0uPRf(@)] < CA [2)] fllgoo- (12)

t,sem t<s
) T,ntx 0<|a|<q

We consider now a second sequence of finite transition measures v} (z,dy),k € N* and the
corresponding semigroup (Qf)t@mn defined as above. Our aim is to estimate the distance
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between P" f and Q" f in terms of the distance between the transition measures uf(x, dy) and
v (x,dy), so we denote

N
(P")tery,, can be seen as a semigroup in continuous time, (P,);>o, considered on the time grid
1, While (Qt)ier,,, Would be its approximation discrete semigroup. Let ¢ € N, i > 0 be

fixed. We introduce a short time error approximation assumption: there exists a constant
C' > 0 (depending on ¢ only) such that for every k € N*, we have

Eu(hq) 1A fllso < Cllfllgoe/n" (13)

We also introduce an assumption concerning a short time error approximation for test functions
with polynomial growth: if f € Cgol(Rd), then there exists C' > 1,8 € N such that for every
k € N, we have

Enpai(h,q),  VreRY|ALf()] < O+ [z]7)/n" . (14)
Moreover we assume that there exists C' > 1, 8 € N such that for every f € C}(R?), we have
B pa(hq), Yo eRYL[ALf(2)] < CO+ |2P)|| fllgeo/n" (15)

Proposition 2.1. Let g, h € N be fized.

A. Suppose that v" satisfies (10) for this q, p™ satisfy (9) and that we have E,(h,q) (see
(13)). Then for every f € C4(R?),

sup |77 f = Q' flloo < Clfllg0/n". (16)

tEﬂ'%ﬁ

B. Suppose that p™ and v™ satisfy respectively (11) for ¢ = 0 and for this q, and that
E,pol(h,q) (see (14)) holds. Then for every f € Cpol( 4), there erists C > 1,8 € N
such that

sup [|5/'f — QF flloo < C(1+ [a]”)/n". (17)

T
tETrTm

C. Suppose that u} and vy satisfy respectively (11) for ¢ = 0 and (12) for this q and if

B, o, q) (see (15)) holds, there exists C' > 1,8 € N such that for all f € Cl(RY), then
sup [P = Qi fllee < C(1 + |2 |?) 1 Fllgo0 /1" (18)
tEWTyn

Proof. Let m € N*, m < n. We have

m—1
|Pt%f_Q?%f|oo letngzI Z+1 tn ot flz) - PtZQt” Z_HQt f($)|oo (19)

k=0

k10t

3

| P Ap 1 Qi m [ ().

k+1°
k=0
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Now, since f € C|(R?) then, using (11) for Q", we have Qi i f € C! (RY) and then using
(14) and the linearity of the semigroup P" together with (11) ‘for q = 0, we obtain

pol

[PRAR Qo f(@)] < C(1+ [a]?)/n

k+1°

Summing over k = 0,...,m — 1, (17) follows. In order to prove (18), we use (14) to ob-
tain ]AkHQ%Hmf(x)\ < C(1+ \x!ﬁ)HQ;%Hmeq’oo/nh“ where C' and § do not depend
on f. Using once again the linearity of the semigroup P™ and (11) for ¢ = 0, it follows
| P D1 Qi ()] < C(1 4 \x|5)HQ%H’%]"qu/nh“. Then, property (12) for Q™ gives
(18). The proof of (16) is similar but simplier so we leave it out.

0

2.1.2 Measurable test functions (convergence in total variation distance)

The estimates (16), (17) and (18) requires a lot of regularity for the test function f. We aim
to show that, if the semigroups at work have a regularization property, then we may obtain
estimates of the error for measurable and bounded test functions. In order to state this result
we have to give some hypothesis on the adjoint semigroup. Let ¢ € N. We assume that there
exists a constant C' > 1 such that for every measurable and bounded function f and any
g € C1(R?)

E*<h O g AL < Cllgllyallflloe/n™". (20)

where (g, f) = [ g(z)f(z)dz is the scalar product in L*(RY).
Our regularization hypothes1s is the following. Let ¢ € N, S > O and n : Ry — R, an
increasing function be given. We assume that there exists a constant C' > 1 such that

Ry (5) Vi, s € Ty, with S <s—t, [P fllgo0 < HfHOO (21)

Sn(q

We also consider the "adjoint regularization hypothesis". We assume that there exists an
adjoint semigroup P, that is

(P'g.f)= {9, P[)

for every measurable and bounded function f and every function g € C*(R%). We assume
that P/;" satisfies

R, ,(S) VYt se€mr,, withS<s—t, [P fllg < WHle (22)

Notice that a sufficient condition in order that Ry (S) holds is the following: for every multi
index a with |a| < ¢

. . C
Vt,s € T with S <5 —t, [P0l < g Il (23)
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Indeed:
10.P" flli < sup [(0aP[5f,9)1 = sup [ (f, P(0ag))]
llglleo<1 ||9Hoo<1
< lflh |gsllolopglllpt,s(@ag)|!oo < Sn(q)llflh

Now we can state our first result for total variation convergence between P™ and Q". Those
results will be valid as soon as both P and Q" satisfy (9).

Proposition 2.2. Letq € N, h >0, S € [T/n,T/2) andn: R, — R, an increasing function
be fized. We assume that E,(h,q) (see (18)) and EX(h,q) (see (20)) hold for P" and Q". We
also suppose that P" satisfies Ry, (S) (see (21)) and Q" satisfies Ry, (S) (see (22)) and that
(10) hold with ¢ = 0 for both of them. Then,

n C
SUP ”P f— Qtf”oo X n(q)HfHOO/nh-

t€7rT "

In concrete applications the following slightly more general variant of the above proposition
will be useful.

Proposition 2.3. Let ¢ € N, h > 0, S € [T/n,T/2) and n : R, — R, an increasing
function be fived. We assume that E (h q) (see (13)) and E*(h q) (see (20)) hold for P™

and Q". Moreover, we assume that there exists some kernels (Pts)tseﬁTnKS which satisfies

Ry (S) (see(21)) and (Qt,s)t,sew,n;t@ which satisfies Ry, (S) (see (22)) and that (10) hold with
q = 0 for both of them. We also assume that for every t,s € mp, withs —t >S5,

1QFf = Qraflloo TIPS = Proflloo < CSTV|| flloo /n . (24)

Then,

sup [P — Qi o < Csup(lulirIV;?I)S" M1 Flloo /"

t€7rT "

Remark 2.1. Notice that P and Q" are not supposed to satisfy the semigroup property and
are not directly related to pu" and v".

The proof of those results can be found in [4] and follows similar ideas from the one of
Proposition 2.1.

2.1.3 Mixing regularity properties

In this section, we will consider semigroups with mixing regularity properties. We will study
two semigroups P" and Q" which satisfy the hypothesis for total variation convergence only
closely to the date T" and we will show that we the convergence for bounded test functions
holds.
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Theorem 2.1. Let P" and Q" two semigroups with transition measures u™ and v™. Let ¢ € N,
h,n>0,2T/n <§ <T and define

0p = inf{t;t > 6, T —t € mpy,}. (25)

We suppose that, on the interval [0,T — 5 n), W and V" satisfy respectively (11) for ¢ =0 and
(12) for this q and that E}, ,,(h,q) (see (15)) holds. Then we have the following properties;
A. On the interval [T — O, T|, we assume that both p™ and v™ satisfy (9), we assume that
E.(h,q) (see (13)) and E*(h,q) (see (20)) hold for P" and Q™. We also suppose that
there exists some kernels Q" which satisfies Ry,(3/2) (see (21)) and P" which satisfies
R; (6/2) (see (22)) and such that (24) holds on the interval [T — o, T).
Then there exists C > 1, B € N, such that for all measurable test function f on RY, we
have

1+ |z|?
on(a@)

Ve € RY|PRf(r) — Qpf()] < C 1 oo/ (26)

B. On the interval [T — Sn,T], we assume that for every m € N, m > n, both p™
and V™ satisfy (9), and that E,,(h,q) (see (13)) and E?,(h,q) (see (20)) hold between
(PM)tenrm = (Pterr,, and (Q7 )iery..- We also suppose that there exists a family of
kernels (Q)menamsn which satisfies R,,(5/2) (see (21)) and R, (6/2) (see (22)) and
such that (24) holds on the interval [T — 0,,T] between Q™ and Q" for every m > n.

Then there exists C > 1, B € N, such that for all measurable test function f on RY, we
have

1+|93|

Vo € RY|Ppf(x) - Qpf(x)| < 1 lloc/n". (27)

Proof. We prove A.. For sake of clarity, we suppose that P = P and that Q = Q. The proof
is very similar otherwise. We denote t; =T — 0, € Tp,.

|Porf (@) = Qorf (@)| =P Py o f (2) — Q34, Q1 1] (%))
:’P(’;I;tg an( )_P(?t(;Qt(;Tf< )+P(?t5QZ;Tf( ) Ut5Qt5nf( )‘
:’P(;fta( t:;n Q?(;T)f( ) (Pont(; Q0t§>Qt5Tf( )|

Since P" and Q" satisfy (9), (13), (20), with also R,,(6/2) (see (21)) for Q™ and R}, (5/2)
(see (22)) for P" when T — 0 < tp < 7, < T, using Property 2.2, we have: |Fg, (P}, —
Pro) (@) S NPy = QF 1) fllae < Co7"9|| f||s/n". In order to bound the second term we
use Proposition 2.1 together with [|Q}. ;. f|lq.cc < CO™"D| f||lo which follows from Ry, (6/2).

Now, we prove B.. Using the same decomposition as for the proof of A., we observe that the
only change in the proof concerns the study of the term [[(QF, 7 — P/ 7)f|loo- We introduce
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the sequence of discrete semigroups ((Q?’m)tew”,pta)mew defined in the following way: For
all t € mp,,t > ts we have Q" f(z) = Q" f(x). Let m’ > m, then

. n,m
Q% f = Qi lloo = 1QE, R th/nk,tmp(kﬂ)f|!oo
HQ grm gr k+1)f an tnTk+1)fHOO + HP;L:Z t’””( i1 )f - ZZT;L]:’t'L7;L(Ik+1)f‘|OO

Since Q™™ and Q"™ verify respectively E,,,(h,q) and Ey,(h, ) and both Q™™ and Q"m' sat-
isfy (10), we use the Lindeberg decomposition (19) in order to obtain: HQtn i, = Qtn i flloo <

k+1

C1f g0/ (n"*'m"). In the same way we obtain |(g, Qi f—Qi%  f)] < C||9||1,q!|f|!oo/( n"*tm

k+1 k7" k+1
Now, since both Q™™ and Q™™ have modifications Wthh satlsfy both R, (6/2) (see (21)) and
R, (6/2) (see (22), we can show that: Vt € W?’n NQE™F = Q™ flloo < CO"D| floo/ (nPmh).

The sequence ((Qf"")iers s>t )men+ is thus Cauchy and it converges toward (P )teﬂ” for
smooth test functions using Proposition 2.1. In particular, taking m = 1 and letting m’ tend
to infinity in the previous inequality we have

Q7 = Par)flle < COM| fll/n",

where the left hand side of the above inequality is exactly the term that we study and then
the proof is completed. O

This result will be very useful in order to prove the convergence for bounded measurable
test functions for diffusions with simpy locally smooth coefficients. The method consists in
introducing a modification of the underlying process in the neighborhood of T" with smooth
coefficient in Cf(R?). Then, we can use Theorem 2.1 and it remains to control the error com-
mitted between the real process and its modification. Moreover, using B., we see that we
can focus exclusively on proving regularization properties for the modification of the approx-
imation semigroup @. In particular there is no regularization property to prove on P (or its
modification) which is quite useful. Using this observation, we now focus on the regularization
property for a modification of @) for a class of Markov chain.

2.2 A class of random tools

In this section we consider a sequence of independent random variables Z;, = (Z},--- , Z)) €
RV, k € {1,--- ,n} and we denote Z = (Zy, ..., Z,). The number n is fixed throughout this
section (so there is no asymptotic procedure going on; but morally n is large because we are
interested in estimating the error as n — oc). Our aim is to settle an integration by parts
formula based on the law of Z. The basic assumption is the following: there exists z, 5 € RN
and &,,7, > 0 such that for every Borel set A C RY and every k € {1,--- ,n}

L, (es,74) P(Z, € A) 2 e ANAN B, (2e)) (28)

where )\ is the Lebesgue measure on RY. This condition is sometimes called the Doeblin
condition. One can also say that the random variables Zy, k € {1,...,n} are lower bounded
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by the Lebesgue measure. We also define

M,(Z) =1V supE[| Z;|"] (29)

k<n

and assume that M,(Z) < oo for every p > 1.

It is easy to check that (28) holds if and only if there exists some non negative measures fi
with total mass p;(RY) < 1 and a lower semi-continuous function ¢ > 0 such that P(Z, €
dz) = p(dz) + ¢(z — 2. x)dz. Notice that the random variables Zi,--- , Z,, are not assumed
to be identically distributed. However, the fact that r, > 0 and e, > 0 are the same for all
k represents a mild substitute of this property. In order to construct ¢ we have to introduce
the following function: For v > 0, set ¢, : RY — R defined by

’U2

©u(2) = Lj;<o +exp (1 2o )2>]lv<|z<2v- (30)

(2] = v

Then ¢, € C°(RY), 0 < ¢, < 1 and we have the following crucial property: for every p, k € N
there exists a universal constant C,, such that for every z € RY, ¢ € N and iy,--- ,i, €
{1,---, N}, we have
() (g ) () < 12 (31)
PN azia s PSS ’

vba

with the convention In ¢, (2) = 0 for |z| > 2v. As an immediate consequence of (71), for every
non negative function f: RV — R,

B2 > = [ nnl 2= 2 ) (32)
By a change of variable
B (Z=Z0] 2 e [ 0™ (Vi = S4) e (33)
We denote
My = €4 /RN Or.2(2)dz = €, /RN Or.2(2 — 2 1) dz (34)
and
On(2) = "0, n(vVnz) (35)

and we notice that [ ¢,(z)dz =m.e '

We consider a sequence of independent random variables y, € {0,1}, U, Vi € RY, k €
{1,--- ,n} with laws given by

Ex Zx
P(U, € dz)= m*qﬁn(z - T’;)dz,
1 1 \
PV, € dz)= Zy € d2) — endn(z — 2E)dz2),

YT NG
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Notice that (33) guarantees that P(V} € dz) > 0. Then a direct computation shows that

1
P(xeUs + (1 — xx)Vi € dz) = P(ﬁzk € dz). (37)
This is the splitting procedure for Zk Now on we will work with this representation of the
law of _nZk So, we always take

1
— 7, = iU 1-— Vi.
Jn k= XeUk + (1 = xx)Vi
Remark 2.2. The above splitting procedure has already been widely used in the litterature: in
[28] and [23], it is used in order to prove convergence to equilibrium of Markov processes. In
[7], [8] and [32], it is used to study the Central Limit Theorem. Besides, in [27], the above

splitting method (with 1p, (., ) instead of ¢n(z — Z\/Ti;)) is used in a framework which is similar

to the one in this paper. Last ine [4], this exact framework is used to prov total variation
convergence in a reqular settings.

2.3 Markov chains

In this section, n € N will still be fixed and will be the number of time step between 0 and
T equipped with the time grid ¢} = kT'/n, k € N. We consider two sequences of independent
random variables 7, € RV k; € R, k € N and we assume that 7, are centered verifies (71).
We construct the R? valued Markov chain

TL Zk 1 n n
Ky = Vlow X, —2 th — 1), kEN (38)
where
Y €CPR xR x RY x R;RY)  and  (k,z,0,0) = x. (39)
We denote ||
[][1,r00 = 1V Z Z 1050207l (40)

|a|=0 |B|+]v|=1

Remark 2.3. The reason to consider the random variables ky, is the following. In the Victoir
Ninomiya scheme, at each time step k, one throws a coin Ky € {1, —1} and employs different
form of the function v according to the fact that ki is equal to 1 or to —1.

Since the function v only needs to be measurable with respect to x and that all our estimates
will be done in terms of |11, then without loss of generality, we can simplify the notations
and denote

Uz, 2, t) = Y(ky, z, 2, t).

Then, we slightly modify the definition (40) and instead, in the sequel, we will consider the
norm

r—laf

[¥ll1,r,00 = sup [9wl1,r,00 = 1\/2up Z Z ||aaafaz7v/}k||oo- (41)

|al=0 |B|+[v[=1
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Finally for » € N*, we denote
R (1) = (14 [[9]1,r00) exp (9] 5.00)- (42)

2.3.1 The regularization property

In the following, we will not work under P, but under a localized probability measure defined
as follows. We fix S < T and we consider the set

N 1 [Sn/T] >m* 3
S_{W;Xk/T}' ( )

Using Hoeffding’s inequality and the fact that E[xx] = m., it can be checked that
P(AS) < exp(—m;|Sn/T|/2)) (44)

We consider also the localization function ¢,,1/4/5, defined in (30), and we construct the random
variable

0= ®S,n = ]lAs X H 90n1/4/2(Zk:)- (45)
k=1

Since Zj has finite moments of any order, the following inequality can be shown: for every
[ € N there exists C' such that

- M. Z
P(©g, = 0) < P(Af,) + ZIP(|Zk| > '/t <exp(m?|Sn/T|/2) + 4“;—?(). (46)
k=1
We define the probability measure
P — ——OdP (47)
° El]

We still fix 7" > 0 and n € N* and we consider the Markov chain (X7)ier,.,, defined in (38).
We also recall that Og,, is defined in (45) and we introduce (Q?’n)temn such that,

Vtenh, QY f(z)=Ee,, [f(X](2))] = E[Oy.f(X]'(z))]. (48)

E[@t,n]

Notice that (Qt@’”)temn, is not a semigroup, but this is not necessary. We are not be able
to prove the regularization property for @™ but for its modification Q®". Considering the
hypothesis of Theorem 2.1, this is sufficient to obtain total variation convergence.

Proposition 2.4. A. LetT > 0 andn € N*. We assume thatn andt € W%ﬁ are sufficiently
large in order to have :

lvlhsc0 , Ms(Z)

S+ Hep(-mint/(27)) < (49)

N | —
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and
1/2 QN+ 2
AR e [ (50)
Moreover we assume that
N
inf inf inf > (8,.1(k, z,0,0),6)° > .. (51)

kER xR [£|=1 <
i=1

Then for every q € N and multi index o, f with |o| + |5| < q, there exists | € N* and
C > 1 which depend on m,,r, and the moments of Z such that

R l
0.0 0 sl < € 52)

with R.(¢Y) defined in (42). In particular, Qf’e(x,dy) = p?’e(x,y)dy and (z,y)
pg’e(a@y) belongs to C°(R4 x RY).

B. There exists C' > 1, such that for everyl € N and t € mﬁn, we have

My11)(2)
ol

1QV f — Qr° flloo < 4(exp(—m?nt/(2T)) + )1 lloo- (53)

Remark 2.4. (52) means that the strong regularization property R,.,, with n(q) = q(q + 1),
holds for Q®".

Now, we have obtained regularization property under regularity assumption on the scheme
function (see hypothesis of Property 2.4), we can come back to our initial problem.

3 Markov diffusion processes with locally bounded coeffi-
cients

We consider the d-dimensional diffusion process

N
dX, = Vo(Xy)dt + > Vi(X,) o dW. (54)

i=1

For now we assume that V; € C*(R%RY), i =0,..., N, (W;)o a standard Brownian motion
and Ode the Stratonovich integral with respect to W*. In the same way we will denote Vo.1to
such that

N
dX; = Vouo(Xe)dt + Y Vi(X;)dW,. (55)

i=1
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The infinitesimal operator of this Markov process is
L
_ 2
A=Vot Z; v, (56)

with the notation V f(x) = (V(z), Vf(z)). In the latter, when it is relevant, we will denote
by X;(x) the process starting at .

3.1 Regularization of the coefficients of the diffusion

In this section, we assume that the coefficients V; € Cg°(D;R?) for a subset D of RY. Moreover
we denote D the biggest compact contained in {z € D,inf cga\p |z — y| > v} with the
convention inf,cq |x — y| = +o00. Now for v > 0 and D C R?, we introduce ¢2 € C;°(R? : RY)
such that ¢P(z) = z if # € DY, is constant if x € R?\ D. Moreover we assume that ¢T €
Ce°(R4\ D¥; R?) and that for all z € R?\ DY, we have

C

U‘Oé|7

[0aty (2)] < (57)

where C' does not depend on v. Now, we can introduce a regularization of (54). For i =
0,---, N, we denote ViD’” = V; 0 ¢? and we define

N
dY;P" = VP (Y)dt+ Y VPR (V) o dW (58)
i=1
In order to prove weak convergence for bounded measurable test functions, we will use this
modification of the underlying process. For 6 > 0 we define

% ):{Xt(x), ift < T -9,

29
K*(T*(;) (XTfé(iU)), if T—9¢ St< Ta ( )

Indeed, let us assume that we are able to build a scheme for Y that converges for the total
variation distance when T'— ¢ < ¢ < T (for instance, see Theorem 4.2 for the Ninomiya Victoir
scheme or 4] for a more detailed approach). Then if we are able to find a scheme which satisfies
(12) and (15) for t < T — §, then Theorem 2.1 will ensure convergence for measurable test
function between X and its scheme. The last step consists in estimating the distance between
the underlying process (respectively scheme) and its modification (resp. modified scheme).
This is the purpose of the next section.

3.2 Concentration inequalities

We begin with a first practical lemma.

Lemma 3.1. Let T C R, and let (H;);er and (K})ier two processes taking values in R, Let

y € R and v > 0. We define the processes (H(y,v))ier and (K(y,v))er with H(y,v); =
Hillgup, -yl <o and K(y,v); = Kilgup, | k—yl<o- We assume that (H(y,v))er and (K(y,v):)ier
follow the same law. Then

B(sup |H, — y| < v) =P(sup|K; — y| < v) (60)
teT teT
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Proof. We consider that H and K are non null processes. Otherwise th proof is imme-
diate. We have {sup,.; |H; — y| < v} = {super |[H: —y| < v} N({H = H(y,v)} U{H =
Hlgyp, . |H—y|>v })- Moreover, since the process H is not zero, we have { H = Hlgp, i, —y|>v} =
{sup,er [Hy — y| = v} and {sup,cs |H; —y| < v} N{H = Hlgyp,_, |H—y/>v} = 0 50 We obtain

P(sup |H; — y| < v) =P(sup |H(y,v); — y| < v) = P(sup |K(y,v); — y| <v) =P(sup|K; — y| <v)
teT teT teT teT

where we use the fact that (H(y,v);)er and (K (y,v);)ie7 follow the same law.

]
The continuous case - The Bernstein’s inequality
Proposition 3.1. Let (M,;);~0 a continuous Fy-local martingale such that My = 0 and (M), =
00, a.s., then, for all v >0,
02
P(sup |Ms| > v[{(M); < ¢) < 26Xp(—%) (61)

0<s<t

Proof. In order to prove (61), we will use the following result which corresponds to the specific
case of the Brownian motion.
Lemma 3.2. Let (W,)i>>0 a standard Brownian motion, then

2
Vo >0, P(sup |[Wy >wv)< Qexp(—v—) (62)

0<s<t 2t

Proof of Lemma 3.2. We recall that for all o > 0, £%(W); = exp(aW; — QT%) isaoc(Ws s <t)-
martingale. Using the symmetry of the Brownian motion and the maximum inequality for
non negative martingales, it follows

ot ot

P(sup [W,| > v) =2(sup W, > v) = 2P(exp(a sup W, — —) = exp(av — —))
0<s<t 0<s<t 0<s<t 2 2
’t E[£*(W ’t
<2P( sup £%(W), > exp(av — a_)> < QM = 2exp(—av + a_)
o<sst 2 exp(av — %) 2

The function o — exp(—av + ath) being convex, we obtain inf,~qexp(—av + O‘TQt) = exp(—%)
and (62) follows. O

Now, since My = 0 and (M), = oo, we can use the Dambis, Dubins-Schwarz Theorem. If we
set Ty = inf{s : (M), > t}, then W, = My, is a Fr,- local martingale and M, = Wy, It
follows from Lemma 3.2 that

P(sup |M| > v[{(M); <c)=P( sup |W,|>v|(M);<c)=E[P( sup |Wy| > v|[(M))|{M); < (]
0<s<t 0<s<(M)¢ 0<s<(M)t
2 2

<E[2exp(—53m)[(M) < < 2exp(—7).
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Applying this result to Markov diffusions we get the following result

Corollary 3.1. Let 0 < § < T. Assume that (X;)i=0 follows a diffusions of the form (55)
with Vo 1o, Vi € CO(R%GRY). Then, for all v > 0, we have

v2/2 = ([ Vorolg, o I3
P( sup [ Xr — Xi| > v|X7) < 2exp(————3 el (63)
T-ost<T 0 ey ||Vi]l§v(XT)||oo

Proof. Let € > 0. Using Lemma 3.1, we have

P( sup |Xr— Xy 2> v|Xr) = sup ‘/ Votto (X ds—{—Z/ AW > v|X7)
T—6<t<T T S<t<T
T .
—P( su ‘/v (X, X,)ds + / X)dWi| = o] X
(T—(Krt)gT ) 0110 (Xs)1 Bo(XT) Z 1z, (XT)( ) | XT)
N T
<P( su ‘ /wxsn X)dWi| > v — 8][Vorwol N
[ [Vt (060 Voo, )l
Now, (63) follows from Proposition 3.1 with (M;)ocics = Y i lfT . Bo(xp) (Xs) AW

using that (M), < 52?; ||Vi1§U(XT)HgO'
O

The discrete case

Proposition 3.2. The Hoeffding inequality Let (M,)nen be a discrete centered Markov pro-
cess such that there exists two sequences (b2),en < (b%)nen such that for all k € N*, P(M,, —
M, € [t},b4]) = 1, then

202
B(IM, | > v) < 2exp(— ) (64)
Sy (b — b))

Corollary 3.2. We fir T > 0 and n € N*. Let 2T/n < 6 < T and define On = inf{t;t >
0, T —t € mry}. We assume that (X[ e is defined by (38) with iy, € CL(R* x RN x R ;RY)
and Zy € [0.(2),04(Z)] and that

n > sup T%/(bi(Z) — b,(Z))*. (65)

keN*

Then, for every v > 0 we have

); (66)

C 2
P( sup | X7 — X7 > v X7) < 2exp(— 7Y
tent t=T—0, 6H¢]IBU (XT) Hl 1,00

with Cy = infren T/(12004(Z) — 0L.(2))?).
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Proof. Let N =1 for sake of simplicity in the writing. We have

1 1
X;LZH — X = w2+1/0 (1= N)dp(ke, Xy, AW 1, W1 )N + w11c+1/0 (1= AN):4p(kr, X33, 0, M 41 )dA,

with w),, = T/n and wi,, € [b}.,(Z)/v/n, b1 (Z)/+/n].We apply Lemma 3.1 and Proposi-
tion 3.2 in order to obtain

P( - sup X7 = X7 2 0[Xp) <
terd  t>T—5y,
02

43 o, (T/nl|0cp g, (xpyllo)* + (1/V/(bE(Z) = U(2)|0:40 15, (xp)lloc)?

with ks = n(T'—4,)/T. Since |0 —d,| < T/n and 2T /n < 6, it follows that n— ks < 3nd/(27).
Therefore, using (65), we rearrange the terms and the proof of (66) is completed. O

2exp(—

),

3.3 Convergence results for Markov diffusion with locally bounded
coeflicients.

Let n € N, g e N, v>0and ¢ € CI(R x RY x RN x R,). We introduce the hypothesis
concerning the existence of a regular modification of the Markov discrete process defined in
(38). We will exploit this modification in the neighborhood of the terminal date 7" and when
the terminal value of the Markov process belong to a compact set.

(Reg (v, ¥, v,q,n,6)) Forallm > n, we assume that there exists a discrete process (Y;n)t@mm
defined by

* <=M m
Vk € N, = (g, Xy tms i1/ VM, Uy — ),
and such that,
Law ,~m
m ~ piiihy — — ~
(Xt?]lsuprgmét;‘néT |Xm *X¥L\<”)T—5m<t§?<T o <Xt7cn]lsuPT75m<tm<T |X%7X$|<v)T_5m<t?<T
J D J

on the event {X7' . = YTn_gm} N{Xr =X, e D*},

with o, defined in (25). Moreover, we also suppose that (49) (50) and (51) hold with
replaced by ¢. Finally, we denote (P”");=o the semigroup of the process (Y;""); defined in
(58) and (Q™*"™);ery,,. the one associated to (Yln(x))te”m and we assume that E,,(h, q) (see

(13)) and E*,(h,q) (see (20)) hold between (PtD’”’m)t@rTm = (PD”)teme and ( D”m)temm.

Theorem 3.1. We recall that T > 0 is fized. Let ¢ € N, h > 0, 6 € (0,T) and ) € C}(R x
RIxRY xR,). For a given n € N*, we consider the Markov semigroup (P,)i=o (see (54)), and
the approzimation Markov chain (Q7 )ier,,, (see (88)), defined above. Moreover, we assume
that there exists ng € N* such that T/ng < 20 and, (49), (50) and (65) hold with n = ny and
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t =0§/2. Then, for all n > ng, we have the following property.

Assume that (Reg(w,zz, v,q,m,9)) holds and that, on the interval [0, T — 6], P" and Q" satisfy
respectively (11) for ¢ = 0 and (12) for this q and that E!  (h,q) (see (15)) holds. Then,

n,pol
there exists | € N*, C, B > 1 such that we have for every bounded and measurable test function

f on RY with supp(f) C D%,

BLFOr0)) = (X3 <Clexp(— L el ey
v+ 1) Z g 7

(AS)ma
with n(q) = q(g+ 1) and Cz = infre- T/(12(b}(Z) — b, (£))?).

Remark 3.1. We can obtain the same result as (67) for measurable and bounded test functions
f with supp(f) C R, In order to do it, we simply have to assume that P(X7 ¢ D) and P(X} ¢
D) are small enough. In this case we can rigoursly speak of total variation distance estimation.
However, there is not particular interest in doing it if we can not describre P(Xr ¢ D) or
P(X% ¢ D). That is why, we simply provide (67) and consider this result as a total variation
distance estimation between the process and its scheme.

Remark 3.2. Notice that from Lemma 3.1, we deduce that the previous result remains true if

we replace V by VP in (67) or if we replace ||1L]].'D||171700 by || 1p||1.1.00; H@E”Ll,oo or ||¥]|1.1.00
if thos quantities are finite.

Proof of Theorem 3.1. First we define
_ Xy(x), ift<T—o,,
Xi(r) = . ~
Yi 5, Xr-s(@)), if T—0,<t<T,
X (@), i G <T - On,
1/}’“( t”< ); wi+17w2+1) if T-94,< ty <T,

with Y defined in (58) and 4, defined in (25). First,from Lemma 3.1, we have

P( sup |X;—Xp| >0 XreD?)=P( sup |X;— Xr|=>v|Xs€D?)
T—8n<t<T T—8,<t<T

because (XtﬂsupT,gngth X, —Xr|<v) 75, <t<r and (X1

SUPp_5, <ocr \Yt—YT\gv)T—Sngth follow the

same law as soon as X;_; = X,_; and Xp, X7 € D*. Moreover, we deduce from Lemma
3.1 again and (Reg(w,z/;,v,q,n,é)) that

P( sup |XE— X2 >0l XpeD®)=P( sup |X;.—Xp|>0|XyeD?).
T—3n<tp<T § T8, <tp<T §
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Then from the Corollary 3.1 and the Corollary 3.2, we deduce that for every bounded and
measurable test function f with supp(f) C D?", we have

n

E[f(Xr) - F(XP) < [ELf(K) - F(X7)]
4 fllo(BC sup X = Xal 2 0)+ P sup [y - g > 0)

T8, <t<T T8, <t<T
+P(suwp  |XE - Xpl >0 +P( s [Xy —Xpl > 0))
T—bn<tp<T T—bn<tp<T

v?/2 — 83| Vo oLl
SN IVilpll2,

< [E[f(Xr(2)) = F(X7(@)]] +C|!f||oo<exp(— )

Cyv?
+ exp(—+)>
01911 1,00
Now, we use Theorem 4.2 and Theorem 2.1 in order to estimate |E[f(Xr(x)) — f(Xp(x))]]
and we obtain (67). O

Remark 3.3. Notice that from Lemma 3.1, we deduce that the previous result remains true if
we replace V by VP in (67) or if we replace ||¥1p|11.00 0y [V 1p 11,00, 1¥]1.1.00 07 |¥0]]1.1.00
iof thos quantities are finite.

4 Second order total variation convergence towards CIR
processes

In this section, we are going to apply the results we have just obtained in a general setting to
the case of a second weak order scheme for the CIR process. This scheme was first introduced
in [2] and is built using cubature method. Initially those methods were used in [26] to build
the so called Ninomiya Victoir schemes for SDE with smooth coefficients. Then, Alfonsi [2],
inspired by this approach, built a second weak order scheme for the CIR process. Finally, in
[4], the author have shown that the total variation convergence takes place for those cubature
scheme as soon as the coefficients of the SDE are smooth. In this section, our purpose to
exploit and extend those result in order to obtain total variation convergence results for the
CIR which has singular coefficients in the neighborhood of zero.

4.1 The Ninomiya Victoir scheme

We begin by presenting the Ninomiya Victoir scheme [26]. Let us define exp(V')(z) := ®y (2, 1)
where ®y, solves the deterministic equation

Oy (z,t) = + [V (Py(z,s))ds. (68)
By a change of variables one obtains ®.y (z,t) = ®y(x,et) so we have

exp(eV)(z) := Doy (z, 1) = Py (z,¢).



4 SECOND ORDER TOTAL VARIATION CONVERGENCE TOWARDS CIR PROCESSES21

We also notice that the semigroup of the above Markov process is given by PY f(z) =
f(®y(x,t)) and has the infinitesimal operator Ay f(x) = V f(z). In particular the relation
PV Ay = Ay PY reads

V(®y(x,t) = Ay PY f = PV Ay f =V (2)0, (f o ®y) (a,1).

Using m times Dynkin’s formula PY f(z) = f(z) + f(f PY Ay f(x)ds we obtain

PO 0) = fla)+ 35V S+ = ="V P s ()

We present now a second order scheme introduced defined as in [2]. We consider a sequence
pr, k € N of independent Bernoulli random variables and we define 1, : R x RN x R, — R?
using a splitting procedure. Let us define

ozt u?) = exp(w’Vp) o exp(w' V) o - o exp(w' N V) o exp(w®Vp)(z), if p=1,
s exp(w’Vp) o exp(w' N Vy) o - o exp(w' V1) o exp(w®Vp)(z), if p= —1.

(70)

Moreover, we denote w) = T'/n and w} = (wy")im1. n with wi = VTZi/\/n, i =1,--- N
and we assume that Z;, k € N are independent random variables which are lower bounded
by the Lebesgue measure: there exists z,; € RY and e,, 7. > 0 such that for every Borel set
A CRY and every k € N

L, (e4,74) P(Z, € A) = e, AN(AN B, (24k)). (71)
Finally, we assume that the sequence Zj satisfies the following moment conditions:
E[Z)] =E[(Z)'] =E[(Z,)’) =0, E[(Z)]=1  E[(Z)]=3,
1, E[| Zk|P] < o0. (72)

We recall that T > 0, n € N, and ¢} = Tk/n. One step of the scheme for diffusion with
regular coefficients (between times ¢; and ;1) is given by

Xt?g+1 = w(Pkng;awkH?ng)- (73)

4.1.1 Convergence results for diffusion with smooth coefficients

Smooth test functions
Here, we assume that the test function is smooth. We state a first result, which is the
starting point in order to prove the convergence in total variation distance.

Theorem 4.1. Let (X;);»o the process defined by (54) and (X])iexr.,, given by (73). We also
assume that (72) holds.
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A. We assume that for all | < 3, we have V{ : C°

O (RERY) — €2
i = 1,---N, we have VF Al : C

> (RERY) and for all
O (RERY) — C2(RERY). We also assume that
ZfV:OV(x) C(1 + |z|) and that for all t > 0, z — Py(z,t) € Coy(R?Y). Then,
E,po(2,6) (see (14)) and E, ,,1(2,6) (see (15)) are satisfied for (Xy) iy, and (X{)iery,, -

B. Suppose that V; € C° (R4 RY). Then, there exists some universal constant C,1 > 1 such
that for every f € CS(RY), we have

sup [E[f(Xy)) — E[f(Xp)]| < CCo(V)'[[flls,00/77, (74)

T
with C(V') = sup;_g.. n || Villk,00-

Proof. We will prove only point A. The proof of (15) for B. is very similar. Then, it simply
remains to show (12) which is done in the literature (see [4]). We focus on the proof of (15).
We will assume that N = 1 for sake of simplicity. It is sufficient to prove that the schemes
with transition probability laws ®y, (511 —tg,.) and Py, <f7 .) are weak second order schemes.
We will prove that they are v-order schemes, for all integer v € N* as soon as Z; matches
the 2 4+ 1 moments of the centered normal distribution and has finite moments of any order.
First, we notice that the sublinear growth of the coefficients implies that the moments functions
z — E[|X;(x)|9] belong to CI(R?) (see [1]). Let us consider f € C;°(R?,R). According to the
definition of Vj, we have VI € N, VI f € C=(RY). Writing as expansion (69), we get :

pol
Vv e N,
F(@uyt2)) = (o) + Sy BV &) + B F o)
with . ,
Rt o) = [ e s

We have already precised that Vi f € €32 (RY). Besides we have @y, € CJ(R?, R; R), then

pol

for all ¢ € [0, 1], there exists 5 € N such that

R ()] < CO+ 2 fllorroo

so the scheme with transition probability ®y; is a v-order scheme for the operator V4.

Let H), = \/tZ}. We have

Elf(®v, (Hy, )] =z + Z .Vﬂf +E[RYY, f(x1)]

2l<21/+1

with
22

) /1(1 - S)2V+1‘/12V+2f(q)‘/1 (1’, SHk))ds

v+1 _
Ryl f(z) = 2+ 1)/,
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Moreover, Vi f € C2(R%R) and @y, € €O (R, R;R?) and again, there exists § € N*,
C > 0, such that

]E[|Hk|2u+2]

ooy O D sz € O+ o)

E[| Ry}, f(2)]] <
and the scheme with transition probability @y, is a v-order scheme for the operator V.

Finally, for all f € C%) then Af € Cy) and we obtain (15) using the Ninomiya-Victoir
composition and the polynomial control of the moments of the diffusion and ®y,. The proof
of (14) is very similar so we leave it out. O

Remark 4.1. Notice that property (12) has already been studied in [1] for the CIR and since
oy, € Cpol( 4), we can use Property 2.1 in order to obtain the weak convergence for smooth
test functions with polynomial growth.

Bounded measurable test functions
Under an ellipticity condition we are going to obtain an estimate of the total variation
distance between a diffusion process of the form (54) and its second order scheme (73).

Theorem 4.2. We assume that V; € C°(R%GRY),i=0,--- | N, and

N

Iglfl Vi(x),&)> >\, >0  VoeR% (75)
=1

Let S € (0,7/2). Then there exists ng € N* such that for every n > ny, there exists | € N¥,
C > 1 such that for every bounded and measurable function f : R? — R,

n Co (V) Ro ()’
sup [E[f (X)) - E[f(X)]] < CW

t€7rT "

1 £lloe /7" (76)

Remark 4.2. This result has already been obtained in [{]. The result (76) signifies the con-
vergence in total variation distance for the weak error with order 2. We notice that, the key
point of this proof does not rely on the weak order of the scheme. This is the fact that, the
splitting procedure (70) in order to build the scheme, always includes a diffusion part (through

exp(j—%‘/i)) together with the ellipticity condition (75). Consequently a similar procedure could
be used in order to prove the convergence in total variation for even higher order scheme as
soon as we control this error for smooth test function. Finally, it is important to notice that
the generic property (71) is crucial here. On the one hand it enables to apply a Malliavin
inspired calculus crucial to achieve total variation convergence. On the other hand, since the
random variable (Zy)ren+ do not have a specific law but only satisfy the Doeblin condition (71)
and (72), the result can be seen as an invariance priciple.
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4.2 The CIR model
The CIR model is a R -valued random process defined by the following SDE,

dXt = (G — kXt)dt + o Xtth. (77)

This model was first presented in 1985 inspired from Vasicek (1977), by modifying the volatility
term introducing a "square root" term, among others in order to guarantee non-negativity.
We suppose in this paper a,k,o > 0. In this case, it is impotant to notice that the model
does not reach 0 for 2a > o?.

4.2.1 Second weak order scheme for the CIR process

The Ninomiya Victoir scheme for the CIR
Applying the notations from (54), we have

2

Vr €R, Viurf(z)=(a— ke — UZ)a”” f(x) (78)
Vr € R+7 ‘/i,cirf(x) = aﬁﬁxf(:c) (79)
Solving the PDE (68) brings the following flows

—kt
Ve e R, ¢oer(t,x) = ze " 4 (a — —)

Ve eRy, ¢ra(t,z) = (Va+ %t)?

At this point, we distinguish two cases. Indeed, we notice that if 2 > 4a and » < z*(t) =
k(% —a)(ef —1), then ¢§T7(t, x) takes negative values and then the scheme (73) is not well
defined anymore. In this case, we will introduce another scheme in the neighborhood of zero
and we will use a switching procedure. Otherwise, we will prove that,as soon as the scheme
(73) is well defined, then it is a second weak order scheme. As a consequence, if 4a > 02, we

define

¢cir<x7 wla wO) = eXp(wO‘/O,cir) o eXp<w1‘/i,cir) o exp(wo%,cir)(x)' (80)

Besides, we denote w) = T/n and w) = VTZ/\/n, where Z;, k € N* are independent
random variables which are lower bounded by the Lebesgue measure (see (71)). Finally, we
assume that the sequence Zj, satisfies the moment conditions (72).

One step of the scheme for the CIR diffusion (between times 5, and tx,1) is given by

XZ,LCH = ¢cir<loka XtT,ia wli+17 w2+1)~ (81)
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4.2.2 Second weak order scheme in the neighborhood of zero

It is easy to show that

E[X,] = ze ™+ %(1 — emHh (82)
o? —kt —2kt o’ —kt\2
Var(X,] = x?(e —e )+ a2—k)2(1 —e ™) (83)

Now, we consider the case 02 > 4a. First of all we have to identify the bound such that, for
every time step we use the scheme (81) or we introduce another scheme. Since we will consider
some bounded random variables Zj, we will use the following result in order to chose if we
switch schemes.

Lemma 4.1. We assume that 0 > 4a. Lett >0, A> 0, w' € [-A, A] and define

2
, | /0 1—e . (02 1—e %
K(t,A) =% (%—a) ]: + \/e’é (%—a)%—i—%fl L (84)

Then :

t t
\V/l’ 2 K(t) A)7 ¢O,cir(§7 ) o gbl,ci'r(wla ) o ¢0,Ci'r(§7 ZE) 2 0

Proof. We first notice that if K (¢, A) > 2*(%) and then for all ¢ € [0,1], the function z

Go,cir(%,.) © D1 eir(Wh,.) © Go i (5, 2) is well defined. Moreover ¢, is increasing with respect
to x and :

t . (02 1—e?
Buair(0,.) 0 do.ir (5, K (1, A)) = \/ ¥ ("Z - ) — + A+
< e? J—2—a e ? —x*(z)
- 4 koo T2
and the prof is complete. O

Now, it remains to present the scheme that we will use in the neighborhood of zero.
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Moments matching approach Our purpose is to verify for each step if the Ninomiya
Victoir scheme remains positive. Otherwise, we switch with a scheme inspired from Andersen
[3] and introduced in [2]. We recall that the first two moments of the CIR :are given by

a

E[X,] = ze ™+ E(l — e~k
EXZ _ 02 —kt —2kt 02 1 —kt\2 ]EX 2
X7 = aT (e — ) bagg(l - )P + BXP

Let us introduce the discrete random process ((;)i=0 € {y1,42} € R% and denote uy(z,t) =
E[X{]. Then, one step of the scheme in the neighborhood of zero for the CIR will be given by
Yy, .1—t, With (y1,92) given by the solution of the following equation

{ P, =y + PG =y2)y2 = ui(w,t) (85)
P(Yy =y1)yi + P(G = y2)y3 = uo(x,1).

In this equation the only fixed parameters are u; (¢, z) and us(¢, ), and obviously P(Y; = y2) =
1 — P(Y; = y1) €]0,1[. Thus we can fix values for y; and y, to solve the first equation and
then the second will give a second order equation to solve to find P(Y; = y;). For instance, if
v €]0,1[, let us choose :

(7 ZU%JDZG—@

uy (t, x)
P(Ct = yz)

The second equation gives :
us(t, ) P(C = y1)? + [(1 — 20)us(t, x) — ua(t, 2)] P(¢ = y1) + v?ui(t, z)? =0
Thus, if we consider the second order equation which depends on the parameter v :
ug(t, 2)k? + [(1 — 20)uy (t, ) — ug(t, )] K + v?uy (t,2)? = 0 (86)

We want to find a couple (k(v),v), where k(v) is a solution of the equation below, such as
k(v) €]0, 1[. Let us denote :

Ayt x) = [(1 = 20)uy (t, 2) — ua(t, 2))° — 4v?uy (¢, 2)%us(t, 2)

For sake of simplicity we set v = % that simplifies the calculus and as shown below, fulfill the
desired conditions. We obtain the following solution for (86) :

us(t, x) £ \Jua(t, ) (ua(t, x) — us (¢, x)?)
2uy(t, )

k(1/2) =

Now, we set
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k

1 a
P = Z>—-|1—4/1— .
(G =) 2( a—|—02)

Then, we have the following crucial property in order to prove the second order convergence.
Assume that 0 < K(t) < Ct, then, for all ¢ € N, there exists C' > 0 such that

Since uy(t, z) > max(a? (1 L ) 20%(e”* — 7)), we are able to bound :

Vvt €]0,1),z € [0, K(t)], 3C > 1,E[Y}]] < Cte. (87)

We define the transition function in the neighborhood of zero by

0
_glgw ; ifp— 1.
> P T, w
wcir(paxawo) = 0 (88)
ug(w?, x) .
if p=—

2(1 = p(z, w?))’

with p(z,w°) = 1(1 — /1 — w@ho)’y - Now let w? = T/N. We define a step of the second

ug(w9,z)
order scheme for the CIR in the neighborhood of zero by
XtTZH Qﬁcir (pkv XZZ’ wl(c)+1)'7 (89)

with (pr)ren the sequence of random variables such that P(p, = 1|X}!) = p(X]*,w, ). Finally
in the case 02 > 4a, we use the Lemma 4.1 and we define the CIR scheme by

n Q/}Cir(phXtivwliJrl?wngrl)? if Xl? > K<T/n7 3/\/ﬁ>7
B D (s X ), it XP < K(T/n,3/vVn).

4.3 Convergence results
4.3.1 Smooth test functions

We focus on the convergence of the CIR schemes defined in (81) and (90). We will use Property
2.1. In order to apply this result we we need to establish the following straightforward property.

Lemma 4.2. Let | € N. Then, we have

V2l

1,cir

(G (RY,R) — CX(RY.R) (91)

Proof. 1t is sufficient to show the result for [ = 1. We have :

Vf € CRRYR), V2 f(x) = 2\/‘( (x)+ﬁ6§f(x>>

\/_
— 0.f(0) + 002 f(a) € CR(RLLR)
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The property (91) enables to obtain the following short time estimate.

Theorem 4.3. let us assume that (Xy);»0 is the process given by (77) and (X[) is defined
by (81) if 4a > o* and (90) otherwise. We denote by . and vl their probability transition
measures. Then, there exists | € N*, C, 8 > 1, such for all f € C3(R;R), we have E/, pol(2,6)
(see (15)) and

Vo € Ry, [E[f(Xr(2)] - E[f(X7(2)]| < C(1+ |2|”)|| fllooe/n”. (92)

Proof. First we recall that the proof of (12) for the CIR diffusion and its scheme are given in
[2]. If 4a > o2, it is sufficient to use Theorem 4.1 A. to obtain (15) and then (74) follows from
Property 2.1. Now, let 0? > 4a. Here, the only thing we still have to check is that (15) is
satisfied for the moment matching scheme as soon as « € [0, K(T'/n,3/y/n)] with K defined
n (84). This is a consequence of the two following results.

Lemma 4.3. Let us consider the case o > 4a. For K defined in (84), A € R, we have, for
all g € N,

A0, > 0,t, € [0,1], Vte[0,t,],z €0, Kt WD), E[XI] <Ot (93)

Proof. Let us consider the function g(x) = 2! for x > 0. Applying Ito’s formula to g for the
CIR process gives :

! 1 ' vt}
XUt = gt 4 / [(y + 1) XY (a — kXs) + 51/(1/ + 1)02X;’] ds + / (v+ 1) XS 2 odW,
0 0

Using localization by considering the stopping time pu,, = inf{t > 0 : |X;| > m} and the
Fubini theorem, we get

tAm

tApm
EIXy] < o +E| / (v + )X (a— kX,) + %V(V—l— 1)0°X?]ds||
0

t

1

< x"“—l—/ [(1/+1)a+§V(V+1)U E[|X s/\u - kE[X;/AJF;} ds
0

Reasoning by induction, we assume that 3C, > 0,t, € [0,1,E[X},, | < C,t". Since z €
[0, K (t, \WW1)[ with K(t) = O(t), 3t,1 € [0,1] such that :

t—0

Vt € [O,t,,ﬂ],]EHXt”AJ;LH < Kt AWHH +C, ((1/ +1a+ sv(v+ 1)02) 1+ fg EE[| X;’;ﬁ |]ds

Applying Gronwall lemma and the fact that 0 <t < t,,;, and that there exists C' > 0 such
that K (¢, \/t) < Ot we deduce :

HXV—H

tApm

] < (CV |:(V+ la + ;y(y + 1o } + O) kgt

Finally, continuity of the flow and Fatou lemma give the result. O]
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Using this result (15) will be a consequence of the following theorem
Lemma 4.4. Let v, € N, x € [0,C*(t)[ with C*(t) = tOO(t) and (Yi)i=0 € Ry a random
H

process such that Vg = 1, ..., v, E[Y!] = E[X]] with (X})i=0 the CIR process defined in (77) and
Vg e< v+ 1, there exists Cq > 0,t) € [0,1], Vt € [0,t7],E[|Y]?] < Cygt?. Then the scheme
with transition probability P(Yr,, € dx) satisfies (15) with h =p =v + 1.

Proof. Let us write the Taylor expansion of f in point Y} :

709 = 10)+ S 300 + [ ey
=1
Since (Y;)t>o matches the first ¥ moments of the CIR we have :
Xt X, — )\ Y: Y, — )
L) - ) = | [ ey - [T ey
0 : 0 .

Moreover, X; has uniformly bounded moments and f € C;°(R.), so using the Lemma 4.3, we
have
X;H_l }/;l/-‘rl

4
vl V!

Elf (X)) = f(V)] < ClifllireE

< Ol oot

and the proof is completed.
O

The proof of (92) is a direct application of this theorem for v = 3 and Y given by (90). O

4.3.2 Convergence for measurable test function

Using the results of the previous section we are now able to study the total variation conver-
gence of the CIR scheme with weak order 2. We will be able to prove the convergence for
bounded measurable function but with support strictly contained in R,. We now introduce
this space. Let dy > d; > 0 and define

Deir = [dy, do] (94)

Now, we provide a way to estimate the norms |[¢)||1..00, 7 € N*. The first lemma treats several
cases of interest given the form of the coefficients V.

Lemma 4.5. Let D a compact subset of RY, T a compact subset of R, and v € (0,1). We
assume that ¢¥ defined in (57) satisfy | (z)| < |2z].

A. We take ay,by € R and V() = ay + (by, ). We denote by ®yo. the solution of (68)
with V replaced by VP°. Let ¢ € N and o, 3 two mulli indexes such that |a| + |B] < q.
Then, there exists C > 1 such that, for all v € R?,

{ O+ o7 exp(Cloy /o) @ 6, a1

sup |09 Do (2, 1)| < . .
Cllav|* + [ov|?) (] + VP ]l), if =0

teT

(95)
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B. Let ¢ € (0,1) such that 1/(1 — ) € N, and assume that V (x) = x°. We denote by ®yo.u
the solution of (68) with V replaced by VP*. Let ¢ € N and o, 8 two multi indezes such
that |a| + |B| < q. Then, there exists C > 1 such that, for all x € R,

sup |099) Dyo. (2, 1) < C(1 4 v~/ =07l (1 4 |z =¢lely exp(Co~¢/179) (96)
teT

Proof. In order to simplify the notations, we consider that d = 1. The proof for the multi
dimensional case follows the same line so we will leave it out. We focus on A. first. Using
(68), we have

t t
Oypo(x,t) =2+ / VP Dyp.u(2,8))ds =z + ayt + / by ¢P (®yp.o(z,5))ds
0 0

First we study the derivatives with respect to x. If we assume that. It follows that

t
0p®ypu(z,t) = 1+/ by 0p 8 (Byp.0 (2, 5)) 0, Py (0, 8)ds
0

Now, we use (57) and it follows that

Cloy|

t

|0, Py (x,t) =1+ / |0, Py (2, s)|ds.

0
Now, using the Gronwall inequality, we conclude |0, Pyp..(x,t)| < exp(C|by|t/u). Using a re-
cursive approach we obtain for higher orders |09®y . (z,)| < C(1+u~1%H1) exp(Clby|t/v!*]).
Now, we study the derivative with respect to t. First, we notice that ®yo.(x,t) < |z| +
t|VP?| . From (68), we have 9;®yo.(x,t) = ay + by¢pP (Pyp.(x,t)) and we use these for-
mula several times together with |¢?(z)| < |2z|, in order to obtain (95).
Now, we prove B. Using (68) up to order [ = 1/(1 — (), if we denote I, the identity function
(that is I4(z) = x), we obtain

-1

ti 1 ¢
Oypo(w,t) =Y (VP — [ (t =) (VP ( Dy, s))ds
— 1! l! 0

Now we remark that for an operator V, if [ > 2, ViI;(z) can be written has

i—1

Vi(x) =Y > CV(x Hmm

= hi=icl
76{1"7”’1_]

with C;., € R. Applying this decomposition to V(z) = (¢2(x))? and i = [, we show that

(VP ,(z) is a linear function of ¢P(z) and moreover (VP) I, (z) < Co~ (1 + (6P (2)]).

Finally, we have for i < [,
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i—1

i—j

05 (VP L) =102y Y GV () [T 0 VP ()]

J=1 |yl=i-1 m=1
76{17'71}17J

<O+ ) (1 [GR(@) D) < O(1 4+ 71 4 fof )
It remains to use the Gronwall lemma and we conclude
0@y p. (2, 1) < C(1 + t o=l (1 4 || CDEDHlaly oxp (CHly =1,
and (96) follows using the same approach as in the proof of A. O

From Lemma 4.5, we immediatly obtain the following estimates

Lemma 4.6. Let v € (0,1], r € N* and Veir the function defined as in (80) with Vo i and
Vi cir Teplaced by VOZ‘Z;”” and Vﬁ;ﬁf’”. Then, there ewists €, > 1 such that we have

Hizcirul,r,oo < Q:r(l + d}/Zir + d2)(1 + UﬁT?l) eXp(Q:T/UT) (97)

with 1) defined in Lemma 4.6. Moreover, we have C, (V") < Cv=9(1 + d;"? + dy), and
the following ellipticity condition holds:

Vi (@) > 0%y > 0. (98)
Now, we have all these estimates, we can state our main result for the second weak order
convergence of the CIR process for bounded measurable functions.

Theorem 4.4. Let v € (0,1] and 0 < dy < do, 6 € (0,T). We us assume that (X;)i=o is the
process given by (77) and (X})iery.,, is defined by (81) if 4a > o and (90) otherwise. Now,
let ng € N* such that 2T /ng < 0, (K(T'/ng,3/y/m0) — 2v)4 < di and thal assumptions (49)
and (50) hold with n = ng and ¢ replaced by eir, that is:

3 Veirllis00  Ms(Z 1 oN+2
Werlisen | Mol )+exp<—mznoé/<2T>><§, ny/* > 35— eir I 3.
Ny No X

We also assume that (65) holds with n = ny.

Then, there exists C,3 > 0, [, € N for all bounded measurable test function f on R with
supp(f) C D% = [dy + 2v,dy — 2v], and n > ny, then

cir

B n(y o _0?/2 = 0%a*V (kdy)® ox _C’Z€1_1v4 exp(€y/v)
E[f (Xp(2) — F(X3))] <Clexp( s, ) e L
101+ o) TO DDy e (99)

(0dy)*?
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with €., r € N*, is introduced in Lemma 4.6, Cy is defined in (66) and,
T (v,dy,dy) = v (1 + dy + d;*)Ro (v, dr, do), (100)
with
fo,(v,dy,dy) =€, (1+ (L+ 07" (1 +dy* " + dy) exp(€, /v")) (101)
x exp (C5(1 4+ v~ (1 + d™” + dy) exp(€3/v%)).

Proof. The proof follows from Theorem 3.1 (with Remark 3.3) and Lemma 4.6 since one can
easily verifies that (Reg(¢cir, Yeir, v, q, 10, 9)) holds. ]

Now, we give a structural result in order to obtain convergence for the total variation distance
for the CIR process with quasi order 2.

Corollary 4.1. Letv € (0,1] and 0 < dy < da, 6 > 0, ng € N. We assume that the hypothesis
from Theorem 4.4 are fulfilled with those parameters and that there exists a sequence (pp)nen
taking positive values such that for all n > ny,

o€ [é(n,v,dl,dg),g(n,v,dl,dg)] (102)
with
exp (2171, &5(1 + o) (1 + A7 + dy) exp(€s/v?))
é(navad17d2) = 1/42
dlpn

and

B 2 1 2 4

S(n.v.dy, dy) = v n(p,)o’ds v*Cy

"~ 4o?dyIn(n)  (aV kdy)? 4¢, (1 + dl_l/2 + dy)?In(n)

Then, there exists C, 3 > 0, such that for all bounded measurable test function f with supp(f) C
D% = [d) + 2v,dy — 2v], and n > ny,

Elf(Xr(2)) = f(X3(2))] < C(L+ [2]”) | fllocpn/n’. (103)

The reader may first notice that for p, = In(n)¢, ¢ > 42, we have §(n, v, d;, dy) < 6(n,v,d,, dy)
for n large enough and we can find 0 which satisfies the hypothesis from Theorem 4.4 and
(102) and for all bounded and measurable test function f with supp(f) C [dy + 2v, dy — 20]

E[f(Xr(2)) — F(X7(2))] < C(+ [2])][ flloo In(n) /n*. (104)

Moreover, through the sequence (p,)nen, this result show that we can consider asymptotic
cases that are v — 0, d; — 0 or dy — oco. For instance, it is possible to do it expressing those
parameters as functions of n. Using the definition of § and J, one can identify the speeds of
convergence of v(n) — 0, di(n) — 0 or ds(n) — oo, with respect to n, which enable to ob-
tain (102) and the hypothesis of Theorem 4.4 and consequently obtain a similar result to (104).
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In particular, let € > 0 and define p,, = n. We fix d; and v and put

eC,
42

da(n) = (—2In(n) +v with C, = exp(—€3/v*)/(217 ', &5(1 +v™*) and (¢ €[0,1)
We observe that in this case d(n,v,dy, da(n)) = Opoeo(n™ 19942 and 6(n,v,d;, dy(n)) =
O soo(In(n)™3) so for n large enough we can find § > 0 wich satisfies the hypothesis from
Theorem 4.4 and (102). Moreover, since (X;);>0 is a CIR process, we have P(X; > da(n) —
v) < Elexp(AX¢)] exp(—A(da(n) — v)), with , for every ¢ > 0, E[exp(AX:(2))] < Cexp(Cz) <
oo for every A < 2(1 — exp(—kt))/(ko?). Therefore, if the following hypothesis is satisfied:

_4202-¢)

Ape i = ———F
’ CeC,

< 2(1 — exp(—kT))/(ka?), (105)

then P(X; > do(n) —v) < Cexp(Cz)exp(—Ay(da(n) —v)) < Cexp(Cx)/n?>c. The reader
may notice that we can always find € € (0,2) such that (105) holds. We conclude that there
exists ng € N, C,8 > 0, such that for all bounded and measurable test function f with
supp(f) C [dy + 2v,00), and n > ng, we obtain

Elf(Xr(2)) = Y7 (2)] < C(1 + |2]”)[| flloe/n* + C exp(B2) [ f[loo/n** (106)

with Y7 () = f(X7(2))Lxn(2)eldi +20,d2(n)—20]- It is much more difficult to obtain this type of
result for test functions with support contained in (0, co) since we do not have such estimates
in the neighborhood of zero.

Proof of Corrolary 4.1. The result is a consequence of Theorem 4.4. First, we remark that
there exists C > 1 such that

di Y (v,dy, dy)* <Clexp (2L.E5(1 + v ) (1 +di ™ + dy) exp(€5/v?)),
where T is defined in (100). Since § > d(n,v,dy,dsy), it follows that
T(Ua d17 d2>/<d15)42 < Cpn

We study the other term in (99). Since § < 6(ng,v,d;, dy), it follows that

v2/2 — §%a® V (kdy)? Cy¢ Wt exp(€ /v
exp(— / - ( 2) )—l—exp(— Z*1 _1/2( 1/ ))
00%dy 26(1 +d; % + dy)?
ngn/HQ + C/n2exp(€1/v) < Cvpn/nQ7
which completes the proof. O]
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