
HAL Id: hal-01411565
https://hal.science/hal-01411565v1

Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of a knowledge system for Big Data: Case
study to plant phenotyping data

Luyen Le Ngoc, Anne Tireau, Aravind Venkatesan, Pascal Neveu, Pierre
Larmande

To cite this version:
Luyen Le Ngoc, Anne Tireau, Aravind Venkatesan, Pascal Neveu, Pierre Larmande. Development of
a knowledge system for Big Data: Case study to plant phenotyping data. WIMS: Web Intelligence,
Mining and Semantics, Mines Ales, Jun 2016, Nimes, France. pp.1-9, �10.1145/2912845.2912869�.
�hal-01411565�

https://hal.science/hal-01411565v1
https://hal.archives-ouvertes.fr


Development of a knowledge system for Big Data:
Case study to plant phenotyping data

LE Ngoc Luyen∗†
luyenln@dlu.edu.vn

Anne TIREAU‡
anne.tireau@supagro.inra.fr

Aravind VENKATESAN†
Aravind.Venkatesan@lirmm.fr

Pascal NEVEU‡
pascal.neveu@supagro.inra.fr

Pierre LARMANDE†§♦
pierre.larmande@ird.fr

ABSTRACT
In the recent years, the data deluge in many areas of sci-
entific research brings challenges in the treatment and im-
provement of agricultural data. Research in bioinformatics
field does not outside this trend. This paper presents some
approaches aiming to solve the Big Data problem by com-
bining the increase in semantic search capacity on existing
data in the plant research laboratories. This helps us to
strengthen user experiments on the data obtained in this
research by infering new knowledge. To achieve this, there
exist several approaches having different characteristics and
using different platforms. Nevertheless, we can summarize
it in two main directions: the query re-writing and data
transformation to RDF graphs. In reality, we can solve the
problem from origin of increasing capacity on semantic data
with triplets. Thus, data transformation to RDF graphs di-
rection was chosen to work on the practical part. However,
the synchronization data in the same format is required be-
fore processing the triplets because our current data are het-
erogeneous. The data obtained for triplets are larger that
regular triplestores could manage. So we evaluate some of
them thus we can compare the benefits and drawbacks of
each and choose the best system for our problem.

∗ Dalat University, Vietnam
† Institut de Biologie Computationnelle, LIRMM (Labora-
toire d’Informatique, de Robotique et de Microélectronique
de Montpellier), France
§ INRIA Zenith, Montpellier, France
‡ INRA (Institut National de la Recherche Agronomique) -
Mistea Research Laboratory, Montpellier, France
♦ IRD (Institut de Recherche pour le Développement), UMR
DIADE, Montpellier, France

Keywords
Knowledge base; Ontology; Reasoning; Inference; SPARQL;
xR2RML; Benchmark; NoSQL; Big Data; Triplestore

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WIMS ’16, June 13-15, 2016, Nîmes, France
© 2016 ACM. ISBN 978-1-4503-4056-4/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2912845.2912869

1. INTRODUCTION
Research in agronomy aims to address challenges in im-

proving crop productivity, resistance to diseases, minimize
the impact of drastic climatic variations. With the vast
amounts of data available today, there is potential for scien-
tists to make use these data to understand important pat-
terns and generate broad generalities. However, the data
are highly distributed and diverse and with the exponential
increase in the amount of data, there is an urgent need for
efficient data integration and management. In this context,
scientists must be aided to manage their own experimental
data in the backdrop of prior knowledge to building cons-
esus within the research community. The Phenome project1

was conserved at the INRA computational sciences unit2 in
Montpellier, France, to efficiently manage large volumes of
heterogeneous data, assessing environmental influences on
plants.

This paper focuses on exploring the possibilities to, a)
to store large volumes of heterogeneous data(relational and
NoSQL databases); b) strengthen the ability to search dif-
ferent datasets by improving machine interoperability. To
this end, the Semantic Web offers a solution to formally
structure the data, in this way allowing the generation of
new knowledge through inference rules. On the other hand,
the latest big data management solutions such as MongoDB,
caters to the needs of handling large amounts of data with
optimized performance. Taken together, our effort explores
the following aspects:

• Exploiting existing big data solutions to make seman-
tic searches over large data.

• We propose a solution to harmonize data using RDF
triple store technology.

• Benchmarking triplestores (4Store, Jena Fuseki, Vir-
tuoso, Sesame, Stardog, GraphDB ) on: data loading,
data search and on inferencing.

The paper is organized as follows: in the next section, we
review the state-of-the-art in big data and semantic web.
Section 3 elaborates on the proposed solution with the gen-
eral model and data transformation to triples. Section 4
describes our approach towards benchmarking. The final
section provides the conclusion and perspectives.

1https://www.phenome-fppn.fr/
2http://www6.montpellier.inra.fr/mistea eng



2. RELATED WORKS

2.1 Big Data context
Today we are in the age of Big Data posing challenges

in data storage, analysis and visualization. There is a need
to develop solutions to manage large amounts of data on
a daily basis and extract new knowledge from them. The
life sciences are no exception to this, further, the advances
made in high throughput technologies at various levels (i.e
genotypic, phenotypic, metabolomic, etc.) makes data inter-
operability essential, calling for structuring data to bridge
the gap between the data and the knowledge it represents
(common vocabulary, ontologies, rules, etc).

Phenomics aims at understanding of the complexity of
interactions between plants and environments in order to
accelerate the discovery of new genes and traits and opti-
mize the use of genetic diversity under different environ-
ments. Conventional methods to quantify these interactions
rely on a limited number of multi-environment evaluations of
plants. Advances in genomics and high-throughput pheno-
typing tools provide a unique opportunity to discover new
genes targeted at each interactions. Germplasm can now
be sequenced at low cost to reveal genetic diversity in fine
molecular detail. Missing are multi-environment and mul-
titrait phenotypic data to rapidly discover gene-phenotype
relationships.

The Phenome project handles a large amount of (observa-
tional)data (approximately 40 Tbytes in 2013, 100 Tbytes
in 2014 and over 200 TBytes in 2015) at different levels
(field, microplot, plant, organ, cell, etc). To this, the tradi-
tional relational databases lacks the capacity to handle such
larg dynamic data. Often these systems become heavy and
slow and don’t provide required flexibility. To this end, the
advent of the so called NoSQL database technologies offer
several alternative options to organise and store data (see
Table 1 ).

Type Examples of this type
Key-values
Store

CouchDB, Oracle NoSQL Database,
Dynamo, FoundationDB, HyperDex,
MemcacheDB, Redis, Riak, FairCom c-
treeACE, Aerospike, OrientDB, MUMPS

Wide Column
Store

Accumulo, Cassandra, Druid, HBase, Ver-
tica

Document
Store

MongoDB, Clusterpoint, Apache
CouchDB, Couchbase, DocumentDB,
HyperDex, Lotus Notes, MarkLogic,
OrientDB, Qizx

Graph Allegro, Neo4J, InfiniteGraph, OrientDB,
Virtuoso, Stardog

Multi-model OrientDB, FoundationDB, ArangoDB,
Alchemy Database, CortexDB

Table 1: Database management Systems in NoSQL

2.2 Semantic Web context
An important aspect in efficient data management is mak-

ing data interoperable enabling the of extract meaningful
information from large datasets. To this end, the Semantic
Web technologies proposed by Tim Berners Lee et al., [5]
[6], offers a remedy to interlink highly distributed data and
enhancing data interoperability, to share and reuse data be-

tween multiple applications and help users to extract new
knowledge.

2.3 Overview of existing solutions
The first solution is based on the association between

MongoDB and AllegroGraph - a document store and a graph
database system. AllegroGraph provides an interface to
MongoDB, called MongoGraph. This tools allows the au-
tomatic conversion of JSON objects to RDF triples and can
be query by both MongoDB query language and SPARQL.
With these characteristics, it is possible to develop a sys-
tem that combines semantic web features with MongoDB to
manage voluminous data. Figure 1 shows the architecture
of such this system. Here, the experimental data remains
stored in MongoDB under document format. Triples linking
MongoDB documents to an ontology are imported into Alle-
groGraph. We use the xR2RML tool to automatically map
elements of collections with the ontology[12]. This ontol-
ogy allows inference by exploiting the relationship between
triples. Thus the inference engine can create new relation-
ships based on concepts defined in the ontology.

Figure 1: The components in a system MongoGraph

Advantages

• AllegroGraph allows inferences on large data

• Property based filtering to reduce the number of triples
in the database.

• Massive database management with MongoDB

Disadvantages

• A more complex system with multiple stage requests

• No synchronization between the two databases.



In the second solution, we present Neo4j which is used
to represent the data as graph. Neo4j has optimal compo-
nents that come in kernel supplement[1]. One can structure
the graph via a meta-model, getting an implementation of
RDF triplestore compliant SPARQL[9]. For example, with
two plugins Neo-rdf-sail 3 and Neo4j sparql-and-extension 4.

Advantages

• A graph representation of Big Data improves the per-
formance of the system by queries based on the rela-
tionships between the objects.

• The graph representation is similar to that of ontolo-
gies and RDF data instances.

Disadvantages

• The data must be re-organized in the form of a graph,
which is time consuming, depending on the complexity
and size of the data.

• The data are not directly represented in RDF, thus
to query with SPARQL, one needs to deploy an inte-
grated plugin that support SPARQL.

The third solution is based on the data organization
for linked data which publish and use information on the
Web[3]. JSON-LD is an ideal data format for programming
environments such as, REST Web Service, as MongoDB
or CouchDB. JSON-LD document is both a serialization of
RDF and a JSON document. The RDF data format is se-
rialized in JSON-LD is complimentary to the JSON format
used in MongoDB. So we can exploit the power of MongoDB
in handling big data and the flexibility provided by RDF.
Moreover, we facilitate the serialization of graphs in Mon-
goDB, graph data can be organized and stored in memory
by using APIs such as Jena or Sesame. Such APIs allow the
use of SPARQL to query and infer the new knowledge. The
semantic searches will be made directly on the RDF graphs
that are serialized from MongoDB. In practice this setup is
time consuming. Therefore, to overcome this limitation, we
developed a method to organize indexes for the data and op-
timize of the execution time. Figure 2 shows CRUD (Create,
Read, Update, Delete) operations that run on MongoDB
and semantic search conducted over RDF graphs. Thus, a
middle layer is necessary to synchronize the two databases.

Advantages

• JSON-LD is both an RDF serialization format and the
storage model for MongoDB.

• Operations CRUD will be quickly performed on the
data in MongoDB.

• SPARQL is used to query triplets in memory.

Disadvantages

• The existence of two database will increase the system
complexity.

• Loading of RDF graphs in memory will be time con-
suming. The updated data on RDF graphs are depen-
dent on MongoDB.

3https://github.com/neo4j-contrib/neo4j-rdf-sail
4https://github.com/niclashoyer/neo4j-sparql-extension

Figure 2: The components in an associated system
of MongoDB and JSON-LD

• Large graphs cause memory issues, thus material ca-
pacities need large buffer memories.

The fourth solution is based the concept of the Ontology-
Based Data Access (ODBA). ODBA is a paradigm for ac-
cessing and integrating data, the key idea is to resort a three-
level architecture, constituted by the ontology, the data, and
the mapping between two[2]. In the OBDA paradigm, an
ontology defines a high-level global schema and provides a
vocabulary for user queries, thus isolating the user from the
details of the structure of data sources (which can be rela-
tional databases, triple stores, datalog engines, etc.). The
OBDA system transforms user queries into the vocabulary
of the data and then delegates the actual query evaluation
to the source data.

An OBDA system is a triple [4]
O = <T ,S,M>, Where:

• T is the intensional level of an ontology. We consider
ontologies formalized in description logics (DLs), hence
T is a DL TBox.

• S is a (federated) relational database representing the
source data.

• M is a set of mapping assertions, each one of the form
Φ(x)← Ψ(x)

Where:

– Φ(x) is a query over S, returning tuples of values
for x

– Ψ(x) is a query over T whose free variables are
from x

Based on the definition of the ODBA, researchers at the
University Bozen-Bolzano in Italy have developed a Frame-
work named Ontop. It is currently used on the application
Optical 5. It aims to solve the problems of association of Big
Data and semantic search capacities. The Ontop core is the
query engine SPARQL QUEST that implements RDFS and
OWL 2 QL by re-writing the SPARQL queries into query

5http://optique-project.eu/



SQL. Ontop is able to efficiently generate and optimized
SQL queries[13].

Advantages

• The data structure is stored in the database manage-
ment system (no duplication, realtime data access).

• Queries are performed on the data in SPARQL.

• The compatibility with multiple relational database
systems.

Disadvantages

• System complexity will increase with the organization
of ODBA models.

• The increase in time and cost to build the system.

• Applied only for relational databases, no applications
avialble for NoSQL systems.

In summary, in all of the above approaches, data is or-
ganized and stored in the graph oriented database manage-
ment systems (Neo4j) or document oriented database sys-
tems (MongoDB), hybrid systems (MongoDB and Triple
store technology) and using ODBA approach. The solu-
tions are broadly divided in two: query re-writing and data
transformation to RDF graphs. We can see that for each
approach there are advantages and disadvantages. Choos-
ing the best solution for the data, will depend on the use
and the underlying questions.

3. PROPOSED SOLUTION

3.1 General Model
We consider a solution using the RDF data model. Here,

the current heterogeneous data will be converted in RDF.
This approach is at this moment the optimal solution for
data organization with semantic search capabilities. Most
often original data that needs to be exposed as RDF already
exists in relational databases. There are several methods to
translate relational database to RDF but the most used is
the following: D2R 6. D2R operates with a mapping file and
one or several ontologies. The mapping file is used to make
the connection between the tables, attributes on one hand
and classes, properties on the other. Thus, after the map-
ping, data will be available via semantic web applications.
There are now two additional methods: R2RML7 and Di-
rect Mapping 8. Both approaches are only for relational
databases. So there is a need to map RDF with document-
oriented databases such as CSV, XML and JSON. Franck
Michel and his colleages [12] used the mapping language
R2RML and Morph-RDB 9 to develop xR2RML which is
apply to documents oriented databases such as MongoDB.
Precisely, xR2RML is an extension of the mapping language
R2RML and relies on particular properties of the mapping
language and RML[7]. R2RML covers the basic mapping
relational data to RDF triples. RML extends R2RML to ad-
dress mappings on heterogeneous data (XML, JSON, CSV)

6http://d2rq.org/
7http://www.w3.org/TR/r2rml/
8http://www.w3.org/TR/rdb-direct-mapping/
9https://github.com/oeg-upm/morph-rdb is an implemen-
tation of mapping R2RML language for relational databases

with RDF triples. xR2RML extends its scope to a wider
range of basic non-relational data.

Advantages

• Data are translate in RDF triples.

• Questions are performed with the query language SPARQL

• Reasoning capacity are supported by these triplestores.

Disadvantages

• Data transformation step is time consuming (i.e. reor-
ganizing data in graph)

• A new system architecture needs to be implemented
with these data.

• We encounter performance problems with large graphs

Current systems able to store large volumes of data, refer
mostly to NoSQL systems (eg: MongoDB). With a middle-
ware layer, we are able to organize and synchronize the ex-
istent data like an intermediate storage for interacting with
the system. Subsequently, the data will be converted into
RDF triples with the use of language mapping xR2RML
and the tool developed by the authors [12]. Vocabular-
ies and triples transformation rules are provided by ontolo-
gies. Ontology are important to perform advanced search
on relationships and existing hierarchies. There exist vari-
ous triplestores to manage RDF. In the paper, we will fo-
cus experiments with six systems: 4Store, Virtuoso, Star-
dog, GraphDB , Sesame and Jena Fuseki(TDB). Consider-
ing their storage capacities and indexing are differents, we
will test these systems with large RDF graphs. Thus we will
test them based on the data management capabilities and
data retrieval using the SPARQL query language. We will
develop a search engine in order to use inference capacities.
An access point will be provided to perform queries.

Figure 3: General model of the system

3.2 Data transformation to triples
Plant phenome research creates various heterogeneous data

associated with observational process such as data imaging,
watering, weighting process. Now, the majority of the data
exists in the form of the documents JSON which are stored in
MongoDB. This section will exploit stages of the RDF trans-
lation with xR2RML. Thus, a triples map specifies a rule



for translating data elements of a logical source. The RDF
triples generated from a data element in the logical source
share all the same subject. An xR2RML triples map is rep-
resented by a resource that references the xrr:logicalSource
property. It means that a logical source specifies a table
mapped to triples. A subject map specifies how to gener-
ate a subject for each data element(row, document, set of
XML elements, etc). A subject may be specified using the
rr:subjectMap property, where value must be the subject
map, or the constant shortcut property rr:subject, and zero
or to many rr:predicateObjectMap properties, where values
must be the predicate object maps. They specify pairs of
predicate maps and object maps that, along with the sub-
jects from one or many RDF triples.

1 @prefix xrr: <http://i3s.unice.fr/xr2rml#>.
2 @prefix rr: <http://www.w3.org/ns/r2rml#>.
3 @prefix rml: <http:// semweb.mmlab.be/ns/rml#>.
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf -schema

#>.
6 @prefix rdf: <http://www.w3.org/1999/02/22-rdf -syntax

-ns#>.
7 @prefix f: <http://www.franz.com/> .
8 @prefix ia: <http://www.mistea.supagro.inra.fr/

ontologies/2015/03/imageAnnotation #>.
9 <#Image > a rr:TriplesMap;

10 xrr:logicalSource [
11 xrr:query """db.image.find({ ’configuration.imgid ’

: {$exists: true} } )""";
12 ];
13 rr:subjectMap [
14 rr:template "{$.uri}";
15 rr:class ia:Image;
16 ];
17 rr:predicateObjectMap [
18 rr:predicate ia:aboutEntity;
19 rr:objectMap [ xrr:reference "$.context.plant"; ];
20 ];
21 rr:predicateObjectMap [
22 rr:predicate ia:timeStamp;
23 rr:objectMap [
24 xrr:reference "$.date";
25 rr:datatype xsd:date;
26 ];
27 ];
28 rr:predicateObjectMap [
29 rr:predicate ia:hasFileName;
30 rr:objectMap [ xrr:reference "$.fileName "; ];
31 rr:datatype xsd:string;
32 ];
33 rr:predicateObjectMap [
34 rr:predicate ia:hasPlateau;
35 rr:objectMap [ xrr:reference "$.context.

technicalPlateau "; ];
36 rr:class ia:TechnicalPlateau;
37 ];
38 rr:predicateObjectMap [
39 rr:predicate ia:inImagingCycle;
40 rr:objectMap [ xrr:reference "$.configuration.

taskid "; ];
41 rr:datatype xsd:integer;
42 ];

Figure 4: Mapping a json data to triples

4. EXPERIMENTS AND COMPARISONS
We obtained 45 millions of triples for image annotation

from about 3.5 millions images in the MongoDB system.
This transformation required a lot of server execution time
(about 20 hours). These data exist in the form of a graph
with multiple instances. We first aim at realizing experi-
ments with these triples and then compare performances of

the following triplestores: 4Store, Sesame, Jena, Virtuoso,
GraphDB, Stardog. The data are divided into five groups
of triples 100.000, 1 million, 10 millions, 20 millions and 40
millions of triples. Data from the first to the fourth groups
are distinct, while the last group is a collection of all data.
These groups will allow us to evaluate the performance of
these Triplestores. Here, we focus on three performance cri-
teria: loading, queries and reasoning.

These experiments were performed on a server Ubuntu
Server operating system. Below we can see the detailed con-
figuration of this system:

Processor Intel Xeon(R) CPU L5420 @ 2.50GHz

Front side bus 1333 MHz

Cache L2 12M

Memory 32GB

Storage 160GB

Table 2: Configuration of the Server

4.1 Data loading
With large RDF files generated, the import test data in

triple store will give us a particular view of data loading per-
formances. Each system has a particular way of organizing
data indexing which impacts the data loading mechanism.
Some triplestores allow users to set various configurations
such as fields indexes, the order of priority for the index,
peak memory used, etc. In addition, there are systems that
cannot directly load large files (e.g. with Sesame, Virtu-
oso). In these cases, a system has been set up specifically to
split the files in smaller chunks. Other systems like Fuseki,
Stardog and GraphDB provide tools to able load large files.

Figure 5: Comparison of loading times on Triple
Stores

The results of benchmark data on load time are obtained
with the best time to 4Store while the Virtuoso system is
the slowest. We can explain through their differences in the
structure of the index and data storage. In Virtuoso the
import is performed in RDBMS tables using ODBC pro-
tocol, while in the case of 4Store import does not require
processing for the storage because of its tree structure.

4.2 Data search
The most important part in a data management system

is query performances. Experimentation queries allow us to



evaluate in detail the system. That is why we set up the
second benchmark to test the search capacity with these
systems. To ensure an equality, all the queries are launched
via a unique access point where several types of search have
been defined.

Example query 1
In this application, we want to find the information of the

image annotation with the date created, the type of shooting
(beside and above), and the camera angle. For refining the
results obtained, we used a filter on the camera angle with
values greater than 300°or less than 100°.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf -syntax
-ns#>

2 PREFIX ia: <http://www.mistea.supagro.inra.fr/
ontologies/2015/03/imageAnnotation#>

3 SELECT ?Image ?Date ?ViewType ?hasCameraAngle WHERE
{

4 ?Image rdf:type ia:Image .
5 ?Image ia:timeStamp ?Date .
6 ?Image ia:hasViewType ?ViewType.
7 ?Image ia:hasCameraAngle ?hasCameraAngle .
8 FILTER (? hasCameraAngle < 100 || ?hasCameraAngle >3

00)
9 }

Figure 6: Example query 1

Figure 7: The evaluation of the query 1

For this query, the best result is obtained with 4Store
while the worst is performed with Virtuoso. The difference
of the execution time between the systems is great. In gen-
eral, the systems have a linear increase over time of all data
sets. In particular, for small sized data sets (100,000 and
1 million triples), the runtime system is not much different
but it is significant with very large data sets.

Example query 2
The second request is constructed on the basis of the first

with an additional part on the arrangement of the data ob-
tained on the field angle of the camera and the created date
of the image. This addition allows us to test the data search
capacity and data grouping with the ORDER BY command.

In this case, there is no change in the ranking for Virtuoso,
which still took a long time to execute this query. However,
the system that gave the best result is Stardog. Like the
previous query, all systems respond very well on small data
sets. With 4Store, Sesame, Fuseki and GraphDB tools, the
running time is close enough. This can be explained because
they all have a tree form data organization while Virtuoso
store it in relational tables.

Example query 3
This query test the search capacity of the image annota-

tion with the date and camera angle by combining several

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf -syntax
-ns#>

2 PREFIX ia: <http://www.mistea.supagro.inra.fr/
ontologies/2015/03/imageAnnotation#>

3 SELECT ?Image ?Date ?ViewType ?hasCameraAngle WHERE
{

4 ?Image rdf:type ia:Image .
5 ?Image ia:timeStamp ?Date .
6 ?Image ia:hasViewType ?ViewType.
7 ?Image ia:hasCameraAngle ?hasCameraAngle .
8 FILTER (? hasCameraAngle < 100 || ?hasCameraAngle >3

00)
9 }

10 ORDER BY ?hasCameraAngle ?Date

Figure 8: Example query 2

Figure 9: The evaluation of the query 2

different patterns using the UNION command. This allows
us to extend the results obtained for other graphs of different
values.

1 PREFIX ia: <http://www.mistea.supagro.inra.fr/
ontologies/2015/03/imageAnnotation#>

2 SELECT ?Image ?Date ?hasCameraAngle WHERE {
3 {
4 ?Image rdf:type ia:Image . ?Image ia:

hasCameraAngle ?hasCameraAngle .
5 FILTER (? hasCameraAngle < 100)
6 } UNION {
7 ?Image rdf:type ia:Image . ?Image ia:

hasCameraAngle ?hasCameraAngle .
8 FILTER (? hasCameraAngle > 200)
9 }

10 }

Figure 10: Example query 3

Figure 11: The evaluation of the query 3

In this query, 4Store is the best tool with the fastest
query execution. On the contrary, GraphDB system gives
the longest execution time, followed by Sesame and Jena.
We can also see that there is an irregularity in the execu-
tion time with the two data sets 10 and 20 millions triples
clearly illustrated by Virtuoso and Stardog. This difference
is explained by the fact that there are two distinct sets of



data in the assessment.
Example query 4
In the last query, we counted the number of triples in the

systems used by the COUNT command. We used a filter
on the type of view and angle of the camera to limit triples
numbers in the result.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf -syntax
-ns#>

2 PREFIX ia: <http://www.mistea.supagro.inra.fr/
ontologies/2015/03/imageAnnotation#>

3 SELECT (count(?Image) as ?ima) WHERE{
4 ?Image rdf:type ia:Image .
5 ?Image ia:hasViewType ?hasViewType .
6 ?Image ia:hasCameraAngle ?hasCameraAngle .
7 FILTER (? hasViewType = "side" || ?hasViewType = "

Side" && ?hasCameraAngle > 200 )
8 }

Figure 12: Example query 4

Figure 13: The evaluation of the query 4

There is an error on executing the 4Store tool with higher
data sets to 10 million triples. We have included the value
-1.0 to report this error. The best tool in this assessment is
Stardog unlike Virtuoso who gets the longest running time.

4.3 Data inference
The first example of inference

This example was conducted to evaluate the reasoning on
the relations of the properties that are defined in RDF Schema.
Here, the relationship “rdfs: subPropertyOf ” is used to pre-
sentation both “comesFromPlateau” and “hasSource” prop-
erties. So the query on the object “Data” can infer new
information in “Image” and also “TechnicalPlateau” can be
found in the object “Source”.

Figure 14: Inferred relationships ontology in the
first example

Because the results obtained in these examples are very
different between the triplestores, we use a logarithmic func-

1 PREFIX : <http://www.mistea.supagro.inra.fr/
ontologies/2015/03/imageAnnotation#>

2 SELECT ?data ?source ?hasViewType WHERE {
3 ?data :hasSource ?source .
4 ?data :hasViewType ?hasViewType .
5 FILTER regex(? hasViewType, "side","i")
6 }

Figure 15: The query SPARQL of the first example
of inference

Figure 16: The execution time of the first inference

tion to illustrate the values of the execution time. In gen-
eral, we have good results with small sizes of data sets in
all triplestores but different performances appear with large
data sets. In this case, detailed results show that 4Store
and Jena Fuseki are slower to perform inference. While
GraphDB and Virutoso give the best execution time.

The second example of inference
In this example, we have continued to test the ability of

inference in RDF Schema on the domain and rank of objects
values. In fact, this inference uses the relationship we define
as in the first example. However, the important point of this
inference is based on specific data. We can see the detail in
Figure 17

Figure 17: Inferred relationships ontology in the sec-
ond example

This example allows us to confirm that the two triplestores
4Store and Jena Fuseki are very slow in executing inferences
of large data sets. On the contrary, Stardog, GraphDB and
Virtuoso get good execution time. Sesame in both example
of inferences gets decent results for an OpenSource triple-
store. In some cases, it gives better results than commercial
ones.

4.4 Evaluations
This section gives an overview on implementation and per-



1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf -syntax
-ns#>

2 PREFIX : <http://www.mistea.supagro.inra.fr/
ontologies/2015/03/imageAnnotation#>

3 SELECT ?image ?Source ?hasViewType WHERE {
4 ?image :hasSource ?Source .
5 ?image rdf:type :Image .
6 ?image :hasViewType ?hasViewType .
7 FILTER (? Source ="http://www.phenome -fppn.fr/m3p/

phenoarch ") .
8 FILTER REGEX(? hasViewType, "top","i")
9 }

Figure 18: The query SPARQL of the second exam-
ple of inference

Figure 19: The execution time of the second infer-
ence

formance capacity of these systems. Each system has dif-
ferences in the organization and indexation of triple data:
Virtuoso uses tables as in the relational database, 4Store
uses the structure of the radix tree [10], while Sesame, Jena
Fuseki and GraphDB apply the structure B or B+ tree [14]
[11]. These differences are important elements that impact
their performances. Nevertheless, we must also consider the
necessary features for a triplestore. The most important fea-
ture is the reasoning capacity with RDFS or OWL. More-
over, handle large datasets, distribute processes on multiple
machines, can facilitate reasoning on large RDF graphs. In
this context, the triplestores need to support management of
distributed databases instead of having a network of multi-
ple machines to communicate and exchange data [8] [15] [16]
[18]. Above, we evaluate the three most important criteria
for triplestores: loading, search and inference.

With 4Store, the advantages of indexation data with the
radix tree provide a good system for loading and search data.
It is always one of the best systems with the fastest execution
time. In addition, the architecture of 4Store allows cluster-
ing of distributed data and used in several machines at the
same time. However, the search function in 4Store is still
perfectible, we can see errors in some cases (in the example
query 4). In addition, the user interface has several limita-
tions. But the biggest drawback is the reasoning support.
In fact, the reasoning engine is an extended module named
4SR[17] which is a branch of the 4Store project, implemented
for RDFS Backward Chained Reasoning. This module sup-
ports a very weak inference capacity with class and prop-
erties: rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain et
rdfs:range in RDFS. Choosing 4Store to build the system
with large data volume will depend on the need of reason-
ing. If there is no need to infer the data, 4Store may be the

right choice.
Sesame is one of the first systems that is used to manage

RDF data. With this system, the results are average in the
benchmarks on loading, search and inference data. These
result are acceptable for an Opensource system. However,
Sesame has disadvantages in large database management.
Firstly, it can not be deployed in a cluster of machines
with large distributed graphs, but rather allows to create
federated databases with graphs which are completely dis-
tinct. Then the native RDF data model is optimized for
medium sized graphs. Finally, the inference mechanism of
Sesame creates many new triplets and increases the size of
the database. This is manageable for medium sized graphs
but reached its limit for large graphs.

Virtuoso is built on the architecture of relational database
management system. This may explain its bad results on the
data loading runtime and some examples of query search.
On the contrary, Virtuoso has advantages in the data infer-
encing capacity. It can perform reasoning with data de-
fined by RDFS or OWL. In this evaluation, Virtuoso is
the best Opensource tool that completely supports essen-
tial components of a database management system, such as
ACID transactions, security or the user interaction interface
etc. In addition, it allows us to implement a system with
a strong supporting reasoning. Finally, Virtuoso allows to
deploy databases on multiple clusters of machines. However,
this feature is only supported in the commercial version.

Jena Fuseki is developed on the basis of the Jena frame-
work. It brings features of the first framework that is built
for RDF data. Our benchmark is performed with the storage
of the Jena TDB architecture and uses the indexing of the
B + tree structure. In the evaluations, Jena shows good re-
sults in loading data. However, research data and inferences
with Jena Fuseki took a long execution time. At this time,
Jena can run on a cluster of several machines in different
architectures (Some examples defined in this article [14] ).
Moreover, Jena provides APIs (Apache Jena Elephas) that
allow to write embedded applications in Apache Hadoop.
From the results we can say that Jena Fuseki suitable for
RDF databases of medium size.

GraphDB Ontotext is built upon the Sesame framework
to provide missing features of Sesame. The GraphDB im-
provements focus on reasoning ability, user interface and
data cluster architecture. In nearly all evaluations, we can
see that GraphDB gives a higher performance than Sesame
in data search and inference. In fact, there is less differ-
ence in the indexing mechanism which explains the small
difference in the execution time. With its inference engine,
GraphDB supports reasoning in RDFS and OWL. Finally,
it is possible to manage large volumes of RDF data.

Stagdog gives impressive results compared to the criteria:
Data Loading, Data Search and Data Inference. It is always
in the best tools that are the most effective. For the rea-
soning, it supports inferences in RDFS and OWL. Moreover
it is build for cluster performances at a high level. We can
say that Stardog is the best tool in the list of all the tools
tested for our Benchmark. However, it is available only in
commercial version.

5. CONCLUSION AND FUTURE WORKS
The efficient data management is increasingly important

in conducting biological reseach. The search for optimal
data management solution can help reduce time and increase



the performance of database systems. The problems we en-
countered during this effort is the size of the data. Tradi-
tional methods have limitations in managing large amounts
of data. In addition, the need to interlink and reuse data
leads us to adopted methods to structure these data. There
are different solutions for this problem. However, each so-
lution described is a combination of one or more technolo-
gies. In general, we can summarize these solutions in two
directions: the transformation of queries (or query rewrit-
ing) and the translation of data in RDF triples (or materi-
alization). Each of approach has particular advantages and
disadvantages. To this end we have chosen data conversion
to RDF. This choice enabled us to facilitate the research on
semantic data. We had to define new data models to unified
and transform the experimental data in RDF. We evaluated
several triplestores (4Store, Sesame, Virtuoso, Jena Fuseki,
GraphDB Stardog) and carry out benchmarking based on
different criterion: data loading capabilities, query search
and inference on data.

The conversion of data to RDF triples is suitable to in-
crease the semantic search capability on the data, such as
performing inference tasks to extract implicit facts. How-
ever, this approach still has drawbacks including the man-
agement of large data, because until now, only few triple-
stores can support large volumes of data. We believe that
in the future, work on query rewriting approaches (NoSQL-
SPARQL) will help us to compare the advantages and dis-
advantages of both approaches.

6. REFERENCES
[1] R. Angles, A. Prat-Perez, and D. Dominguez-Sal.

Benchmarking database systems for social network
applications. First International Workshop on Graph
Data Management Experiences and Systems, 2013.

[2] N. Antonioli, F. Castano, C. Civili, and S. Coletta.
Ontology-based data access: The experience at the
italian department of treasury. Proceedings of the
Industrial Track of the Conference on Advanced
Information Systems Engineering 2013, pages 9–16,
2013.

[3] C. Aswamenakul, M. Buranarach, and K. R. Saikaew.
A review and design of framework for storing and
querying rdf data using nosql database. 4th Joint
International Semantic Technology Conference, pages
144–147, 2014.

[4] T. Bagosi, D. Calvanese, J. Hardi, and S. Komla-Ebri.
The ontop framework for ontology based data access.
The Semantic Web and Web Science - ISWC 2014,
pages 67–77, 2014.

[5] T. Berners-Lee. “the semantic web”, scientific
american magazine. 2001.

[6] T. Berners-Lee, Fischetti, and Mark. Weaving the
web. 1999.

[7] A. Dimou, M. Vander Sande, P. Colpaert,
R. Verborgh, E. Mannens, and R. Van de Walle. Rml:
A generic language for integrated rdf mappings of
heterogeneous data. Proceedings of the 7th Workshop
on Linked Data on the Web (LDOW2014), 2014.

[8] I. Filali, F. Bongiovanni, F. Huet, and F. Baude. A
survey of structured p2p system for rdf data storage
and retrieval. Transactions on Large-Scale Data and
Knowledge Centered Systems III, pages 20–55, 2011.

[9] A. Flores, G. Palma, and M.-E. Vidal. Graphium:
Visualizing performance of graph and rdf engines on
linked data. International Semantic Web Conference
2013, pages 133–136, 2013.

[10] S. Harris, N. Lamb, and N. Shadbolt. 4store: The
design and implementation of a clustered rdf store.
The 5th International Workshop onScalable Semantic
Web Knowledge BaseSystems (SSWS2009), 2009.

[11] M. Hepp, P. De Leenheer, A. De Moor, and Y. Sure.
Ontology Management: Semantic Web, Semantic Web
Services and Business Applications, chapter 4:
Ontology Reasoning with large data repositories.
Springer, 2008.

[12] F. Michel, L. Djimenou, C. Faron-Zucker, and
J. Montagnat. Translation of relational and
non-relational databases into rdf with xr2rml. In
Proceeding of the WebIST 2015 conference, pages
43–54, 2015.

[13] R. muro Mariano, R. Diego, S. Mindaugas, B. Timea,
and D. Calvanese. Evaluating sparql-to-sql translation
in ontop. CEUR Workshop Proceedings, pages 94–100,
2013.

[14] A. Owens, A. Seaborne, and N. Gibbins. Clustered
tdb: A clustered triple store for jena. 2009.

[15] N. Papailiou, I. Konstantinou, D. Tsoumakos,
P. Karras, and N. Kowiris. H2rdf+: High-performance
distributed joins over large-scale rdf graphs. Big Data,
2013 IEEE International Conference on, pages
255–263, 2013.

[16] R. Punnoose, A. Crainiceanu, and D. Rapp. Rya: A
scalable rdf triple store for the clouds. Proceedings of
the 1st International Workshop on Cloud Intelligence,
2012.

[17] M. Salvadores, G. Correndo, S. Harris, N. Gibbins,
and N. Shadbolt. 4sr - scalable decentralized rdfs
backward chained reasoning. 9th International
Semantic Web Conference ISWC 2010, pages 137–140,
2010.

[18] B. Wu, Y. Zhou, P. Yuan, H. Jin, and L. Liu.
Semstore: A semantic-preserving distributed rdf triple
store. Proceedings of the 23rd ACM International
Conference on Conference on Information and
Knowledge Management, pages 509–518, 2014.


