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Abstract: Travelling waves in a spring-block chain sliding down an inclined plane are studied.
For a piecewise-linear spinodal friction force, we construct analytically front waves. Pulse waves
are obtained as the matching of two travelling fronts with identical speeds. Explicit formulas
are obtained for the wavespeed and the wave form in the anti-continuum limit. The link with
propagating phenomena in the Burridge-Knopoff model is briefly discussed.
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Propagation d’ondes dans une chaîne de blocs glissant le
long d’une pente.

Résumé : On étudie la propagation d’ondes dans une chaîne de bloc-ressort glissant sur un
plan incliné. Pour une force de frottement spinodale linéaire par morceaux, nous construisons
analytiquement des ondes de type front. Les ondes pulses sont obtenues comme la concaténation
de deux fronts dont les vitesses de déplacement sont identiques. Des expressions explicites pour
la forme de l’onde et sa vitesse sont obtenues dans la limite anti-continue. Le lien avec la
propagation d’ondes dans le modèle de Burridge-Knopoff est brièvement discuté.

Mots-clés : Propagation d’ondes, système bloc-ressort, excitabilité, équation différentielle
linéaire par morceaux



Travelling waves in a spring-block slider model 3

1 Introduction

Spatially discrete extended systems have a wide range of applications ranging from natural sci-
ences to engineering or social sciences. In physics, they frequently appear as ideal mass spring
systems with nearest-neighbours coupling and have been used extensively to describe the dy-
namics of microscopic structures such as the vibration in crystals or micromechanical arrays
[12, 13, 18] or to approximate the macroscopic behaviour of deformable systems. Recent studies
on soft media have driving a renewed interest in the dynamics of elastically coupled systems with
a special emphasis on transition waves [17].
In this work we consider a spring-block system that slides down a slope due to gravity (see Fig.
1). Each block is subjected to a nonlinear friction force. This system offers a simple macroscopic
model for the frictional interaction of two structures. We consider here a friction force of spin-
odal type (see Fig. 2 for an example). Such friction laws have been reported to induce excitable
dynamics [3] reminiscent of neural excitability [11, 9], i.e., a perturbation above a certain thresh-
old produces a large excursion in the phase space before returning to an equilibrium state. In
biology, it is well documented that a large class of excitable media is able to support nonlinear
solitary waves [15]. It has been recently shown that excitable mechanical systems also have the
capacity to induce self-sustained solitary waves [6, 5, 14]. In contrast with classical excitable
media, these systems are elastic rather than diffusive.
In many studies, the analysis of discrete travelling patterns heavily relies on a continuum ap-
proximation of the original model. In the spring-block model presented here, we directly tackle
the discrete nature of the equations and use an idealized piecewise-linear friction force to derive
exact expressions for propagating waves. This bilinearization approach has been used in a variety
of contexts to study travelling waves in lattices, see e.g. [10, 3, 21, 8, 1, 23, 25, 24, 19, 20].
The paper is organized as follows. We first derive in Sec. 2 the governing equations for the
chain of elastically coupled blocks. Then we study in Sec. 3 the dynamical properties of an
isolated block and demonstrate that a bistable behaviour exists when a spinodal friction force is
considered. In Sec. 4 we perform numerical simulations of the coupled system and show that the
bistability property induces travelling patterns, such as fronts and pulses. In Sec. 5 we construct
the travelling fronts analytically using a piecewise-linear friction force. The anti-continuum limit
is studied in Sec. 6. The link between front and pulse waves is studied in Sec. 7. We then
conclude by connecting the results to a dynamical model of an earthquake fault, the so-called
Burridge-Knopoff stick-slip model.

2 Model

Let us consider an isolated block of mass m and position x(t) that slips down a slope under
gravity and subject to a velocity-dependent friction force F

(
dx
dt

)
. The dynamical equations read

m
d2x

dt2
+ F

(
dx

dt

)
= G (1)

where G is the tangential component of the gravity force. A steady state of (1) exists when the
block achieves a constant velocity motion dx

dt = V where F (V ) = G. Let us consider an infinite
chain of identical blocks linearly coupled through Hookean springs of stiffness k that slips at the
constant speed V over an inclined surface (see Fig. 1). The dynamical equations in a frame
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4 Morales & James & Tonnelier

moving at velocity V are given by:

dyn
dt

= un,

m
dun
dt

= k∆dyn − F (V + un) +G, n ∈ Z
(2)

where yn represents the displacement of the nth block from the steady sliding state and un its
velocity. The term ∆dyn = yn+1 − 2yn + yn−1 is the discrete Laplacian.

V
k

m

θ

g

Figure 1: Mechanical representation of the block-spring slider model where m is the mass, k is
the spring constant and V is the sliding velocity. The steady state corresponds to F (V ) = G
with G = mg sin θ.

The system may be interpreted as a variant of the Burridge-Knopoff model [2] where the
shear stress described by the local potential is replaced by a constant tangential force induced
by gravity. The dynamics of system (2) is explored for three normalized non-monotonic friction
laws Fε, Fc and F0, depicted in Fig. 2A-C and given by

Fε(v) =
[
1− α+

√
N(v)

] v√
ε+ v2

,

Fc(v) = 3.2v3 − 7.2v2 + 4.8v, (3)
F0(v) = v/a− αH(v − a),

where N(v) = ε+ 4 max(|v| − a, 0)2 + α2 max(a− |v|, 0)2, and H is the Heaviside step function.
For convenience, the cubic friction force Fc is given for a = 1 where a is the location of the local
minimum, i.e. the transition point from velocity-weakening (v < a) to velocity-strenghtening
(v > a) regime. The friction function Fε describes a regularized generalized Coulomb law as
ε → 0. The cubic friction force Fc describes a smooth spinodal friction law similar to the one
introduced in [6]. The piecewise linear function F0 reduces the velocity-weakening region to a
jump discontinuity. It captures some properties of spinodal friction laws and is convenient for
analytical computations.

3 Bistable single block dynamics

For a single block, (2) reads

dy

dt
= u.

(4)

m
du

dt
= −F (V + u) + F (V ).

Inria



Travelling waves in a spring-block slider model 5
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Figure 2: Non-monotonic friction laws. (a) Coulomb-like friction force Fε, where ε = 10−4. (b)
The cubic friction force Fc(v), where b = 0.5, a = 1 and α = 0.2. (c) The piecewise linear friction
force F0(v).
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Figure 3: Bifurcation diagrams of the single block model. Stationary state, u, as a function of the
stationary sliding velocity, V , for (a) regularized generalized Coulomb friction force Fε (a = 1,
α = 0.2, ε = 10−4) (b) the cubic friction force Fc and (c) the piecewise linear friction force F0

(a = 1, α = 0.2)). Solid lines represent stable states (denoted U1 and U3) and dotted lines are
for unstable states (U2).

The y-nullcline is defined by u = 0 whereas the u-nullcline is obtained by solving F (V +u) =
F (V ) so that the vertical axis u = 0 always defines in the (u, y) plane the set of fixed points for an
isolated block. It is easy to check that the two associated eigenvalues are given by λ1 = −F ′(V )

m ,
λ2 = 0 so that the equilibrium straight line is stable (but not asymptotically stable). In (4),
the dynamics of the velocity u does not depend on the position y so that system (4) behaves
as a one dimensional dynamical system whose bifurcation diagram is shown in Fig. 3 for the
three friction laws (3) where V is taken as the bifurcation parameter. For V ∈ (a, Vmax), where
Vmax is the velocity value such that F (Vmax) equals the local maximum in F and Vmax > a,
there exist three fixed points U1 < U2 < U3 = 0 whose stability is governed by the eigenvalue
µi = −F ′(V+Ui)

m , i ∈ {1, 2, 3}, respectively. A saddle-node bifurcation occurs at V = Vmax and a
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6 Morales & James & Tonnelier

transcritical bifurcation takes place at V = a. For V ∈ (a, Vmax), the two fixed points U1 and U3

are stable whereas U2 is unstable and behaves as an excitation threshold. For an initial condition
below U2 the trajectory of the system tends towards U3 = 0, whereas for a sufficiently strong
perturbation the system reaches asymptotically the state U1 illustrating the excitable dynamics
of an isolated block. Depending on the initial state, the system can switch from a neighbourhood
of U3 to U1 and vice versa. For the cubic friction force Fc(v), the threshold is given by

U2 = −3

2
V +

9

8
+

1

8
∆(V ) (5)

where ∆(V ) =
(
−48V 2 + 72V − 15

)1/2 (one has ∆(V ) ∈ R for V ∈ [1/4, 5/4]). We have

U1 = −3

2
V +

9

8
− 1

8
∆ (V ) ,

and Vmax = 5/4. For the friction force F0(v), the threshold is simply defined as

U2 = a− V, (6)

the stable fixed point u1 is given by
U1 = −αa, (7)

and we have Vmax = a(1 + α). For the regularized generalized Coulomb law Fε, as ε → 0 the
threshold converges to

U2 = (a− V )

[
1 +

2

α

]
and the stable fixed point u1 to

U1 = −V

and we have Vmax = a(1 + α
2 ). In the following we are interested in the excitability regime where

the velocity of the single block has two stable steady states and we fix a V value in the interval
delimited by the two bifurcation points, i.e. V ∈]a, Vmax[. As we will show in the sequel, the
bistability property is a key feature for the existence of travelling fronts in the block-spring chain.

4 Travelling waves
Let us consider the block-spring slider model with the regularized generalized Coulomb law Fε.
We choose parameters so that each block exhibits a bistable behaviour. The parameters of the
friction law are those of Fig. 3(a). Model (2) can be rewritten in terms of velocity as

m
d2un
dt2

= k∆dun −
dun
dt

F ′(V + un). (8)

We initialize the network by applying a suitable perturbation to the steady state U3 = 0. A
localized perturbation is applied on the first block at the left edge of the network, see Fig. 4
for more details. We consider a finite chain of blocks with free boundary conditions. For the
numerical simulations, we use the adaptive Lsoda solver with a time step ∆t = 0.001 and with
a minimal error tolerance of 1.5e − 8. Unless stated otherwise, we take m = 0.15. We observe
the existence of travelling fronts as shown in Fig. 4(a). In addition, two types of pulse solutions
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Figure 4: Numerical simulations of equation (8) with the regularized Coulomb friction force
Fε with the same parameters as in Fig. 3. We display spatiotemporal plots of the velocity
variable un of (a) a travelling front (k = 0.5 and V = 1.01), (b) a broadening pulse (k = 1
and V = 1.025), (c) a steadily propagating pulse solution (k = 1 and V = 1.046). An initial
perturbation u0(0) = −10 is applied on the first block of the chain. Computations are performed
for m = 0.15.

are observed: (i) pulse waves with expanding width and (ii) pulse waves with constant shape as
plotted in Fig. 4(b) and (c), respectively. Propagating fronts (similar to the one shown in Fig.
4(a)) are the dominant pattern when the threshold is close to the resting state, i.e., for V close
to a (|U2| � 1). The speed of the propagating front increases with the coupling value k but,
at the same time, the parameter range where front waves exist shrinks (without vanishing). As
the stationary sliding velocity increases, a front to pulse transition occurs where the excitation
spreads over the network and leads to pulses with expanding width (see Fig. 4(b)). The rate of
expansion of the enlarging pulse decreases as the sliding velocity increases leading to the existence
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Figure 5: Plots of the velocity waveforms un(t) of the block-spring model in the travelling wave
coordinate ξ = n − ct. The wave profiles in (a,b) are obtained with the regularized generalized
Coulomb law Fε and correspond to the travelling waves shown in Fig. 4(a,c), respectively. Plots
(c) and (d) represent the wave profiles obtained with the cubic friction force, Fc. Plots (e) and (f)
represent the wave profiles obtained with the piecewise linear friction law F0. The wave speed is
(a) c = 1.95, (b) c = 2.21, (c) c = 3.06, (d) c = 3.16, (e) c = 3.16 (f) c = 1.45. For the piecewise
linear law, we use a = 1 and α = 0.2. Other parameters are those of Fig. 4 for (a-b) and we take
(c) V = 1.025, k = 1 (d) V = 1.18, k = 2, (e), V = 1.025, k = 1, (f) V = 1.1, k = 1.

of a pulse with constant width as shown in Fig. 4(c). For V → Vmax, the threshold approaches
the fixed point U1 and a perturbation fails to produce a travelling pattern. Qualitatively similar
results are obtained for the cubic friction force Fc and for the piecewise linear friction force F0.
The profiles of the travelling waves observed in Fig. 4(a,c) are shown in Fig. 5(a,b), respectively,
and are compared with those obtained with the cubic law (Fig. 5(c,d)) and the piecewise-linear
law (Fig. 5(e,f)). The travelling patterns for the three friction forces have similar shapes and
mainly contrast in their amplitude that is determined by the distance between the two stable
fixed points. A non-monotonic wave profile is observed for the travelling fronts with the existence
of a dip behind the front (see Fig.5(c, e) whereas the dip is too small to be seen in Fig.5(a)).
Interestingly, similar profiles were obtained for traveling fronts in a chain of bistable oscillators
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Travelling waves in a spring-block slider model 9

[7]. Qualitatively, these results are not affected by the mass parameter (simulations not shown).
The enlarging pulse observed in Fig. 4(b) may be seen as the superposition of two travelling
fronts with two different propagating speeds (see Fig. 6). The initial front is qualitatively similar
to the waveform shown in Fig. 5(a) and is followed by a travelling front that propagates in the
same direction but with a lower speed and that connects the two stable states in a reversed
order. The localized pulse waves shown in Fig. 5(b,d,f) are thus expected to appear when the
two travelling fronts have the same speed. These observations are analytically explained in the
next section for the piecewise-linear law F0.

−25  0  25

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

ξ

Figure 6: Plot of the velocity waveforms un(t) of the block-spring model. The two localized
pulses correspond to a snapshot of the travelling pattern shown in Fig. 4(b) at two different
locations (n = 25, n = 50). The initial front propagates at speed c = 2.45 and the rear front at
c = 2. Other parameters are those of Fig. 4(b)

5 Construction of travelling fronts for the piecewise-linear
friction force

A travelling front solution of (8) takes the form:

un(t) = ϕ(n− c t) (9)

where
ϕ(∞) = U3 = 0 and ϕ(−∞) = U1 (10)

with U1 6= 0 a stable equilibrium. The function ϕ describes the waveform, and c is the wave
speed that has to be determined. Substitution of (9) into (8) gives the advance-delay differential
equation

c2mϕ′′(ξ) = k(ϕ(ξ + 1) + ϕ(ξ − 1)− 2ϕ(ξ)) + c
d

dξ
F0(V + ϕ(ξ)) (11)

where ξ = n − ct ∈ R is the travelling wave coordinate. Front solutions connect two different
stable steady states as n → ±∞. In contrast, travelling pulses tend towards the same stable
equilibrium as n→ ±∞.
We consider here the piecewise linear force F0 and we assume that each block is in a bistable
regime, i.e. we have V ∈ (a, a(1 + α)) and U1 = −αa as in (7). We assume that the travelling
front solution crosses the threshold (6) for only one value of ξ. Translation invariance of travelling
waves allows us to fix this value to ξ = 0 and we seek for a solution such that ϕ(ξ) < a− V for ξ < 0,

ϕ(0) = a− V,
ϕ(ξ) > a− V for ξ > 0.

(12)
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10 Morales & James & Tonnelier

Using (12) to simplify the nonlinear term F0(V + ϕ), system (11) takes the form

c2mϕ′′(ξ) = k [ϕ(ξ + 1) + ϕ(ξ − 1)− 2ϕ(ξ)] + . . .
c

a
ϕ′(ξ)− αcδ(ξ), (13)

where δ(ξ) is the Dirac delta function.
Equation (13) is a linear non-autonomous differential equation so that one may attempt to use
the Fourier transform to derive an analytic solution. However a certain amount of care is needed
to correctly handle the Fourier transform of ϕ due to the nonzero boundary condition at −∞.
We look for ϕ(ξ) in the form{

ϕ(ξ) = αa [ψ(ξ) +H(ξ)− 1] ,
ψ(ξ) ∈ L2(R), limξ→±∞ ψ(ξ) = 0,

(14)

where ψ(ξ) has to be determined. Equation (13) is re-expressed in terms of ψ(ξ) and Fourier
transform is applied to determine ψ(ξ), and subsequently ϕ(ξ).
Integrating (13), gives

c2mϕ′ = k ∧′ ∗ ϕ+
c

a
ϕ+ αc(1−H), (15)

where ∧(ξ) = max (1− |ξ|, 0) is the tent function, and where we used for any f ∈ L1
loc(R),

(∧′ ∗ f)(ξ) =

∫ ξ+1

ξ

f(s)ds−
∫ ξ

ξ−1
f(s)ds. (16)

Note that (15) together with (10) remains equivalent to the original problem (13)-(10). Injecting
(14) into (15), gives

c2mψ′ − c

a
ψ − k ∧′ ∗ ψ = k ∧ −c2mδ, (17)

where we used the property ∧′ ∗ (H − 1) = ∧. Taking the Fourier transform as ψ̂(λ) =∫
R e
−2πiλξψ(ξ)dξ in (17), we obtain[

2iπλc2m− c

a
− k2iπλsinc2(λ)

]
ψ̂(λ) = ksinc2(λ)− c2m, (18)

where we used ∧̂(λ) = sinc2(λ) with sinc(λ) = sin(πλ)/πλ. Let us introduce

K̂(λ) =
(

2iπλ
[
c2m− ksinc2(λ)

]
− c

a

)−1
where one has K̂(λ),K(ξ) ∈ L2(R) (K denotes the inverse Fourier transform of K̂). From
dK̂
dλ ∈ L1(R) and using −2iπξK = F−1

(
dK̂
dλ

)
∈ L∞(R), one has limξ→±∞K(ξ) = 0 (F−1

denotes the inverse Fourier transform). From (18), we obtain

ψ = kK ∗ ∧ − c2mK. (19)

Since ∧ ∈ L1(R) we have K ∗ ∧ ∈ L2(R), and because K,∧ ∈ L2(R) then K ∗ ∧ ∈ C0(R) decays
to zero when ξ → ±∞. Consequently ψ(ξ) given by (19) satisfies the properties assumed in
(14), and defines a unique solution in L2(R). Therefore (14) is a solution of (13) with boundary

Inria



Travelling waves in a spring-block slider model 11

conditions (10). Regularity properties of ϕ(ξ) can be inferred from the following identity obtained
from (14) and (17)

c2m

αa
ϕ′ =

c

a
ψ + k ∧′ ∗ψ + k ∧ . (20)

This implies ϕ′ ∈ L1
loc(R) (since ∧′ ∗ ψ ∈ L2(R)) and thus ones has ϕ ∈ C0(R). We also

get from (15) that ϕ′ ∈ C0(R+) ∩ C0(R−), hence ϕ ∈ C1(R+) ∩ C1(R−), and thus (15) gives
ϕ′ ∈ C1(R+) ∩ C1(R−). We get finally

ϕ ∈ C2(R+) ∩ C2(R−) ∩ C0(R).

From the analytical expression of ϕ, we can derive an equation to determine the wave speed
of the front. Using (14), we set

ϕ(ξ) + ϕ(−ξ)
2

=
αa

2
[ψ(ξ) + ψ(−ξ)− 1] (21)

where ψ is defined by (19) (note that we used H(−ξ) = 1 − H(ξ) to eliminate the Heaviside
function). Using the threshold condition ϕ(0) = a − V from (12) together with (21) and (19),
we obtain that the wave speed satisfies

αac2m[K(0+) +K(0−)] + 2(a− V ) + 1 = 0. (22)

This scalar equation allows us to compute c numerically using a Newton-type method. Compu-
tation of K is done using a Gauss-Konrod quadrature formula in a truncated interval [−106, 106].
We restrict to c > 0 (the case c < 0 can be deduced by symmetry, see section 7). A plot of the
resulting analytical profile (14) is shown in Fig. 7(a) and compared with the numerical simula-
tion of (8). A perfect matching is realized between the two trajectories. The typical dependence
of the wave speed on the stationary sliding velocity, V , and on the coupling, k, is shown in Fig.
7(b).

6 Anti-continuum limit
In this section the small coupling limit is explored. We consider the case c > 0 (see section 7 for
the case c < 0). From (17) and (19) with k → 0, we have the leading order equation

c2mK ′ − c

a
K − k ∧′ ∗K = δ, (23)

where we look for a solution of the form

K = K0 + kK1 +O(k2). (24)

Inserting (24) in (23), and equating orders of leading terms in k, we obtain

c2m(K ′0 − νK0) = δ, (25)
c2m(K ′1 − νK1) = ∧′ ∗K0, (26)

where ν−1 = cam. Observe (25) has the unique bounded solution

K0(ξ) = − 1

c2m
eνξH(−ξ), (27)

RR n° 8995
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Figure 7: (a) Travelling front solution computed from the explicit formula (14) where k =
0.3, V = 1.025, a = 1 and α = 0.2 (full line). The trajectory is indistinguishable from the
ones obtained from the numerical simulation of the chain. The asymptotic approximation (29)
obtained for k � 1 is also shown (dashed grey). We obtain c = 1.55 from the threshold condition
(12) (the dashed line defines the threshold u2 = a−V ). (b) Wave speed curves in the (c, k) plane
obtained from (22) for V = 1.025, 1.05, 1.075 and 1.1 (from right to left, respectively).

where K0 ∈ L1(R), hence the solution of (26) reads

K1 = K0 ∗ ∧′ ∗K0 = ∧ ∗K0 ∗K ′0,

=
1

c2m
∧ ∗K0 + ν ∧ ∗K0 ∗K0, (28)

where we used K ′0 = 1
c2mδ+ νK0. Using (19) with (27) and (28), the approximation for ϕ up to

O(k2) reads

ϕ(ξ) = αa(eνξ − 1)H(−ξ) + αak
[
− c2mK1(ξ) + . . .

(K0 ∗ ∧)(ξ)
]

+O(k2) (29)

where we used the identity H(−ξ) = 1−H(ξ).
Expression (29) allows to obtain an approximation of the wave speed c for small k. From
ϕ(0) = a− V and (29), we get

a− V = αak
(
−c2mK1(0) + (K0 ∗ ∧)(0)

)
+O(k2),

= −αkc(∧ ∗K0 ∗K0)(0) +O(k2),

:= S(c)k +O(k2). (30)
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Figure 8: (a) Speed curves of the travelling front solution in the (c, k) plane for V =
1.0025, 1.005, 1.0075 and 1.01 (from right to left, respectively). Curve solutions (c, k) computed
with (34) (dashed grey) accurately describes the exact curves (c, k) computed with (22) (black
continuous) in the limit c → 0. (b) A zoom of the dashed square region in panel (a) is shown.
Parameter values are α = 0.2 and a = 1.

We obtain after some calculations (see appendix A)

S(c) = 2αma3 − αa2

c

(
(2amc+ 1)e−1/amc + 1

)
(31)

In order to approximate c, we drop O(k2) terms in (30). The wave speed can be estimated
from the solution of

ν − 2 + (ν + 2)e−ν =
V − a
αma3k

(32)

where ν−1 = acm. It can be shown that the left-hand side of (32) defines a bijective function
on R that passes through the origin so that (32) admits a unique solution. Let fix the values of
V and a, and look for solutions c ≈ 0 when k ≈ 0. Observing the exponential decay e−ν → 0 as
c→ 0, we have, from (31) and (30) the leading order approximation

ν = 2 +
V − a
αma3k

(33)

for k, c→ 0. Therefore we obtain the following approximation for the wave speed

c ∼ 1

2am+ V−a
αa2k

(34)
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14 Morales & James & Tonnelier

where the leading order approximation reads c ∼ αa2k
V−a .

Formula (34) was derived under the assumption that c is small for k small, and one can easily
check that c given by (34) satisfies c→ 0 as k → 0. To evaluate the accuracy of the asymptotic
approximation (34), we compare in Fig. 8 the (c, k) curves obtained from (22) with those
computed from (34) for different sliding velocities V . The asymptotic approximation (29) of the
waveform is compared with the exact solution (see Fig. 7(a)). A good matching between the
two wave profiles is found. Monotonicity analysis of the approximated waveform (29) shows that
the velocity profile is nonmonotonic, i.e. a dip always exists behind the front (see appendix B).

7 Reverse travelling fronts and pulses
In the previous section we have constructed travelling fronts connecting the two stable equilibria
U1 = −αa (when n → −∞) and 0 (when n → +∞). In this analysis we have restricted our
attention to travelling fronts with positive velocity c(V ) (for now we consider the dependency of
front velocity in V and discard the other parameters). Using symmetry arguments, we show in
the sequel the existence of travelling fronts with negative velocity satisfying the same boundary
conditions. We also deduce the existence of travelling fronts with positive velocity satisfying
reverse boundary conditions (un → −αa when n→ +∞ and un → 0 when n→ +∞).

Let us start with some symmetry considerations. Consider the advance-delay equation (11)
with boundary conditions

ϕ(−∞) = U1, ϕ(+∞) = U3. (35)

This problem admits the invariance

ϕ(ξ)→ ϕ(−ξ), c→ −c, (U1, U3)→ (U3, U1). (36)

Moreover, the piecewise-linear friction force F0 is antisymmetric about v = a, i.e. we have

F0(a+ h) + F0(a− h) = 2− α, for all h ∈ R.

As a consequence, one can readily check that (11)-(35) is invariant by the one-parameter family
of transformations

ϕ→ −λ− ϕ, V → 2 a+ λ− V, (U1, U3)→ (−λ− U1,−λ− U3), (37)

where λ ∈ R is arbitrary.
Now let us use the above invariances in order to obtain reverse travelling fronts. We define

ζ̃ = −αa − ϕ, so that ζ̃ and ϕ connect stable equilibria in reverse order at infinity. Applying
invariance (37) for U3 = 0 and λ = αa = −U1, it follows that ϕ is a solution of (11) if and
only if ζ̃ is a solution of the same equation with modified sliding velocity Ṽ = a (2 + α) − V .
From the results of section 5, this problem admits for all Ṽ ∈ (a, a(1 + α)) a front solution
ζ̃ satisfying the boundary conditions ζ̃(−∞) = −αa, ζ̃(+∞) = 0, with velocity c(Ṽ ) > 0.
From invariance (36), this equation possesses another front solution ζ(ξ) = ζ̃(−ξ) with velocity
−c(Ṽ ) < 0, which satisfies the boundary conditions ζ(+∞) = −αa, ζ(−∞) = 0. It follows that
for all V ∈ (a, a(1 + α)), equation (11) with sliding velocity V admits the front solution ϕ̃ =
−αa−ζ, satisfying the boundary conditions (10) and having a negative velocity −c(a (2+α)−V ).
Consequently, the search of front solutions of (10)-(11) can be reduced to the case c > 0 examined
in section 5, since all fronts with c < 0 can be deduced by symmetry.

Furthermore, ϕ(ξ) = ϕ̃(−ξ) = −αa−ζ̃(ξ) defines another solution of (11) with sliding velocity
V . This front has a positive velocity c(Ṽ ) = c(a (2 + α)− V ) and satisfies the reverse boundary
conditions

ϕ(−∞) = 0, ϕ(+∞) = −αa. (38)
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The coexistence of this reverse front and the front satisfying (10)-(11) with the different velocity
c(V ) can be used to understand the broadening of pulses reported in section ??, as well as the
existence of steadily propagating pulses observed for particular sliding velocities. Indeed, we
can see from Fig. 8(b) that the function V 7→ c(V ) is decreasing (this is also clear from the
leading order approximation (34)). Consequently, gluing the two above fronts to form a pulse
decaying to 0 at infinity, the trailing front (at the rear of the propagating pulse) will be slower
if V < Ṽ , resulting in a broadening of the pulse. This regime occurs for V ∈ (a, a(1 + α

2 )).
In the critical case V = a(1 + α

2 ), we have V = Ṽ and the two fronts have identical velocities,
thereby maintaining a steadily propagating pulse (this case is shown in Fig. 5(f)). Conversely,
for V ∈ (a(1+ α

2 ), a(1+α)), the trailing front is faster and no pulse wave can propagate. Starting
from an initial bump condition, an annihilation occurs when the trailing front reaches the leading
front. In conclusion, the condition for the existence of broadening pulses reads

V < V ∗ where V ∗ = a
(α

2
+ 1
)
. (39)

For V > V ∗, pulse fails to propagate whereas for V = V ∗ a stable pulse is observed, with a width
determined by the initial perturbation. In the small coupling limit, this pulse has a wave speed
c ∼ 2ak according to approximation (34).

8 Discussion
We studied localized travelling waves in a nonlinear lattice describing a block-spring chain sliding
down a slope and experiencing friction. Wave propagation was illustrated for different spinodal
friction laws. For a particular range of stationary sliding velocities, the medium is made of blocks
exhibiting bistabilities and supports nonlinear solitary transition waves (wave fronts). Interesting
links can be made with recent results on waves in bistable lattices [17, 16]. For an idealized
piecewise-linear friction force, we constructed analytically travelling fronts and analysed their
wave speeds. In contrast with the discrete Nagumo equation, propagating fronts exist at small
coupling values, i.e., propagation failure does not occur atnweak coupling strength. As already
observed in a different context [22], the travelling pulses are shaped by the concatenation of
two travelling front solutions and pulse propagation failure occurs when the back wave is faster
than the front wave. We determined analytically the parameter range where pulses of constant
width occur, i.e., the leading front and the trailing front have the same velocity. It is worth
noting that this analysis does not rely on a time scale separation and differs from the asymptotic
construction of pulses done in [4]. In particular, the pulse width is not determined by the equality
of the velocity of the two fronts but depends on the initial excitation.
The present study is also of interest for the understanding of the dynamics of the Burridge-

Knopoff model where the time evolution of the system is given by

γÿn = kc∆dyn − F (V + ẏn)− yn. (40)

Let us define yn(t) = −F (V ) + γzn(t/γ) and k = γkc. Assuming γ � 1, then, the Burridge-
Knopoff model (40) can be rewritten in the fast time scale as

z̈n = k∆dzn − F (V + żn) + F (V )

that coincides with (2). Therefore, for small γ values, the front waves of (2) provide useful
information on the dynamics of pulse propagation in the Burridge-Knopoff model (40). More
precisely, fronts approximate the transition region from the ground state to the excited state.
This is shown in Fig. 9 where the fast time scale of the Burridge-Knopoff model is accurately
reproduced by model (2).
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Figure 9: Comparison of a front solution of (2) (solid line) with a pulse supported by the
Burridge-Knopoff model (dotted line). Computations are performed for the cubic friction law Fc
and the following parameters : γ = 0.05, kc = 10, V = 1.025.

A Computation of S(c)

We compute here the explicit expression of S(c) = −αc (∧ ∗K0 ∗K0) (0). We reexpress K0 as
K0(ξ) = −G(ξ)

c2m where G(ξ) = eνH(−ξ), hence we have

S(c) = − α

c3m2
(∧ ∗G ∗G) (0). (41)

We have

(G ∗G)(−s) =

∫ 0

−s
G(τ)G(−s− τ)dτ = se−νsH(s)

with s > 0, therefore

(∧ ∗G ∗G) (0) =

∫
R
∧(τ)(G ∗G)(−τ)dτ

=

∫ 1

0

(1− τ)(τe−ντ )dτ

=
ν + e−νν − 2 + 2e−ν

ν3

=
e−ν

ν3
(2 + ν) +

−2 + ν

ν3

with ν = (cam)−1. We further calculate

e−ν

ν3
(2 + ν) +

−2 + ν

ν3
= −ν−2

[
2ν−1 − (2ν−1 + 1)e−ν − 1

]
(42)

Inserting (42) into (41), gives

S(c) =
αν−2

c3m2

[
2ν−1 − 1− (2ν−1 + 1)e−ν

]
, (43)

and (31) follows.
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B Monotonicity of the approximated front
From (28) and (29) one has the following asymptotic approximation of the wavefrom

ϕ(ξ) = αa(eνξ − 1)H(−ξ)− αck ∧ ∗K0 ∗K0(ξ) +O(k2)

We note ϕ1 = ∧ ∗K0 ∗K0 and we calculate ϕ1 = 0 for ξ ≥ 1 and

ϕ1(ξ) =
1

m2c4ν3
(
(2 + ν(1− ξ)eν(ξ−1) + . . .

+(2− ν(1 + ξ)eν(ξ+1) + (2νξ − 4)eνξ
)

for ξ ≤ −1. For ξ � 0 we obtain the following approximation

ϕ1(ξ) ∼ −2(cosh(ν)− 1)

m2c4ν2
ξeνξ.

Therefore the travelling front takes the leading form

ϕ(ξ) ∼ −αa+
2α(cosh(ν)− 1)k

m2c3ν2
ξeνξ

as ξ � 0. Using c ∼ αa2k
V−a we have

ϕ(ξ) ∼ −αa+ 2(V − a)(cosh(ν)− 1)ξeνξ (44)

that is a decreasing function of ξ for ξ � 0. The leading approximation of the wavefront is
zero for ξ ≥ 1 and has a decreasing profile for ξ sufficiently small, therefore the wavefront is
nonmonotonic and presents (at least) one dip after the front. Notice that the function occuring
on the righthand side of (44) has a minimum at ξ = −1/ν that may be used to approximate the
dip location.
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