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TECHNICAL NOTE Open Access

Gigwa—Genotype investigator for genome-
wide analyses
Guilhem Sempéré1,2*, Florian Philippe3, Alexis Dereeper2,4, Manuel Ruiz2,5,6,7, Gautier Sarah2,8

and Pierre Larmande2,3,6,9

Abstract

Background: Exploring the structure of genomes and analyzing their evolution is essential to understanding the
ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation
sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is
particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly
data exploration solutions.

Description: Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large
amounts of genotyping data by filtering it not only on the basis of variant features, including functional
annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability
properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In
addition, it provides a wide range of popular export formats.

Conclusions: The Gigwa application is suitable for managing large amounts of genomic variation data. Its
user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a
workstation or be used to provide a shared data portal for a given community of researchers.
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Findings
Background
With the advent of next-generation sequencing (NGS)
technology, thousands of new genomes of both plant
and animal organisms have recently become available.
Whole exome and genome sequencing, genotyping-by-
sequencing and restriction site-associated DNA sequen-
cing (RADseq) are all becoming standard methods to
detect single-nucleotide polymorphisms (SNPs) and in-
sertions/deletions (indels), in order to identify causal
mutations or study the associations between genetic var-
iations and functional traits [1–4]. As a result, huge
amounts of gene sequence variation data are accumulat-
ing in numerous species-oriented projects, such as 3000
rice genomes [5] or 1001 Arabidopsis genomes [6, 7]. In

this context, the Variant Call Format (VCF) [8] has be-
come a convenient and standard file format for storing
variants identified by NGS approaches.
VCF files may contain information on tens of millions

of variants, for thousands of individuals. Having to man-
age such significant volumes of data involves consider-
ations of efficiency with regard to the following aspects:

1. Filtering features. Such data can be processed by
applications like VCFtools [8], GATK [9], PyVCF
[10], VariantAnnotation [11] or WhopGenome [12]
to query, filter and extract expertized datasets for
day-to-day research. However, these tools are limited
to command line or programmatic application pro-
gramming interfaces (APIs) targeted at experienced
users, and are not suitable for non-
bioinformaticians.

2. Storage performance. Working with flat files is not
an optimal solution in cases where scientists need to
establish comparisons across projects and/or take
metadata into account. The use of relational

* Correspondence: guilhem.sempere@cirad.fr
1UMR InterTryp (CIRAD), Campus International de Baillarguet, 34398,
Montpellier, Cedex 5, France
2South Green Bioinformatics Platform, 1000 Avenue Agropolis, 34934
Montpellier, Cedex 5, France
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Sempéré et al. GigaScience  (2016) 5:25 
DOI 10.1186/s13742-016-0131-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-016-0131-8&domain=pdf
mailto:guilhem.sempere@cirad.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


databases is still widely prevalent within the range of
more integrated approaches. However, such
solutions have limitations when managing big data
[13]. In computational environments with large
amounts of heterogeneous data, the NoSQL
database technology [14, 15] has emerged as an
alternative to traditional relational database
management systems. NoSQL refers to non-
relational database management systems designed
for large-scale data storage and massively parallel
data processing. During the past 5 years, a number
of bioinformatics projects have been developed
based on NoSQL databases such as HBase [16, 17],
Hadoop [18–20], Persevere [21], Cassandra [22] and
CouchDB [23].

3. Sharing capabilities. This aspect is clearly best
addressed by providing client/server-based
applications, which enable multiple users to work on
the same dataset without the need to replicate it for
each user. There is, as yet, a considerable lack of
web applications able to handle the potentially huge
genotyping datasets that are emerging from mass
genotyping projects, and which would enable
biologists to easily access, query and analyze data
online.

4. Graphical visualization. A number of solutions have
been developed for the graphical visualization of
genomic variation datasets. Some of these have been
integrated into data portals associated with specific
projects (e.g. OryzaGenome [24], SNP-Seek [25])
and are, therefore, only relevant to a particular
community. Generic tools also exist (e.g. vcf.iobio
[26, 27], JBrowse [28]) and may be built upon to
create more versatile applications.

The Gigwa application, the name of which stands for
‘Genotype investigator for genome-wide analyses’, aims
to take account of all of these aspects. It is a web-based,
platform-independent solution that feeds a MongoDB
[29] NoSQL database with VCF or HapMap files con-
taining billions of genotypes, and provides a web inter-
face to filter data in real time. In terms of visualization,
the first version includes only an online density chart
generator. However, Gigwa supplies the means to export
filtered data in several popular formats, thus facilitating
connectivity with many existing visualization engines.

Application description
A single instance of the Gigwa application is able to dis-
play data from multiple databases, which can be chosen
from a drop-down menu at the top of the page. A data-
base may syndicate any source of genotyping data as
long as the variant positions are provided on the same
reference assembly. Gigwa supports work on a single

project at a time (although a project may be divided into
several runs, in which case new data connected to exist-
ing individuals are seen as additional samples). Project
selection may be changed from within the action panel
(Fig. 1) that sits to the right-hand side of the screen.
This panel also enables the launch of searches, toggles
the availability of browsing and exporting functions (be-
cause limiting the initial approach to the counting of re-
sults saves time), configures and launches the export,
checks the progress of ongoing operations, and can ter-
minate them if required.
The variant-filtering interface (top of Fig. 2) is both

compact and intuitive. In the top-left corner of this
panel, three lists allow multiple-item selection of vari-
ation types (e.g. SNPs, indels, structural variants), indi-
viduals and reference sequences. More specific filters
can be incorporated to refine searches using combina-
tions of the following parameters:

� ‘Genotypes’ - this filter makes it possible to retrieve
only variant positions that respect a specified
genotyping pattern when considering selected
individuals. If no individuals are selected, the
application takes them all into account. A dozen
predefined options (e.g. all same, at least one
heterozygous) are available, covering those cases
that are most frequently meaningful.

� ‘Minimum per-sample genotype quality’ and ‘Minimum
per-sample read depth’ - these individual-based filters
may be used, in the case of data from VCF files, to set
thresholds on the quality (GQ) and depth (DP) fields
assigned to genotypes [30]. Individuals that do not
meet these criteria are subsequently treated as missing
data.

� ‘Authorized missing data ratio’ - this filter allows a
maximum threshold of acceptable missing data
among selected individuals to be defined. Its default
value is 100 %, that is, accepting all data.

� ‘Minor allele frequency’ (MAF) - this filter retains
only the variant positions for which the MAF
calculated on selected individuals falls in the

Fig. 1 Action panel enabling project selection, progress indication,
abort and export functionalities
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specified range (by default, 0–50 %). It is only
applicable to bi-allelic markers.

� ‘Number of alleles’ - this filter allows specification of
the number of known alleles the targeted variants
are expected to have.

� ‘Position’ - this filter restricts the search to variants
located in a given range of positions in relation to
the reference.

� SnpEff widgets - these allow additional filtering on
variant effects and gene names for data originating
from VCF files that have been annotated with
SnpEff [31]. The application automatically detects
such additional data and is able to handle both types
of annotation field, that is, ‘EFF’ (SnpEff versions
prior to 4.1) and ‘ANN’ (SnpEff versions from 4.1
onwards).

Matching variants are displayed in paginated form (see
bottom of Fig. 2) after application of the filters. Results
are listed in a sortable table that provides the main attri-
butes, namely ID (when provided in the input file), refer-
ence sequence, start and stop positions, alleles, variant
effect and gene name (the latter two only being dis-
played if available). In addition, the user can focus on a
specific position and display variant details, including
selected individuals’ genotypes, using the magnifier at
the end of each row. These details appear in a dia-
logue (Fig. 3) that, for each run in the selected project,
provides:

� additional variant-level attributes or annotations
(global attributes related to the variant), on the left
of the screen;

Fig. 2 Variant-filtering interface, allowing search criteria definition and result browsing

Fig 3 Variant detail dialogue, providing variant metadata and genotype-level information
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� on the right of the screen, a box indicating each
individual’s genotype, along with genotype-level
attributes (e.g. depth, quality). A checkbox allows
the display of genotypes for unselected individuals.
Any GQ and DP values that are below specified
thresholds, and have thus led to a genotype being
considered as missing, are highlighted with a red
background.

Data export and visualization
The Gigwa application offers seven standardized formats
(VCF, Eigenstrat, GFF3, BED, HapMap, DARwin and
PLINK) in which to export filtered results in compressed
files. Export is individual-based. Thus, if the data selec-
tion includes several samples that belong to the same in-
dividual, only one genotype per variant is exported. If
these genotypes are inconsistent, the one most fre-
quently found is selected. If there is no most frequently
found genotype, one is picked at random.
Where data that originated from VCF files is being re-

exported in the same format, the application takes
phased genotypes into account: a procedure was imple-
mented to maintain phasing information (i.e. haplotype
estimation) in the database and recalculate it at export
time, even if intermediate positions had been filtered
out.
Exports can be directed either to the client computer

or to a temporary URL on a web server, thus making the
dataset instantly shareable, for example, with Galaxy
[32]. Such links remain active for a week. In addition,
when applied to the VCF format, this ‘export to URL’
feature provides the means for users to view selected
variants in their genomic context in a running instance
of the Integrative Genomics Viewer (IGV) [33].
The current selection may also be directed to an on-

line, interactive, density chart viewer. The variant distri-
bution of each sequence may then be observed, with the
ability to filter on variation type, and these figures can
also be exported in various file formats (i.e. PNG, JPEG,
PDF and SVG).

Technical insights
Third-party software involved
MongoDB [29] was chosen as the storage layer for several
reasons: its complex query support, its scalability, its
open-source nature and its proactive support community.
The server application was developed in Java and takes ad-
vantage of several Spring Framework modules [34] (e.g.
Spring Data). The client interface was designed using Java
Server Pages (JSP) and jQuery [35]. Some import and ex-
port procedures make use of the SAMtools HTSJDK API
v1.143 [36]. The density visualization tool was imple-
mented using the HighCharts Javascript library [37].

Data structure
The data model for storing genotyping information, de-
fined using Spring Data documents, is shared with the
WIDDE application [21] and allows a single database to
hold genotypes from multiple runs of multiple projects.
This model is marker-oriented and mainly relies on two
basic document types: VariantData, which embeds
variant-level information (e.g. position, marker type);
VariantRunData, which contains genotyping data along
with possible metadata.
A collection named taggedVariants is not tied to a

model object because its documents only contain variant
IDs. However, it serves an important purpose by provid-
ing dividers (‘landmarks’) that partition the entire collec-
tion of variants into evenly sized chunks. These chunks
are then used when querying directly on the Varian-
tRunData collection (i.e. without a preliminary filter on
variant features) to split the query into several sub-
queries, which confers several advantages (see Querying
strategy below).
Less significant model objects include GenotypingProject,

which keeps track of elements used to rapidly build the
interface (e.g. distinct lists of sequence names and variant
types involved in the project), and DBVCFHeader, which
simply stores the contents of headers for runs imported in
VCF format.

Querying strategy
When the Search button is clicked, the values selected
in the search-interface widgets are passed to the server
application. They may then be used to count and/or
browse matching variants.
The first time a given combination of filters is invoked,

the count procedure is launched to establish the number
of variants that match the combination. This result is
then cached in a dedicated collection so that whenever a
user subsequently repeats the same search, the result
will be available instantly.
Once the count result has been displayed to the user, if

the ‘Enable browsing and exporting’ box is checked, a sec-
ond request is sent to the server, invoking the find proced-
ure that eventually provides paginated, detailed variant
information in the form of a comprehensive table.
In general, serving such requests (count or find) may

be divided into two consecutive steps:

� a simple, preliminary query of variant features (variant
type, sequence, start position), which is applied to
indexed fields and therefore executes quickly;

� the main aggregation query, which is split into
several partial queries aimed at running in
simultaneous threads on evenly sized variant chunks
of the VariantRunData collection. This technique
not only improves performance, but also allows
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Gigwa to provide a progress indicator and the
facility to terminate a run before it has finished. The
method used for dividing the main query depends
on whether or not a preliminary filter was executed
beforehand. If it was, the application holds a subset
of variant IDs as a consequence, which it uses to split
the data using MongoDB’s $in operator in each sub-
query. Otherwise, the contents of the taggedVariants
collection are used, in conjunction with the $lte (less
than or equal) and $gt (greater than) operators, to
define the limits of each sub-query’s chunk.

Summary of features
Gigwa’s value resides in the following features:

� Support for large genotyping files with up to several
million variants

� Responsive queries even in the case of a local
deployment

� Intuitive graphical user interface allowing the
definition of precise queries in a few clicks

� Filtering on functional annotations
� Ability to abort running queries
� Display of query progress
� Support of multiple data sources for a single

instance
� A multi-user mode which enables both public and

private access to databases to be defined
� Support for incremental data loading
� Support for seven different export formats
� Easy connection with IGV for integration within a

consistent genomic context
� No loss of phasing information when provided (VCF

format only)
� Support for haploid, diploid and polyploid data
� Online variant density viewing.

The Gigwa application therefore represents a very effi-
cient, versatile and user-friendly tool for users with stand-
ard levels of expertise in web navigation to explore large
amounts of genotyping data, identify variants of interest
and export subsets of data in a convenient format for fur-
ther analysis. We believe that its large panel of undoubt-
edly useful features will make Gigwa an essential tool in
the increasingly complex field of genomics.

Benchmarking
In order to assess Gigwa’s performance, we conducted
benchmarks against comparable applications.

Hardware used
All tests were run on an IBM dx360 M2 server with:

� two quad-core CPUs (Core-i7 L5520 at 2.26 GHz);

� 36 GB RAM (DDR3 at 1333 MHz);
� 250-GB SATA2 hard drive.

Dataset selection
As our base dataset, we chose to use the CoreSNP data-
set from the 3000 Rice Genomes Project [5, 38], which
at the time of download (v2.1) contained genotypes for
3000 individuals on 365,710 SNPs. This dataset was first
converted to a 4.09-GB VCF file using VCFtools, from
which three progressively smaller datasets were then
generated by successively dividing the number of vari-
ants by ten, i.e. resulting in datasets of 36,571, 3658 and
366 SNPs, respectively.

Benchmark comparisons
We considered it appropriate to compare Gigwa’s per-
formance with that of:

1. VCFtools (v0.1.13) [12];
2. A MySQL (v5.6.28) [39] implementation of a

standard relational database model with indexes on
appropriate fields. Corresponding queries were
implemented as stored procedures, and both these
and the database schema are provided as
supplementary material within the supporting data.

In addition, the opportunity was taken to evaluate
the relative performance of the currently available
storage solutions offered by MongoDB v3.0.6, i.e. the
newly introduced WiredTiger (WT) storage engine,
configured with three different compression levels
(none, snappy and zlib), and the original MMapv1
storage engine.
Therefore, each of the benchmarking plots generated

contains six series: VCFtools, MySQL, Gigwa-MMapv1,
Gigwa-WT-none, Gigwa-WT-snappy and Gigwa-WT-
zlib. MongoDB queries were launched via the Gigwa
interface because, internally, the application splits them
into a number of partial, concurrent queries.

Benchmark queries
Two kinds of queries that we considered representative
were executed as benchmarks on each dataset for each
tool:

� Location-based query: a query counting variants
located in a defined region of a chromosome
(chromosome 3, 1 Mbp to 5 Mbp).

� Genotype-based query: a query counting variants
exhibiting a given MAF range (10 to 30 %) on the
first 2000 individuals (out of 3000).

All benchmarks were executed three times, except
for the MAF queries in Gigwa where the different
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MongoDB configurations gave response times showing
high degrees of heterogeneity. In order to establish
more distinction between them, these benchmarks
were therefore executed 12 times. In all cases, average
response times were calculated and then reported
through graphical plots. The caching system imple-
mented in Gigwa was disabled for the duration of the
benchmarking.

Benchmark results
In the case of the location-based filter benchmark
(Fig. 4), the MySQL solution was the fastest, with re-
sponse times that were negligible on the smallest data-
set, and never more than 0.05 s on the largest. In
comparison, Gigwa queries were less responsive but still
remained fairly fast, never taking more than 0.3 s on the
largest dataset. However, VCFtools proved so much

Fig. 4 Response-time plot by tool for first benchmarked query (location-based filter). VCFtools is by far the slowest option

Fig. 5 Response-time plot by tool for second benchmarked query (MAF filter). MySQL is by far the slowest option
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slower than all the other alternatives benchmarked that
we had to exclude its last record for the plot to remain
readable. This difference can be explained by the fact
that database engines typically take advantage of pre-
built indexes that lead directly to results, whereas
VCFtools has to scan the entire file. Relational databases
are usually the most efficient for this kind of simple
query because their indexing mechanisms have been op-
timized over decades.
In the case of the MAF filter benchmark (Fig. 5), the

fastest solution was VCFtools, followed by the two most
compressed MongoDB databases (Gigwa-WT-zlib and
Gigwa-WT-snappy), and then by the two least com-
pressed MongoDB databases (Gigwa-MMapv1 and
Gigwa-WT-none). The MySQL engine performed so
poorly here that it was considered unnecessary to run
the longest query on it. In practice, the type of analysis
involved in this particular benchmark requires that all
stored positions be scanned. VCFtools excels here be-
cause it is a C++ program working on flat files, which
means that the time needed to access each record is
negligible, whereas database engines need to obtain/de-
flate objects before manipulating them. In contrast to
the situation seen in the first filter benchmark, a signifi-
cant difference in performance emerged here between
the various storage solutions offered by MongoDB.
There is more room in this benchmark for performance
distinctions because memory consumption becomes
more crucial when executing a multi-step aggregation
pipeline rather than a simple index count. WiredTiger
applies compression to indexes, which leaves more
memory available for other tasks, thus increasing per-
formance. In addition, WiredTiger is known to perform
better than MMapv1 on multi-threaded queries, which
are being used by Gigwa.
Thus, Gigwa configured with WiredTiger-snappy (or

WiredTiger-zlib in the case of constraints on disk space)
appears to be an excellent compromise, being the only
solution that responds in a reasonable time to both
kinds of query. Furthermore, although it was beyond the
scope of this benchmark, we should mention that the
greatly reduced storage space required by both
WiredTiger-snappy and WiredTiger-zlib, when com-
pared with that required by MMapv1, provides an add-
itional justification for choosing WiredTiger in most
cases.

Conclusions
We developed Gigwa to manage large genomic variation
data derived from NGS analyses or high-throughput
genotyping. The application aims to provide a user-
friendly web interface that makes real-time filtering of
such data, based on variant features and individuals’ ge-
notypes, widely accessible. Gigwa can be deployed either

in single-user mode or in multi-user mode, with creden-
tials and permissions allowing fine-grained control of ac-
cess to connected databases.
We ran benchmarks on two kinds of queries - variant-

oriented and genotype-oriented - to compare Gigwa’s
performance with that of both VCFtools and a standard
MySQL model. Each of these latter tools performed best
in one benchmark but by far the worst in the other.
Gigwa, when configured with the WiredTiger storage
engine and either the snappy or zlib compression level,
appeared as an excellent compromise, performing almost
as well as the best solution in both benchmarks.
Future versions of Gigwa will include a RESTful API

to allow external applications to interact with Gigwa and
query data in a standardized manner, as well as add-
itional visualization tools and a Docker [40] package
aimed at distributing the tool as a solution capable of
functioning in platform-as-a-service (PaaS) [41] mode.
Further benchmarks will be conducted to evaluate the
application’s performance in a distributed environment
using MongoDB’s sharding functionality.

Availability and requirements

� Project name: Gigwa
� Project home page: http://www.southgreen.fr/

content/gigwa
� Operating system(s): Platform-independent
� Programming language: Java & MongoDB
� Requirements: Java 7 or higher, Tomcat 7 or

higher, MongoDB 3 or higher
� License: GNU GPLv3
� Restrictions to use for non-academics: None

Additional file

Additional file 1: Gigwa, Genotype investigator for genome-wide analyses.
Provides the MySQL scripts used for benchmarking and guidelines on
how to import data into Gigwa and configure its access for existing
users. (DOCX 95 kb)
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