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Abstract Deterioration modeling and Remaining Useful Life (RUL) estimation play an important role in
implementing a predictive maintenance program since it helps to predict early the failure time caused by
an incipient deterioration, and thus to provide sufficient time for maintenance crew to act before the actual
failure eventually occurs. One well-identified challenge in deterioration modeling is that equipment does not
always deteriorate following only one single mechanism, instead several deterioration modes can co-exist in
competition due to the dynamics and variability of operating and environmental conditions. In this paper, we
study the phenomenon where different modes co-evolve in parallel within a single component until one of them
lead the component to fail. The observations contain hence information of the states of each mode, leading the
inference problem being difficult. To deal with this problem, the Factorial Hidden Markov Model (FHMM) and
the variational approximation technique are adapted. The associated RUL estimation method is also developed.
To evaluate the performance of the proposed approach, a numerical study is given.

1. Introduction
Predictive Maintenance (PM) plays nowadays an important role in maintaining production equipment thanks to
its ability to eliminate unnecessary scheduled preventive maintenance operations as well as to avoid unforeseen
failures; hence it can significantly reduce the maintenance cost Jardine et al. (2006). Within a PM framework,
the RUL estimation is a key enabling task since it could provide sufficient time for maintenance engineers
to schedule an intervention or to acquire replacement components before an actual failure. As pointed out
in Gorjian et al. (2010), evaluation of the current equipment’s health state is an essential task in estimating
its RUL in practical applications. To this end, deterioration phenomena of the equipment should be carefully
investigated and properly modeled.

In the literature, stochastic models are often studied to model deterioration processes thanks to its capacity
of taking into account the stochastic nature of the deterioration phenomena. Depending on the types of its
states space, one can divide the stochastic models into two main classes: continuous or discrete. Lévy process
Van Noortwijk (2009), general path model Lu & Meeker (1993) are examples of the first class. Regarding
the continuous-state processes, we can list here Markovian-based models, such as Hidden Markov Models
(HMMs) Rabiner (1989), Hidden semi-Markov models (HsMM) Dong & He (2007). Compared to the first
one, the second class models the health states of equipment by a finite number of discrete states which could be
easier for maintenance engineers to interpreter the obtained results. A detailed review of deterioration models
used in reliability analysis can be found in Gorjian et al. (2010).

While modeling the deterioration processes, a well identified difficulty is to deal with the co-existence of
multiple modes of deterioration Compare et al. (2015); Le et al. (2016). These different mechanisms, coexisting
even within a single component, can lead to different temporal evolution behaviors of deterioration indicators.
An example of such phenomenon can be found in a rolling element bearing, an essential component of every
rotating machinery in industry. In effect, under operation, point defects such as cracks, pits and spalls appear-
ing on different constituent elements (i.e. outer race, inner race, cage, etc.) can lead to different deterioration
dynamics of the bearing Heng (2009). Taking this phenomenon into account is hence crucial both for a com-
prehensive assessment of the health state of equipment as well as for an accurate RUL estimation. To tackle
this problem, the concept of multi-branch models has been proposed recently by the current authors in Le
et al. (2016, 2015b). As Markov-based models, the multi-branch methods showed promising results in RUL
estimation compared to the ones obtained with the standard “mono-branch” models especially when multiple
deterioration modes co-exist. Nevertheless, the works in Le et al. (2016) considered only the modes competi-
tion in an incubation period, meaning that once one of them has already initiated, the equipment cannot change



to the others. In Le et al. (2015a), the modes transitions were allowed but the equipment can be only in one of
them at a time.

In this paper, we are interested in modeling the deterioration phenomenon where several modes coexist in
parallel. Specifically, different deterioration modes evolve independently and all contribute to observed default
symptoms. It is sufficient that only one of these modes reaches its own failure state can lead to the breakdown
of the equipment. The mixed contribution of the modes at the observation level leads to difficulties in diagnos-
ing the equipment’s health state as well as in predicting its RUL. To overcome these problems, we propose in
this paper a diagnostics/prognostics framework based on the factorial hidden Markov model (FHMM) Ghahra-
mani & Jordan (1997). The remainder of the paper is organized as follows. Section 2 is devoted to review
some mathematical background of the FHMM model and explain how to estimate its model parameters via an
approximated method. The application of the FHMM model for the diagnostics and prognostics of a bearing is
investigated in Section 3. Finally, conclusion follows in Section 4.

2. Factorial Hidden Markov Model
2.1. Model structure

The Factorial Hidden Markov Model (FHMM) is an extension of the HMM one with distributed state repre-
sentation which is a particular class of probabilistic graphical model Ghahramani & Jordan (1997). The model
consists of several branches in parallel in which each one can be considered as a single Markov chain. At any
instants, the distributed states all contribute to the observations as shown in Figure 1.
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Figure 1. Factorial Hidden Markov Model

Similar to the standard HMM models, states transitions within a branch m of the FHMM model is character-
ized by an initial state distribution π(m) and a state transition matrix P(m) Rabiner (1989) where the superscript
is used to denote the corresponding branch in this paper. A combination of the states in all constituent branches
at a given time t is called the meta-state, that is St =

(
S(1)t ,S(2)t , . . . ,S(M)

t

)
where M is the number of branches.

Furthermore, the states within the branch m can take one of K(m) discrete values, i.e. S(m)
t ∈

{
1,2, . . . ,K(m)

}
.

For the seek of simplicity, we assume in this paper that K(m) = K, ∀m. The generation to the case of different
K(m) values is straightforward Ghahramani & Jordan (1997).

In the FHMM model, the observation emitted at a given time depends on the individual states within the
branches at that time. Its density can be modeled as a function of the ones of the branch states:

p(Ot | St) = f
[
P
(

Ot | S(1)t

)
,P
(

Ot | S(2)t

)
, . . . ,P

(
Ot | S(M)

t

)]
(1)

The precise nature of the function f depends on the proportions to which the observations from the individual
components are mixed in the current one. The contribution of each component could depend on several factors
and is difficult to be determined precisely Reyes-Gomez et al. (2003). For continuous observations, a simple
form for this dependence is linear Gaussian Ghahramani & Jordan (1997). That is, the observation Ot is a
Gaussian random vector whose mean is a linear function of the component ones:

µt =
M

∑
m=1

w(m)
µ µ

(m)
t (2)

where µ
(m)
t represents the D dimensional mean vector of the Gaussian distribution corresponding to the com-

ponent state S(m)
t and w(m)

µ is a D×D weighting matrix.



Concerning the covariance parameter, there exists two main possibilities in the literature : global or com-
posed covariance approaches Reyes-Gomez et al. (2003). It should be noted that the composed covariance
could lead the model learning procedure being more complex than in the global covariance case since it intro-
duces more free parameters to be estimated. For the seek of simplicity, only the global covariance matrix is
considered in this paper, meaning that all factorial states have in common a covariance matrix C.

2.2. Parameters estimation

Denote Θ=
{

π(m),P(m),w(m)
µ ,C

}
m=1:M

the parameters vector of the FHMM model. Since the states are hidden,
the standard expectation-maximization (EM) algorithm Dempster et al. (1977) appears to be a suitable tool for
parameters estimation. However, as pointed out in Ghahramani & Jordan (1997), the expectation (E) step
is computationally intractable in this case. Therefore we adapt in this section the variational approximation
technique proposed by Ghahramani & Jordan (1997) to overcome this problem.

The basic idea of the variational technique is to approximate the posterior distribution over the hidden
variables P(S1:T | O1:T ) by a tractable distribution Q(S1:T ) where S1:T and O1:T denote the sequence of meta-
states and observations from time 1 to T . More specifically, at any kth iteration of the standard EM algorithm,
the Jensen’s inequality can be applied in computing the expected complete data log-likelihood as follows:

Q
(

Θ |Θk−1
)
= log ∑

S1:T

P(S1:T ,O1:T |Θ) = log ∑
S1:T

Q(S1:T )

[
P(S1:T ,O1:T |Θ)

Q(S1:T )

]
≥ ∑

S1:T

Q(S1:T ) log
[

p(S1:T ,O1:T |Θ)

Q(S1:T )

]
= F (Q,Θ)

(3)

This inequality provides a lower bound on the log-likelihood that can be used to obtain an efficient learning
algorithm. The difference between Q and F is given by the Kullback-Leibler divergence:

KL(Q||P) = ∑
S1:T

Q(S1:T ) log
[

Q(S1:T )

P(S1:T | O1:T ,Θnew)

]
(4)

By minimizing this divergence, the log-likelihood is assured to increase until it reaches a (local) maximum.
It should be noted that the function Q must be chosen to be tractable. Depending on the form of this function,

two variational techniques were proposed: completely factorized and structured variational inference Ghahra-
mani & Jordan (1997). Compared to the first one which factors the posterior probability such that all the state
variables are statistically independent, the second technique can preserve more the probabilistic structure of
the original FHMM model and hence will be used in this paper.

Based on this approximation technique, the parameters vector Θ is computed in the maximization (M) step.
More details about the calculation formulas can be found in Ghahramani & Jordan (1997).

2.3. State estimation and RUL prediction

Suppose that we have trained the FHMM model in an offline phase from the historical until-failure data. We
move now to an online phase where the deterioration signals of a monitored system are acquired in real time
via a condition monitoring system. The objective is to estimate the actual states of all the deterioration modes
at a given time and then predict the system’s RUL.

The estimation of the deterioration states given the observations in case of the FHMM model is itself a
complex task since it can be referred as the source separation problem found in the speech recognition com-
munity Reyes-Gomez et al. (2003). Several methods have been developed in the literature for accomplishing
this problem. One of the most simple solutions is to transform the FHMM model into a meta-HMM one with
KM “meta-states” and then applied the Viterbi algorithm Rabiner (1989) in a standard way. Although this
method leads to more computation time compared to another ones, its performance is still acceptable in several
practical applications since only the maximization is retained after each recursive iteration.

This method allows us to estimate the most likely sequence of meta-state given a sequence of observations.
The corresponding state sequences of each individual branch of the FHMM model is then obtained by decom-
posing it into a base-M system. After that, the last state of each decomposed sequence can be considered as the



current health state of the deterioration mode corresponding to that sequence. Given the estimated states, the
RUL can be defined as follows:

RUL = min
k

RUL(k) (5)

where RUL(k) is the remaining time for the mode k to reach the final state from its current state. In other words,
RUL(k) is referred as the RUL of a standard HMM model corresponding to the kth branch of the FHMM model.
The RUL probability density function (pdf) calculation for a standard HMM model for the discrete time case
can be found in Le et al. (2016).

Given the individual RUL density functions, the cumulative distribution function (cdf) of the overall RUL
of the FHMM model can be obtained by:

CDFRUL(x) = 1−P
(

RUL(1) > x,RUL(2) > x, . . . ,RUL(M) > x
)
= 1−

M

∏
k=1

(
CDF(k)

RUL(x)
)

(6)

3. Numerical study
In this section, the diagnostics and prognostics performances of the FHMM model are evaluated through the
case of a defected rolling element bearing with multiple point defects. The bearing is chosen because it is an
essential component for all rotating machinery found in industry. Firstly, we simulate vibration signals gener-
ated by a bearing in case that several point defects coexist within it. The kurtosis features are then extracted and
used as observations for training the FHMM model. The RUL estimation performance of the learned FHMM
model is compared with the one obtained by a standard HMM model.

3.1. Multiple point defects simulation with severity evolution

McFadden & Smith (1985) proposed a simple mathematical model for simulating the vibration signals pro-
duced by a bearing with multiple point defects. By assuming that the bearing operates under constant radial
load, the vibration response v(t) can be modeled as the product of repetitious impulses d(t) at the fault fre-
quency with the distribution of load q(t), convolved with an exponential decay h(t) due to damping:

v(t) = [d(t) ·q(t)]∗h(t)+n(t) (7)

where the notation ∗ represents the convolution operation and n(t) are the noises added to corrupt the signal.
Figure 2a shows the simulated raw vibration signals of the bearing in case that two point defects co-exist,

one is on the inner race and the other on the outer race. The co-existence of these two defects can be verified
on the frequency spectrum obtained through an envelope analysis (c.f. Figure 2b).
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Figure 2. Multiple point defects bearing simulation

This model although represents well the vibration signals of a defected bearing, it does not however take into
account the temporal evolution of the defaults. In the literature, vibration data are usually acquired periodically
and temporal features such as the kurtosis are extracted and plotted in order to study the evolution trend of fault
severity over time for the bearing prognostics purpose. To simulate deterioration processes, the above defective
bearing vibration signals are repeatedly generated with progressive impulse amplitudes d(t). Each repetition
corresponds to one data acquisition time in practice. In this study, we suppose that the impulse amplitudes d(t)



generated by each point defect increase over time following a homogeneous Gamma process. A random delay
following a Poisson distribution is also added in order to represent the bias between the appearance times of
the two defects. The kurtosis feature is used to represent the overall defect severity of the bearing. Finally, the
data generation is stopped once the extracted kurtosis value reaches for the first time a critical threshold L = 10.
Beyond this boundary, the bearing is considered to be failed.
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Figure 3. Training data and learned log-likelihood curve

By repeating this procedure several times, different kurtosis evolution curves can be obtained as represented
in Figure 3a. These values are considered as the training data for estimating the parameters of the FHMM
model. Figure 3b shows the convergence of the log-likelihood curve which demonstrates the effectiveness of
the variational approximation technique in training the FHMM model.

3.2. FHMM vs HMM

In studying the FHMM model, an interesting question is to compare it with a “standard” HMM model in term
of RUL estimation performance. To this end, we firstly train the two models by the same training data set. The
branches of the FHMM model are supposed to have the same number of discrete states as in the HMM one.
This number can be determined by using the Bayesian Information Criterion (BIC) as presented in Le et al.
(2016).

The next step is to use the two learned models to estimate the RUL of same test data set. The root mean
squared errors (RMSE) is used for the comparison purpose. Since the prognostics performance depends on the
instant at which the RUL estimation is carried out, we further define a critical level at which the prediction
is triggered for all the test cases. In other words, the diagnostic and prognostic tasks for every test cases are
started once its corresponding kurtosis feature reaches this level for the first time. Figure 4 shows the RMSE
values obtained by the two models as the function of the triggered level.
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Figure 4. RMSE values at different prediction triggered levels

We can see that the RUL estimation errors for the both models decrease with the increment of the triggered
level. This is due to the fact that the latter the prediction is performed, the more information become available
and hence leading to the better RUL estimation results. Furthermore, compared to the standard HMM model,
the FHMM one shows the better performance in terms of RMSE criterion, especially when one want to trigger
the prediction earlier. This can be explained by the fact that the FHMM model helps to take into account



the coexistence of different deterioration modes at early stage of deterioration process. More lately, one of the
deterioration modes may already dominate the others, leading to the similar RMSE results between the FHMM
and the HMM models.

4. Conclusion
The present paper proposes the use of the factorial Hidden Markov Model (FHMM) in order to deal with the
deterioration modeling problem in case that several competing modes co-exist within a single component. The
variational approximation technique is adapted to overcome the model parameters learning problems. In terms
of diagnostics, this model helps to evaluate the actual deterioration states within every existed modes. The
RUL of the component is then estimated as the minimum time for one of these modes to reach its own failure
state. The numerical results show that by taking into account the coexistence of several deterioration modes,
the FHMM gives better performance in RUL estimation in comparison with the traditional HMM model.

Future research will be focused on the extension of the FHMM model to represent the dependency between
the different deterioration modes. The proposed method should also be validated on real world systems data.
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