N
N

N

HAL

open science

Measurement-based real-time analysis of robotic
software architectures
Nicolas Gobillot, Fabrice Guet, David Doose, Christophe Grand, Charles

Lesire, Luca Santinelli

» To cite this version:

Nicolas Gobillot, Fabrice Guet, David Doose, Christophe Grand, Charles Lesire, et al.. Measurement-
based real-time analysis of robotic software architectures. TROS 2016, Oct 2016, DAEJEON, South

Korea. hal-01411373

HAL Id: hal-01411373
https://hal.science/hal-01411373
Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01411373
https://hal.archives-ouvertes.fr

Measurement-based real-time analysis of robotic software architectures

Nicolas Gobillot, Fabrice Guet, David Doose, Christophe Grand, Charles Lesire, Luca Santinelli

Abstract—Providing guarantees on the system behavior is
mandatory in order to let the robots enter our every-day life.
Among these guarantees, proving the fulfillment of real-time
constraints on the software is a key issue, as their violation
could result into unexpected and unsafe behaviors. In this paper,
we present a methodology to guarantee real-time constraints
on component-based software architectures of robots. This
methodology relies on the MAUVE language to model the
component architecture, and on a set of analysis tools that first
estimate the worst case execution time of elementary functions
from actual component traces, and then check the real-time
constraints of each component. We illustrate this process on
the architecture developed for the autonomous navigation of a
partially known area by a mobile robot.

I. INTRODUCTION

Works that develop or evaluate advanced functions for
autonomous robots flourish. They propose advanced con-
trol techniques, environment reconstruction, navigation in
complex, unknown, dynamic environments, interaction with
human-beings, etc. In order to have all these techniques be
used on actual robots in interaction with their environment,
we must be able to guarantee their safe and correct behavior.
This consideration has already been a major concern of
roboticists for several years. Timing properties are crucial
for the safety of the system as they could impact system
execution and its functional performance. It is for instance
proved that theoretically sound control techniques may be-
come hazardous when facing timing disturbances [1], [2]. In
this work we refer to a robotic system as a real-time sys-
tem, where real-time systems are computing systems which
must react within precise time constraints to events in the
environment. Real-time systems are often called predictable
or deterministic systems, since they demand for predictable
and always reproducible behavior.

A. Real-time applications in robotics

Proving the real-time execution of applications has not
been of major concern for roboticists, as they have mainly
focused on algorithmic performance. Most of the works
have considered that missing some deadlines would have
no significant impact on the application. They have only
considered making some measures of computation time of
the functions [3], [4], [5], [6] or response time over the
network for distributed algorithms [7] for few runs, in order
to evaluate timing properties of the systems. If the system
is not strictly real-time, such measurements can suffice for
having confidence that the algorithms can be embedded.

Authors are with ONERA — The French Aerospace Lab, Toulouse, France
firstname.lastname@onera.fr

The lack of interest from roboticists for proving real-
time constraints also comes from the applicability of real-
time analyses. Indeed, robotics system are characterized by
their modularity, the complexity of the algorithms and the
diverse tasks executions models. On the other hand, real-
time analysis methods need predictability and determinism
for being applied. A way to obtain that is the use of the
Worst-Case Execution Time (WCET), which is defined as
the worst-possible execution time for a task. The WCET is
a single value which is assumed as the execution time of the
task in all its execution instances. The safety of real-time
systems is assured once the timing constraints are respected.

B. Related works

Best practices towards real-time analysis of robotic
systems have relied on model-based approaches. It is indeed
necessary to have a model of the software running on the
system in order to be able to check that real-time constraints
will be ensured, depending on the scheduling policy of
the system, and on the tasks properties (periods, deadlines,
priorities). In [8], the authors make an AADL model of
their architecture, including hardware models, and analyse
the latency of several components. However, they do not
state how they get the worst case computation time of some
functions. Moreover, their model is made a posteriori, then
making the result questionable with respect to what is really
implemented on the system. The SmartSoft framework [9]
provides tools for describing components and how they are
mapped to real-time tasks of the system. They eventually
use the Cheddar tool [10] to simulate the scheduling of tasks
in order to evaluate the schedulability of the architecture.
However, they do no state how they get the WCET of tasks
nor give any hint on how they could be computed.

C. Contribution

In this paper, we present an approach for evaluating the
real-time execution of a robotic application that tends to be
less pessimistic than classical real-time approaches and then
more applicable to robotic systems.

This approach combines existing works into a global
process for real-time analysis. The quality improvement of
the analysis relies on two major points:

e« We use a more detailed model of the task behavior; for
that purpose, we rely on component-based models using
the MAUVE language [11], and on a schedulability
analysis that takes such models into account [12].

o We estimate WCET of tasks from actual measurements,
then taking into account potential influence from input
data and system interactions.

The approach is presented in Section II with a brief
description of existing works that have been integrated. In
the same section it is proposed a discussion on the way
execution traces are obtained and applied. Section III then
presents a case study in which this process is applied to
the software architecture of a mobile robot performing an
exploration mission.

II. REAL-TIME VALIDATION PROCESS

The real-time validation process presented in this paper is
summarized on Fig. 1. First, it is necessary to make a model
of the several components of the software architecture, and
then to specify how they will be deployed on the system.
The analysis needs to know the WCET of the elementary
functions executed by the architecture which depend on
the target platform. To obtain these WCET, the process
is to generate some instrumented code and execute it on
the actual target platform. From the traces obtained during
this execution, it is possible to have a statistically sound
evaluation of the WCET. From the models and these WCET,
it is now possible to compute the Worst-Case Response Time
(WCRT) of the several components in order to conclude on
the architecture schedulability.

Components and
Architecture
Modeling

v

Deployment
Modeling

no

Code generation WCRT‘;nalysis
| | |

v v

Deployment
and tracing

WCET estimation
Safe deployment

Fig. 1: Real-time analysis process

no

Schedulable?

Each step of this process is further explained in this
section.

A. Component and Architecture Modeling

The modeling is done using a robotic, component-based
Domain Specific Language, MAUVE [11]. A MAUVE
model of a software architecture is made of 4 nested levels:

e codels, which are elementary codes, i.e. functions im-
plemented in C or C++ language and which implement
the algorithmic part of the architecture; only codels
signature is defined in the MAUVE DSL,;

o components, composed of a shell describing their inter-
face (input and output data ports, provided or required
operations) and a core describing their behavior by a
finite state machine; in each state, it is possible to
call a codel or to access to ports (reading/writing) or
operations;

e architectures, in which components are instantiated and
connected one to the other;

e deployments, which indicate how the components of an
architecture are mapped to real-time tasks, by defining
their periods, priorities, deadlines and affinities (which
CPU core they will run on).

Listing 1 presents a snapshot of the Mauve model of a
path planning component. Its shell is defined by a parameter
(the path resolution), input ports (current pose of the robot,
goal pose, current map), and an output port (the computed
path). The core is defined by a state machine containing the
Idle state (waiting for a new goal to arrive) and the Planning
state. In that state, the component calls the astar codel.

Listing 1: Mauve code of a path planning component

1 shell PathPlanningShell {

2 property resolution: double = 0.3
3 input port map: OccupancyGrid

4 input port pose: PoseStamped

5 input port goal: PoseStamped

6 output port path: Path
7
8
9

}

codel astar(in p:
in map: OccupancyGrid):

PoseStamped , in goal:
Path

PoseStamped ,

10
11 core PathPlanningCore (PathPlanningShell) {

12 var pose_.: PoseStamped

13 var goal_: PoseStamped

14 var map-: OccupancyGrid

15 var path_: Path

16 var new_goal: bool = false

17

18 statemachine {

19 initial state Idle {

20 run = {

21 if (read(goal, goal.) == NewData) then {
2 new_goal = new_plan(goal, pose);
23 }

2 }

25 transition if (new_goal) select Planning
26

27 state Planning {

28 entry {

29 read (pose, pose-); read(map, map-);
30 path_. = astar(pose., goal., map.);
31 write (path, path_);

32

33 transition select Idle

W 1)

As the codels contain the algorithmic part of the com-
ponents, the execution time of the tasks mainly rely on the
execution time of the codels. It’s also important to notice the
model of the architecture is used in both the code generation
and the schedulability analysis. Consequently, both the real
execution and the analysis are based on the same formal
specification.

B. Code generation and tracing

In order to do the schedulability analysis, we need to
obtain timed execution traces of our components. From the
MAUVE models of components and architecture, embedded

executable code is generated using the Orocos [13] mid-
dleware. Each instance of a component is a real-time task,
where the behavior follows the state-machine description,
and that calls manually defined codels. Architectures and
deployments are plugged into Orocos deployment scripts
which instantiate components, connect them together and
define their activities.

Along with the component code, the code behavior is
traced using the LTTng framework [14]. This framework
has been chosen as it is known to have a low impact on
the execution behavior'. These traces are generated within
the components code so that we can log each important part
of the architecture. The resulting trace provides:

o call time of codels, and the caller component name;

« return time of the same codels;

« start and end times of each component execution cycle;
« entry and exit times of each state of each component.

From the timing data of these traces it is possible to extract
the execution time of each codel execution by removing the
interactions (preemptions or delays) of the more prioritary
tasks. At the end of this step we obtain for each codel
a sequence of execution times. It is then possible to get
measures from several runs, where codels are executed, but
not necessarily with the same architecture or in the same
condition.

C. WCET estimation using the Extreme Value Theory

The static timing analysis [15] requires a precise model of
the hardware as well as a formal representation of the tasks
to estimate WCETs. Unfortunately, some hardware used in
robotics systems, such as commercial off-the-shelf platforms,
are not well documented and cannot be formalized precisely.
Moreover, some complex algorithm like SLAM or planning
leads to pessimistic WCET representations.

Probabilistic timing analysis is emerging as alternative to
the static timing analysis. As it is a probabilistic approach,
it is the notion of probabilistic Worst-Case Execution Time
(pWCET) that has to be considered. The pWCET is the
worst distribution of execution times, where each value C; is
associated with a probability p;; p; is the probability to ex-
ceed C;. Probabilistic approaches, also called Measurement-
Based Probabilistic Timing Analysis (MBPTA), only need
measurements of execution time for inferring the pWCETSs
estimates. These approaches combine measurements and
probabilistic analysis for WCET estimation [16].

MBPTA approaches consist of two main steps: i) the
collection of measurements of task execution time in real ex-
ecution conditions as traces, and ii) the probabilistic analysis
for inferring the pWCET estimation. The measurements are
important for extracting observable features such as average
behaviors and trends that can appear while executing tasks.
In order to obtain the pWCET from the measurements, the
probabilistic analysis is based on the Extreme Value Theory
(EVT), allowing to infer the rare events (where the worst-
cases should be), very costly to measure. Doing this, the

http://1lttng.org/features/#high-performance

analysis provides safe pWCET estimates by mathematically
inferring larger execution times than those measured. By
safe estimates we mean that the pWCET is larger than or
equal to the exact (and unknown) pWCET distribution, and
to any possible empirical execution time distribution from
the measurements.

Theoretically, the EVT is established for independent
and identically distributed (i.i.d.) measurements [16], but in
practice the less constraining hypotheses of stationarity and
extreme independent measure(ment)s are enough to apply the
EVT [17], [18]. Thus, the EVT can be reliably applied to
realistic cases (non time-randomized systems) with certain
degrees of dependences between executions, such as the
estimation of the WCET of codels in our component-based
architecture. The safety of the pWCET estimates with EVT
comes from the respect of the hypotheses, [17], [18], [16].

The MBPTA is able to provide two main results: i) the
WCET of each codels (WCET estimate) and ii) the WCET
estimate reliability. While the WCET of the codels is used
for schedulability analysis, the WCET estimate reliability is
used to characterize the applicability of the MBPTA.

a) WCET estimates: A pWCET estimate is inferred
from a trace of measurements providing tuples associating
an execution time C' to a probability p giving the confidence
in not exceeding C. For instance, the confidence could be
chosen to p = 10~7, allowing to have sufficient confidence
(1 —10~7) on the WCET model C.

b) WCET estimate reliability: The MBPTA tool we
have developed is conceived as a logical workflow checking
the applicability of the EVT with specific tests [18]. For
an input trace of execution times it is possible to provide a
pWCET estimate and an associated reliability with regard to
the EVT applicability hypotheses. In particular, the reliability
qualifies the traces of measurements (e.g. lack of informa-
tion, verification of certain statistical properties,) and defines
the quality of the pWCET estimates in representing the
worst-case execution behavior of the codels. The reliability
accounts for the safe inference of the pWCET with the EVT
indicating that resulting WCET estimates have a sense (if
they do not diverge). Based on this reliability, we can decide
whether more timing samples must be gathered and analysed
or not.

D. Schedulability analysis

In order to check the schedulability of the software archi-
tecture, we need to compute the Worst Case Response Time
(WCRT) of the architecture’s components. The Response
time correspond to the time between the triggering of the
task and the end of its execution, including tasks preemptions
and delays. A component is schedulable if its WCRT is
lower than its deadline. Obviously, a complete system is
schedulable if all the components are schedulable.

Classical schedulability analysis [19] deals with mono-
lithic task models, where each component of our architecture
would have a unique WCET. Recent WCRT approaches [20],
[21], [12] have used more detailed task models to improve
the quality of the WCRT analysis. [12] models the tasks

as Periodic State Machines (PSM), where each PSM fires
a transition at each execution cycle, and each transition has
a specific WCET. We have then developed a transformation
from the MAUVE models of components to PSM in order to
have the WCRT analysis take into account the state machines
of our components. This transformation is only used for the
analysis, the executed code being generated from the initial
state machine description.

IIT. EXPLORATION BY A MOBILE ROBOT

The real-time analysis process has been used on a software
architecture of a real robot performing an indoor navigation
mission. The aim of this experiment is to autonomously and
safely join some waypoints in a partially known environment
while updating a 2D map and avoiding (dynamic) obstacles.
The robot used in these experiments is a two-wheeled
Pioneer 3DX mobile robot from Adept Mobile Robots. It
is equipped with an Hokuyo UTM-30LX laser range finder.

This experiment requires the following functionalities that
need to be executed conjointly. First, a localization and
mapping algorithm (SLAM) is used to improve the robot
odometry and build a map based on occupancy grid model.
Functions dealing with motion control and obstacle avoid-
ance are also implemented. For each target waypoint, the
navigation and the guidance functions compute the path
to reach this target point and manage the robot motion
orders required to follow this path. The last functions are
associated to the system hardware, particularly the drivers of
the laser range finder (Hokuyo) and the mobile robot (P3DX)
which allows to control the robot motions and provides the
odometry estimate based on encoders measurement.

A. Components and architecture models

Each system functionality is implemented in different
components using the MAUVE DSL. Figure 2 gives an
overview of the system architecture. The low-level functions
(drivers, in orange) are in the following components: hokuyo
is the laser driver that gives periodically a laser scanning;
p3dx_driver is the robot driver that takes linear and angular
velocities as input and provides, as output, the robot pose
computed from the encoders. The robot is controlled by a
set of components (guidance, control and safety_switch, in
blue) in order to follow the path computed by the planning
components (in green). A command from the operator can
also arrive from the teleop component.

The navigation and SLAM functions are dispatched onto
several components (in green): one is a wrapper of the
GMapping algorithm [22]; pose computes a pose from the
robot odometry and the SLAM correction; navigation pro-
vides functions to first compute a path to join a target way-
point, based on the classical A* algorithm, and second send
successive points of the path to the guidance component.

The safety_switch has two functions: first it is a safety
component that reduces or sets to zero the robot’s velocity
control if an obstacle is detected in front of it, and second
can switch between the teleop command and the control
command.

hokuyo teleop

\:ﬂ lnanu;\]_commﬂnd

safety_switch

command \

gmapping source scan

transform
pose

}N

navigation

pose
se \):] /

guidance

}e(pui%

control

map uto_command

Fig. 2: Navigation component-based architecture. Ovals rep-
resent components. Edges represent port connections be-
tween components.

B. pWCET estimation

From the models of the above-mentioned architecture,
we have generated the components’ code and deployed
these components to have some execution traces. The target
platform we use on our Pioneer robot is a Intel i5 laptop with
a 4-core CPU at 2.7GHz, running Ubuntu 14.04 configured
to use the real-time SCHED_FIFO Linux scheduler.

The pWCET estimation uses measurements of the execu-
tion time of elementary functions (codels). The estimation is
independent of the complete software architecture running
on the system, and consequently it is possible to make
several runs with different architectures, and then combine
the measurements for the pWCET estimation. The runs on
our platform have then be split into:

o automatic control runs, in which we only deployed
the control-related components; we manually sent some
guidance goals to the guidance components, for several
path lengths and on several environments (typically
with/without obstacles) to have a good variability of
conditions;

e SLAM runs, in which we only deployed the SLAM-
related components; we manually drove the robot while
building a map, performing different loops over the
environment, with several paths;

o navigation runs, in which we only deployed the navi-
gation components with a static global map from the
previous run, without moving the robot: the navigation
component has been asked to compute paths with ran-
dom objectives.

We incrementally performed all these runs by checking
the pWCET estimate reliability criteria. Once the criteria are
good enough, we stopped making more runs, and the com-
puted pWCET estimates were considered reliable enough for
the sequel of the schedulability analysis. An example of the
pWCET estimate is given in Fig. 3 and 4. Figure 3 shows the
measured execution times for the avoid.collision codel
of component guidance.

14

avoid_collision ©

12

1 “
g R e
1= fasg o
5 08 by ¥ ®
E “0%0 % @ ° Osuod’ & 3e o
o a1 & @ o o o
5 . - Same cpaey, A G® o 8 o o
5 o B o 5 3
=1 "‘mﬂv"a‘%"" 934% ¢ @ g © @
g b oTRe @af o,o S S
04 &i@«%‘; 8% P
5o fu 5
%né

02

0 2000 4000 6000 8000 10000 12000 14000

measure index

Fig. 3: Execution time measures for codel

avoid_.collision. Each circle represents a measure.

Figure 4 shows the result of the pWCET estimation. The
inverse cumulative probability distribution of measures is
represented by red circles. The pWCET estimates is given by
the green curve. This curve gives estimation of the WCET
of the codel for the desired probability threshold.

measures o
estimate

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

inverse cumulated probability

1e-08

1e-09

1e-10

2 4 [8 10 12 14 16 18
execution time (ms)

Fig. 4: pWCET estimate for codel avoid._collision

C. Schedulability analysis

The schedulability analysis then uses the components
and architecture models, as well as an estimation of the
WCET of all the codels called in the components. The
deployment specification is given in Tab. I. We have set
the period of almost all components to 100ms., while time-
consuming components, namely gmapping and navigation
are scheduled at a period of Is. All deadlines are equal to
periods. The priorities have been defined so that the drivers

are the components with the highest priority, in order to not
miss data. Then the components that manage the safety and
integrity of the platform have the highest priorities. Finally,
the lowest priorities have been set to the less important
components (with respect to robot safety). The affinity, i.e.
the core on which the components’ tasks will run, are set
to reserve one core to the gmapping component, which is
highly time consuming, while other components run on a
specific core.

TABLE I: Deployment specification

component | period (ms) | deadline (ms) | priority | affinity |
p3dx_driver 100 100 10 1
hokuyo 100 100 9 1
safety _switch 100 100 8 1
pose 100 100 7 1
guidance 100 100 6 1
control 100 100 5 1
teleop 100 100 2 4
navigation 1000 1000 2 1
gmapping 1000 1000 3 2

In order to apply the schedulability analysis method, we
first need to estimate WCET values. From the pWCET
computations, we have to select the probability threshold p.
Tables II and III present the several values of the WCRT of
each component, depending on the probability threshold p.
We remind the reader that p reprensents the confidence we
can have that the actual WCET will not exceed the estimated
value. We have made p vary from 1073 to 107, which are
common values used in safety assessment of critical systems.

TABLE II: WCRT results for components running on core
1. Values are in milliseconds. Values in bold are exceeding
the component deadline.

component | le-3 | le-4 | le-5 | le-6 | le-7 | le-8 | 1e-9 |
p3dx_driver 8 10 11 13 17 29 55
hokuyo 28 32 33 36 40 52 78
safety_switch 31 35 36 41 46 61 90
pose 32 36 37 42 47 62 91
guidance 35 39 40 45 50 65 94
control 38 42 43 48 53 68 98
teleop 45 49 50 55 60 75 499
navigation 764 | 817 841 876 | 906 | 984 | 1146

TABLE II: WCRT results for components running on core
2. Values are in milliseconds. Values in bold are exceeding
the component deadline.
component | le-3 | le-4 | le-5 | le-6 | le-7 | le-8 | 1e-9 |
gmapping | 703 | 711 | 715 | 722 | 764 | 994 | 2258 |

We can first notice that the WCRT are logically increasing
when we reduce p, as we want to be more and more confident
in the WCET estimates. Moreover, for components running
on core 1, we can notice that all components are schedulable
down to confidence 10~8. For a confidence of 107, only the
teleop and navigation components are not schedulable. A

similar behavior can be observed for the unique component
running on core 2: gmapping is schedulable for all chosen
values of p, but for 107°. A discussion on the impacts of
the results on the architecture design is discussed hereafter.

D. From WCRT to architecture design

The WCRT analysis proves that the real-time constraints
of all components will be respected at execution with a
confidence at least of 1078, In the case we need a higher
confidence (i.e. p < 10™), the WCRT analysis results will
help us designing our architecture. For instance, regarding
the gmapping component, two solutions are possible without
changing the component code:

o increase the component period (e.g. to 2.5 seconds),
to have the component be schedulable with a high
confidence, despite that the processing will be slower;

o make the component aperiodic, reacting to incoming
data (scans and poses) when they arrive and when
the component has time to process them; most of the
time the processing will be faster, but a freeze of the
processing is still possible.

As a conclusion, the WCRT analysis, will first give some
confidence in the fulfillment or real-time constraints for time-
critical components, and will also provide some information
useful for designing an embedded robotic architecture.

IV. CONCLUSION

In this paper, we have presented a methodology for analyz-
ing the real-time properties of a component-based software
architecture. This methodology relies on MAUVE models
of the architecture from which instrumented embedded code
is generated. We are then able to estimate the pWCET of
components from actual measurements. From these pWCET
and the models, we applied a WCRT analysis that provides
schedulability results with a given confidence. We have also
discussed on a real application of the presented process can
first give some confidence on the critical parts of the archi-
tecture, and insights for the design of the overall software
architecture.

From the experimental results we have conducted, several
future works have appeared. First, we must have a better
control on the real-time execution of components. The real-
time skills provided by the existing real-time middlewares
used in robotics are not sufficient. To do this, we plan
to either directly generate real-time tasks for the operating
system, or to develop a light RT middleware that would
allow to better control the real-time execution. Second, the
pWCET estimation can also provide an estimate of the time
taken by the glue (i.e. the middleware and some calls like
reading/writing within ports), from the measurements that
contain both codel calls and components triggers. This glue
estimation is available but has not been taken into account
in the WCRT analysis yet. Finally, we plan to enhance
the probabilistic WCRT computation by taking into account
preemptions and delays probabilities, in order to have even
more precise schedulability results.

V. ACKNOWLEDGEMETS

This work is partially supported by the CPSELabs project
funded by European Community’s Horizon 2020 Programme
under grant agreement no 644400.

REFERENCES

[1] A. Cervin, B. Lincoln, J. Eker, K.-E. Arzén, and G. Buttazzo, “The
jitter margin and its application in the design of real-time control
systems,” in RTCSA 2004, Goteborg, Sweden, 2004.

[2] D. Henriksson, A. Cervin, J. Akesson, and K.-E. Arzén, “On dynamic
real-time scheduling of model predictive controllers,” in CDC 2002,
Las Vegas, NV, 2002.

[3] M. Pizzoli, C. Forster, and D. Scaramuzza, “REMODE: Probabilistic,
Monocular Dense Reconstruction in Real Time,” in ICRA 2014, Hong
Kong, China, 2014.

[4] M. Sanfourche, V. Vittori, and G. Lebesnerais, “Evo: A Realtime

Embedded Stereo Odometry for MAV Applications,” in /ROS 2013,

Tokyo, Japan, 2013.

S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, “Adaptive

Neighborhood Selection for Real-Time Surface Normal Estimation

from Organized Point Cloud Data Using Integral Images,” in /IROS

2012, Vilamoura, Portugal, 2012.

F. Steinbriicker, J. Sturm, and D. Cremers, “Volumetric 3D Mapping

in Real-Time on a CPU,” in ICRA 2014, Hong Kong, China, 2014.

[71 L. Wang, M. Liu, and M. Q.-H. Meng, “Hierarchical Auction-

Based Mechanism for Real-Time Resource Retrieval in Cloud Mobile

Robotic System,” in ICRA 2014, Hong Kong, China, 2014.

G. Biggs, K. Fujiwara, and K. Anada, “Modelling and Analysis of

a Redundant Mobile Robot Architecture Using AADL,” in SIMPAR

2014, Bergamo, Italy, 2014.

[91 C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “Design Abstrac-
tion and Processes in Robotics: From Code-Driven to Model-Driven
Engineering,” in SIMPAR 2010, Darmstadt, Germany, 2010.

[10] F. Singhoff, J. Legrand, L. Nana, and L. Marc, “Cheddar : a Flexible
Real Time Scheduling Framework,” ACM SIGAda Ada Letters, vol. 24,
no. 4, pp. 1-8, 2004.

[11] N. Gobillot, C. Lesire, and D. Doose, “A Modeling Framework for
Software Architecture Specification and Validation,” in SIMPAR 2014,
Bergamo, Italy, 2014.

[12] N. Gobillot, D. Doose, C. Lesire, and L. Santinelli, “Periodic state-
machine aware real-time analysis,” in ETFA, Luxembourg, Luxem-
bourg, 2015.

[13] P. Soetens and H. Bruyninckx, “Realtime Hybrid Task-Based Control
for Robots and Machine Tools,” in ICRA 2005, Barcelona, Spain, 2005.

[14] M. Desnoyers and M. Dagenais, “The LTTng tracer: A Low Impact
Performance and Behavior Monitoring for GNU/Linux,” in Ottawa
Linux Symposium, Ottawa, Canada, 2006.

[15] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
1. Puaut, P. P. Puschner, J. Staschulat, and P. Stenstrom, “The worst-
case execution-time problem - overview of methods and survey of
tools,” ACM TECS, vol. 7, no. 3, 2008.

[16] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzeti, E. Quinones, and F. J. Cazorla,
“Measurement-Based Probabilistic Timing Analysis for Multi-path
Programs,” in ECRTS 2012, Pisa, Italy, 2012.

[17] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the
Sustainability of the Extreme Value Theory for WCET Estimation,”
in WCET 2014, Madrid, Spain, 2014.

[18] F. Guet, L. Santinelli, and G. Morio, “On the reliability of the
probabilistic worst-case execution time estimates,” in ERTS, Toulouse,
France, 2016.

[19] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour,
A practitioner’s handbook for real-time analysis. Kluwer Academic
Publishers, 1993.

[20] S. Baruah, “Dynamic- and static-priority scheduling of recurring real-
time tasks,” Real-Time Systems, vol. 24, no. 1, pp. 93-128, 2003.

[21] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph real-time
task model,” in RTAS, Chicago, IL, USA, 2011.

[22] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters,” IEEE T-RO,
vol. 23, no. 1, pp. 34-46, 2007.

[5

=

[6

=

[8

=

