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Abstract

Seeking condition indices characterizing the health state of a system is a key problem in condition-based maintenance.

For this purpose, diagnostic and prognostic models have been unceasingly developed and improved over the past few decades;

nevertheless none of them explains thoroughly the impacts of such indices on the effectiveness of maintenance operations.

As a complement to these efforts, this paper analyzes the effectiveness of some well-known diagnostic and prognostic indices

for maintenance decision-making. The study is based on a system subject to competing risks due to multiple crack paths. A

periodic inspection scheme is used to monitor the system health state. Each inspection returns the perfect diagnostic infor-

mation: the number of cracks, corresponding crack sizes, and the system failure/working state. Based on this information,

two kinds of prognostic condition indices are predicted: the average value and probability law of the system residual useful

life. The associated condition-based maintenance strategies and cost models are then developed and compared with the ones

whose maintenance decisions are based on diagnostic condition indices. The comparison results allow us to conclude on

the performance and on the robustness of these strategies, hence giving some suggestions on the choice of reliable condition

indices for maintenance decision-making.
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Acronyms

CBM condition-based maintenance

CM condition monitoring

SCC stress corrosion cracking

HPP homogeneous Poisson process

HGP homogeneous Gamma process

DTS degradation-threshold-shock

RUL residual useful life

MRL mean residual life

PR preventive replacement

CR corrective replacement

pdf probability density function

cdf cumulative distribution function

Notation

Nt number of appeared cracks up to time t

∗Corresponding author
Email addresses: tuan.huynh@utt.fr (K.T. Huynh), antoine.grall@utt.fr (A. Grall), christophe.berenguer@grenoble-inp.fr
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Ti arrival time of the i-th crack

λ intensity of the HPP {Nt}t≥0

fT1,...,Tk|Nt
joint pdf of k first arrival times {T1, . . . Tk} given Nt

1{·} indicator function

X i
∆t length of the i-th crack at ∆t units of time after its initiation

α, β shape, scale parameters of the HGP
{

X i
t

}

t≥0

m,σ2 average rate, variance rate of
{

X i
t

}

t≥0

fα∆t,β, Fα∆t,β pdf, cdf of X i
∆t

Γ (·) ,Γ (·, ·) gamma function, incomplete gamma function

XS
t sum of all crack increments up to time t

XS
t | Nt sum of all crack increments in the time intervals [0, t] given Nt

XS
[t,t+u] | Nt, Nt+u −Nt sum of all crack increments in the time intervals [t, t+ u] given Nt and Nt+u −Nt

fXS
t |Nt

, FXS
t |Nt

pdf, cdf of XS
t | Nt

FXS
[t,t+u]

|Nt,Nt+u−Nt
cdf of XS

[t,t+u] | Nt, Nt+u −Nt

L,N critical degradation threshold, limited number of cracks

Z, Y failure times of the unmaintained system and of the maintained system

ρ
(

t | XS
t , Nt

)

conditional RUL of the system at time t given XS
t and Nt

R
(

t+ u | XS
t , Nt

)

conditional reliability of the system at time t+ u given XS
t and Nt

µ
(

t | XS
t , Nt

)

conditional MRL of the system at time t+ u given XS
t and Nt

T, τj inspection period, j-th inspection time

M PR threshold associated with the sum of crack sizes

Np PR threshold of associated with the number of cracks

µp PR threshold of associated with the conditional MRL of the system

Rp PR threshold of associated with the conditional reliability of the system

PRN PR due to an excessive number of cracks over the threshold Np

PRX PR due to an excessive level of crack size over the threshold M

CRN ,CRX CR due to cracks number, CR due to sum of crack sizes

Qτ−

j
, Qτ+

j
values of the quantity Q at the time just before, and just after τj

C (t) total maintenance cost including the downtime cost up to time t

C∞ long-run expected maintenance cost rate

Ci, Cp, Cc cost per inspection, cost per PR, cost per CR

Cd downtime cost rate

S1 first replacement time of the system

Pp,k (kT ) , Pc,k (kT ) probabilities of PR and CR at time kT

Wd,k (kT ) system downtime in a renewal cycle

MTTF mean time to failure of the system

η
(

XS
t , Nt

)

either µ
(

t | XS
t , Nt

)

or R
(

t+ T | XS
t , Nt

)

ηp either µp or Rp

Mk minimum value of sums of crack sizes x such that η (x, k) ≤ ηp

ǫp relative error of PR decision parameters

ǫC relative increase in C∞ when the decision parameters are different than their optimal values

1. Introduction

Condition-based maintenance (CBM) program has nowadays attracted a great deal of interest among organizations,

because of the significant economic impact to companies and environmental impact to society [1]. Within this maintenance

program, condition monitoring (CM) information, such as vibration level, acoustic emission signal, temperature, pressure,

humidity, etc., is collected and, through that knowledge, indices characterizing the health state of systems are synthesized
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for maintenance decision-making purposes. Such indices, called condition indices [2], may be the result of real-time diagnosis

of impending failures or prognosis of future system health. In reality, diagnosis and prognosis are two essential aspects of a

CBM program, and a lot of contributions have been developed in this field over the past few decades. Pusey and Roemer

provide in [3] a broad overview of the development in diagnosis and prognosis applicable to high-performance turbo-machines

until 1999. Jardine et al. give in [4] an interesting survey of the different diagnostic and prognostic approaches and associated

CBM strategies for various machines up to 2005. Lee et al. [5] provide a comprehensive review of various methodologies

and techniques in prognostics and health management research. More recently, Ahmad and Kamaruddin [6] and Shafiee et

al. [7] systematically review maintenance decision-making methods based on the system health diagnostic and prognostic

information. Other recent developments in this field can be found in [8–15]. A common remark drawn from these existing

works is that different problems related to a CBM program, such as deterioration monitoring and health status assessment,

remaining useful life (RUL) prediction, and maintenance decision-making, have been separately considered. This may lead

to shortcomings in assessment of a whole CBM program. Furthermore, most efforts have been focused on improving the

quality of diagnosis and prognosis processes; and the question on how to design and to use the best condition indices for

maintenance decision-making remains an open and challenging issue. Faced to this situation, the present paper focuses on

building a generic and complete framework to quantify the performance and robustness of CBM strategies built from some

typical diagnostic and prognostic condition indices, and hence aims at providing suggestions on the choice of reliable indices

for maintenance decision-making.

From an economic viewpoint, we define the performance of a maintenance strategy as its capacity to save maintenance

costs under its optimal configuration, and its robustness as its ability to keep its cost saving close to the optimum when it

is out of its optimal configuration. Classically, we can assess the maintenance strategy performance through its long-run

expected maintenance cost rate [16]. Such a cost criterion can be analytically evaluated on the basis of (semi-)regenerative

stochastic techniques [17, 18]. In reality, the performance assessment based on the long-run expected maintenance cost

rate is a key problem in the reliability and maintenance field, and it motivates many works on maintenance modeling and

optimization in the literature [19]. Contrary to the problem of performance assessment, the robustness of maintenance

strategies has not attracted much attention, especially for CBM strategies. As far as we know, only the authors of some

recent papers [20–24] study the robustness of CBM strategies, and the assessment is mainly performed on the basis of the

so-called relative increase in long-run expected maintenance cost rate [25]. By combining both above criteria, this paper

proposes an approach to jointly quantify the performance and the robustness of CBM strategies, and thus to determine

reliable condition indices for maintenance decision-making as follows

• developing a degradation and failure model for the considered system,

• synthesizing diagnostic and prognostic condition indices on the basis of the developed degradation and failure model,

• building diagnosis and prognosis-based maintenance strategies, and developing the associated cost models,

• assessing the performance and robustness of the considered strategies to find out reliable indices.

This approach allows exploring the complete CBM processing chain for a system, from deterioration monitoring and health

status assessment, to remaining useful life estimation, right through to maintenance decision-making. It also constitutes a

generic and complete framework to choose appropriate condition indices for CBM decision-making.

More precisely, we develop our degradation and failure model based on the operating feedback data-set described in

[26]. This data-set consists of the initiation times and the crack length measurements in the propagation phase which

appear on different components of nuclear power plants. The two-stage cracks behavior is thus modeled by two stochastic

processes: a homogeneous Poisson process (HPP) for the incubation phase, and a homogeneous Gamma process (HGP) for

the propagation phase. While such a use of these processes is quite classical [27], the way to define the competing failures

of the system is new and original. Four condition indices are considered: sum of crack sizes, couple of sum of crack sizes

and number of cracks, conditional mean residual life (MRL) of system, and system conditional reliability. The two first

indices are directly gathered by inspection operations, while the two latter ones are synthesized using also the developed

degradation and failure model. These indices represent respectively the partial and complete information about the current
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system heath, and the average type and quantile type information of the future system heath. These representative indices

are then incorporated into maintenance decision-making. To maintain coherence with CM strategies recently implementing

to obtain the operating feedback data-set [26], four quite simple periodic inspection and replacement strategies have been

built. Note that the prognostic-based maintenance strategies proposed here are rarely considered in the literature. The

mathematical cost models of these strategies are completely developed on the basis of the long-run expected maintenance

cost rate, and of the classical renewal-reward theorem [28, page 39]. The quantitative comparisons on the performance and

the robustness of these strategies allow us to find out reliable indices for maintenance decision-making.

As such, the main contributions and the originalities of this paper are fourfold.

• Exploring the complete CBM processing chain for a system, from condition monitoring to maintenance decision-making.

Whereas different issues related to a CBM program are often investigated separately, we believe that we can get better

insight into the CBM problem when considering them as a whole.

• Developing a new degradation and failure model for RUL prognosis of system subject to stress corrosion cracking (SCC)

phenomena. This model is relatively generic because of its easy extension to other applications such as systems subject

to the competing risks due to shock and degradation.

• Proposing new CBM strategies based on various variants of the system RUL (i.e., MRL and probability law of RUL),

and developing their full mathematical cost models.

• Quantifying the effectiveness of diagnostic and prognostic condition indices for reliable maintenance decision-making

purposes through the performance and robustness of the associated maintenance strategies.

The remainder of this paper is organized as follows. Section 2 is devoted to describing the operating feedback data-set

based on which we develop the degradation and failure model of the system. Such a model allows to determine and analyze

in Section 3 some diagnostic and prognostic condition indices for maintenance decision-making purpose. Section 4 deals with

the detailed description and theoretical analyses of proposed CBM strategies. In Section 5, the associated maintenance cost

models are developed and optimized. The assessment and discussions on the performance and robustness of the considered

CBM strategies are carried out in Section 6. Finally, the paper is end with some conclusions.

2. Description of Operating Feedback Data-Set, and System Modeling

We aim at developing in this section a new degradation and failure model for systems subject to SCC. The modeling

is inspired by the operating feedback data-set consisting of the initiation times and the measures of propagation length of

cracks which appear on different components of nuclear power plants. For the best understanding of the model originality,

we first present the operating feedback data-set and analyze associated models developed in the literature, then we describe

in detail how to build our degradation and failure model. The original features and the applicability of the model are also

analyzed at the end of the section.

2.1. Operating Feedback Data-Set and Associated Models

SCC which appears on different passive components or structures is a major source of degradation. Modeling this

phenomenon has thus become a very important subject for the safety and reliability assessment issues. Laboratory tests

indicate that SCC is characterized by three main stages [29]

• incubation - during this stage the crack has not yet appeared, and the stage ends when the environment becomes

appropriate for SCC and the crack initiates,

• propagation - the crack appears and grows slowly until reaching a critical size,

• rupture - the crack grows quickly and leads to the failure of component.
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As argued in [26], the rupture stage is already critical, and any maintenance action made within this stage is useless because

too late; therefore efforts have to focus on the modeling of crack behavior in the incubation stage and propagation stage.

In reality, the modeling requires the information about the crack increments. So, the inspection date at which the crack is

detected for the first time and the successive length measurements of a propagating crack after the detection time should be

collected. As mentioned in [26], to build such a data-set for a nuclear power plant structure, ones have applied two particular

CM strategies

• CM strategy 1 - n passive components of the structure are periodically inspected, and only the information about the

largest crack of each component is taken into account,

• CM strategy 2 - only one component of the structure is periodically inspected, and the information of all cracks

appeared in the component is collected.

As a result, besides the initiation times of cracks, the data-set consists of the length measurements of the largest cracks (given

by CM strategy 1 ) and of the “elementary” cracks (given by CM strategy 2 ). Such a kind of operating feedback data-set has

inspired various degradation and failure models. Based on the data given by the first CM strategy, Grall et al. [30] assimilate

a crack path to a HGP, while Huynh et al. [31] use a non-linear non-stationary Markov process obtained by the discretization

of a Paris-Erdogan model. In their models, the incubation stage is ignored, and the length measurements of largest cracks

are used to estimate the parameters of the Gamma process. In [26], Blain et al. model the crack evolution in both incubation

stage and propagation stage by combining an exponential distribution and a Gamma process. The information on the cracks

initiation times and on the largest crack length are jointly used for parameters estimation purpose. The data gathered by the

second CM strategy motivate Castro et al. [27] to develop a model of multiple crack paths by coupling a HPP with various

HGP, the failure occurs whenever the length of one crack path reaches a critical threshold. Then, the authors analyze an

age-based maintenance strategy and a CBM strategy relied on such model in [32] and [33] respectively. Similar degradation

and failure models can be found in [34–36]. One can remark from the above models that the data-sets given by the first

and second CM strategies have been used separately. Since the data-set is very poor (only one crack increment and a few

inspection times are gathered for one crack path [26]), they seem not enough reliable for safety and reliability analysis. It is

then more interesting to develop a new degradation and failure model which can exploit the whole data-set given by both

CM strategies. In the following, we attempt to build such a model.

2.2. A Proposition for SSC Degradation and Failure Modeling

Even though the degradation and failure model proposed here is inspired from the operating feedback data-set of a nuclear

power plant [26], its applicability is not limited to nuclear power plant structures. This is why we use hereafter “system(s)”

instead of “structure(s)” to highlight the generality of the model. As Singpurwalla advocated in [37], stochastic processes

are very effective for modeling time-dependent degradation phenomenon like SCC, especially when the data-set is poor and

uncertain. Sharing the same idea, we apply the two-stage stochastic process (i.e., HPP and HGP) to describe the behavior

of a single-unit system subject to the competing risks due to multiple crack paths. The use of these processes in their

homogeneous form for SCC modeling has been justified by many practical applications [19] and considered appropriate by

experts [26]. Moreover, the homogeneous assumption allows us to facilitate the mathematical formulation and the estimation

of model parameters in practice [35].

2.2.1. Crack initiation modeling

The system is assumed to start working at time 0. The cracks appear in the system following a HPP with rate λ, λ ∈ R

and λ > 0. We denote Nt, Nt ∈ N, the number of cracks up to time t > 0, and Ti, i = 1, 2, . . . , the arrival time (also called

initial time) of the i-th crack where T0 = 0. Nt is then a Poisson random variable with parameter λt, and its probability

mass function is given by

P (Nt = k) = e−λt (λt)
k

k!
. (1)
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The joint pdf of k first arrival times {T1, . . . Tk} given Nt = k is obtained by [38, page 25]

fT1,...,Tk|Nt
(t1, . . . , tk|k) =

k!

tk
· 1{0<t1<...<tk≤t}, (2)

where 1{·} denotes the indicator function which equals 1 if the argument is true, and 0 otherwise.

2.2.2. Crack propagation modeling

Once a crack has been initiated, it propagates according to a HGP with shape parameter α > 0 and scale parameter

β > 0. Thus, let X i
∆t, i = 1, 2, . . . , be the length of the i-th crack at ∆t units of time after its initiation, the pdf and cdf of

X i
∆t are given by [39]

fα∆t,β (x) =
1

Γ (α∆t)
βα∆txα∆t−1e−βx1{x≥0}, (3)

Fα∆t,β (x) =
Γ (α∆t, βx)

Γ (α∆t)
, (4)

where Γ (α) =
∫∞

0
zα−1e−zdz and Γ (α, x) =

∫ x

0
zα−1e−zdz denotes the complete and incomplete Gamma functions respec-

tively. The average propagation rate of each crack path is m = α/β, and its variance rate is σ2 = α/β2.

Multiple crack paths appearing on the system may coalesce, accelerate the apparent crack growth, and hence generate

largest cracks on the system [40]. We characterize such a phenomenon by two conditional random variables XS
t | Nt and

XS
[t,t+u] | Nt, Nt+u −Nt:

• XS
t | Nt denotes the sum of all crack increments in the time intervals [0, t] given the number of cracks up to time t,

Nt. Its cdf and pdf are given by, see proof in Appendix A,

FXS
t |Nt

(x | k) = P
(

XS
t < x | Nt = k

)

= EΘ

[

F
α(kt−

∑
k
i=1 θi),β (x)

]

, (5)

fXS
t |Nt

(x | k) =
dFXS

t |Nt
(x | k)

dx
=

dEΘ

[

F
α(kt−

∑
k
i=1 Ti),β (x)

]

dx
= EΘ

[

f
α(kt−

∑
k
i=1 θi),β (x)

]

, (6)

where f
α(kt−

∑
k
i=1 θi),β (x) and F

α·(kt−
∑

k
i=1 ti),β (x) are derived from (3) and (4) respectively, EΘ [·] denotes the expecta-

tion with respect to the random vector Θ = {θ1, . . . , θk} whose each element follows a uniform distribution θj ∼ U (0, t),

j = 1, . . . , k.

• XS
[t,t+u] | Nt, Nt+u−Nt represents the sum of crack increments in the time intervals [t, t+ u] given the number of cracks

appeared at time t, Nt, and given the additional number of cracks in the time interval [t, t+ u], Nt+u − Nt. The cdf

of this variable can be computed as, see proof in Appendix B,

FXS
[t,t+u]

|Nt,Nt+u−Nt
(x | k, h) = P

(

XS
[t,t+u] < x | Nt = k,Nt+u −Nt = h

)

= EΘ

[

F
α((k+h)u−

∑
h
i=1 θi),β (x)

]

, (7)

where F
α((k+h)u−

∑
h
i=1 θi),β (x) is derived from (4).

2.2.3. Failure modeling

Many tests and practical applications show that the system fracture is mostly caused by coalescence of multiple cracks

rather than by growth of some primary cracks [41]. This is why we consider that the system fails whenever the sum of crack

increments up to time t, XS
t , exceeds a critical degradation threshold L or the number of cracks in the time intervals [0, t],

Nt, reaches a limited number of cracks N . So, let Z be the system failure time, it can be expressed as

Z = inf
(

t ≥ 0, XS
t ≥ L or Nt ≥ N

)

. (8)

To illustrate the degradation and failure behavior of the considered system, we use the following set of parameters: α = 1,

β = 1, λ = 0.5, L = 25, N = 6. In Fig. 1a, the sum of all crack sizes exceeds the threshold L = 25 before reaching the

limited number of cracks N = 6, the system failure is then due to an excessive level of crack size. In Fig. 2b, we observe an

opposite phenomenon and the system fails because of an excessive number of cracks.
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(b) Failure due to an excessive number of Nt.

Fig. 1 – Illustration of the competing failures in the system - α = 1, β = 1, λ = 0.5, L = 25, N = 6.

2.3. Model Original Features and Applicability

We have developed a degradation and failure model based on the statistical and physical properties of SCC. Unlike

classical works, our model characterizes the behavior of both primary and largest cracks; this allows us to use the whole

data given by both the considered CM strategies to estimate and verify the model parameters. As such, our model exploits

the operating feedback data-set better than the aforementioned classical models. This promises then a reliable model for

safety and reliability analysis. The model parameters can be estimated by classical approaches such as maximum likelihood

estimation. Blain et al. [26] and Mercier et al. [36] have dealt in detail with this problem, so we do not repeat it here.

Although our model is developed specially to SCC, it can be extended for other applications. The joint description of

degradation and shock phenomena is an example. Indeed, our model belongs to the class of Degradation-Threshold-Shock

(DTS) reliability models [42]. In this framework, the Gamma process can still be used to describe the degradation paths,

while the Poisson process is applied to express the arrival times of shock events. The classical DTS models assume that the

evolutions of degradation and shocks are two independent processes [20, 43, 44]. However, the dependence between them

is of importance in many practical situations and should not be neglected in the modeling [45]. From this point of view,

some extensions of DTS models considering the dependence between degradation and shock have been developed. The works

[46–49] consider that the shock process may cause additional damage for the degradation process, while the works [50, 51]

recently consider that the degradation process can drive the arrival rate of shock events. Our model, sharing the same idea

of the former works, considers that the degradation process is influenced by shock process. Observing the evolution path of

XS
t , we find that the degradation rate changes instantaneously whenever a shock arrives. Besides, the model also presents

two kinds of competing risks. The first competition is between shock process and degradation process to “contribute” to the

system failure, the second competition is between the primary crack processes themselves to “contribute” to the failure due

to degradation.

3. Diagnostic and Prognostic Condition Indices

Diagnosis and prognosis can provide condition indices essential for maintenance decision-making. In this section, four

typical condition indices are considered: two diagnostic indices characterizing the partial and complete information about

the current system health, and two prognostic indices related to the average and the probability law of the system residual

useful life (RUL). The former indices are revealed through inspection operations, while the latter ones are constructed using

also the degradation and failure model developed in Section 2. Some properties of the prognostic indices are also analyzed

for maintenance decision-making purposes.

3.1. Diagnostic Condition Indices

Diagnosis process determines the system health state based on the current monitoring observations [13]. Diagnostic

condition indices are the results of such process. In reality, the diagnosis is not a simple task and may require sophisticated

techniques (see e.g., [12, 13]). The present paper does not aim at developing such diagnosis approaches, but rather at
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investigating the ways to incorporate diagnostic condition indices in maintenance decision-making. So, we just simply

assume that the diagnosis is attached to inspection operations which can perfectly reveal the current length and number of

cracks. Consequently, we can define the three following diagnostic condition indices

• Nt - number of cracks up to time t,

• XS
t - sum of all crack sizes up to time t,

•
(

XS
t , Nt

)

- couple of sum of all crack sizes and number of cracks up to time t.

Nt cannot completely characterize the current health state of system, while XS
t represents the crack sizes at time t directly,

and the associated number of cracks indirectly. Compared to the other diagnostic condition indices, Nt is obviously not

enough to ensure an efficient and robust maintenance decision. This is why we just study here the two diagnostic condition

indices XS
t and

(

XS
t , Nt

)

, and the associated maintenance strategies.

3.2. Prognostic Condition Indices

Prognostic condition indices are the results of the prognosis of future system health. RUL, defined as the length from

the current time to the end of the system useful life, is a well-known prognostic information because it can provide an idea

about how long a system at a particular age will still survive. The concept of RUL has been widely investigated by many

works in the fields of prognosis and CBM [10]. The present paper adds a new dimension to these fields by further considering

two phenotypes of RUL: average-based RUL index and distribution-based RUL index. The former is usually given by a

non-probabilistic approach (e.g., artificial neural networks, fuzzy logic model, etc.), while the latter may be returned by a

probabilistic approach (e.g., stochastic process, bayesian networks, etc.) [52]. They are the two prognostic condition indices

that we study in this paper. Indeed, based on [9], given the number of cracks Nt and the sum of their crack sizes XS
t returned

by inspection operations, the system RUL at time t is expressed as

ρ
(

t | XS
t , Nt

)

= Z − t | Z > t,XS
t , Nt, (9)

where Z is the system failure time defined by (8). Its survival function is then given by

P
(

ρ
(

t | XS
t , Nt

)

> u
)

= P
(

Z > t+ u | Z > t,XS
t , Nt

)

= R
(

t+ u | XS
t , Nt

)

, (10)

where R
(

t+ u | XS
t , Nt

)

denotes the system conditional reliability at time t + u given XS
t and Nt. If XS

t = x < L and

Nt = k < N , this reliability is computed as

R (t+ u | x, k) = P
(

XS
t+u < L,Nt+u < N | XS

t = x,Nt = k
)

=
N−1−k
∑

h=0

P
(

XS
t+u < L | XS

t = x,Nt = k,Nt+u −Nt = h
)

P (Nt+u −Nt = h)

=

N−1−k
∑

h=0

P
(

XS
[t,t+u] < L− x | Nt = k,Nt+u −Nt = h

)

e−λu (λu)
h

h!

=

N−1−k
∑

h=0

e−λu (λu)
h

h!
FXS

[t,t+u]
|Nt,Nt+u−Nt

(L− x | k, h) , (11)

where FXS
[t,t+u]

|Nt,Nt+u−Nt
(L− x | k, h) is given by (7). Otherwise, R (t+ u | x, k) = 0. Thus, R

(

t+ u | XS
t , Nt

)

can be seen

as the distribution-based RUL index. From (11), the average-based RUL index (i.e., mean residual life - MRL) at time t,

µ
(

t | XS
t , Nt

)

, given XS
t = x < L and Nt = k < N can by computed as follows

µ (t | x, k) = E [ρ (t | x, k)] =

∫ ∞

0

R (u | x, k) du. (12)

Figures 2a and 2b show respectively the shape of the conditional reliability R (t+ u | x, k) and the conditional MRL µ (t | x, k)

of the system when x and k vary. One can remark that R (t+ u | x, k) and µ (t | x, k) are non-increasing functions of x and/or

8



k. Indeed, as shown in Appendix C, for a fixed k, 0 ≤ k ≤ N , the conditional reliability R (t+ u | x, k) is non-increasing in x;
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Fig. 2 – Shape of the system RUL - α = 1, β = 1, λ = 0.5, L = 50, N = 9.

and for a fixed x, 0 ≤ x ≤ L, R (t+ u | x, k) is non-increasing in k. Consequently, for 0 ≤ x1 ≤ x2 ≤ L and 0 ≤ k1 ≤ k2 ≤ N ,

the conditional reliability and the conditional MRL of system satisfy the properties

R (t+ u | x1, k1) ≥ R (t+ u | x2, k1) ≥ R (t+ u | x2, k2) ≥ 0 and R (t+ u | x1, k1) ≥ R (t+ u | x1, k2) ≥ R (t+ u | x2, k2) ≥ 0,

µ (t | x1, k1) ≥ µ (t | x2, k1) ≥ µ (t | x2, k2) ≥ 0 and µ (t | x1, k1) ≥ µ (t | x1, k2) ≥ µ (t | x2, k2) ≥ 0.

The monotonicity property of the conditional reliability and the conditional MRL of the system is very important for building

CBM strategies based on prognostic condition indices and the associated cost models.

4. Condition-based Maintenance Strategies

This section aims at showing how the diagnostic and prognostic condition indices considered in Section 3 can be incor-

porated into the maintenance decision-making. Four CBM strategies corresponding to these indices are then proposed. To

avoid upsetting the aforementioned CM strategies, these maintenance strategies still rely on periodic inspection schemes.

The proposed illustrations are based on the system characterized by the set of parameters α = 0.5, β = 0.5, λ = 1, L = 50

and N = 9.

4.1. Maintenance Assumptions

Considering the system described in Section 2, we assume that the system health state is hidden. This means that the

system reveals only the number of cracks, the associated crack sizes, and its failure/working state through an inspection

operation. Note that the notion of inspection mentioned here is not simply the data collection, but also the feature extraction

from the collected data, the construction of degradation indicators, and perhaps more [53]. In other words, this activity

includes all the tasks before the Maintenance Decision Making task in a CBM program [6]. Such an inspection operation is

itself costly, and takes time; however, compared to the life cycle of a system, the time for an inspection is negligible. Thus,

we assume that each inspection operation is instantaneous, perfect, non-destructive, and incurs a cost Ci.

Two maintenance actions are available on the system: a preventive replacement (PR) with cost Cp ≥ Ci, and a corrective

replacement (CR) with cost Cc. Since maintenance operations are the true physical replacement such that the system

is as-good-as-new rather than repairs, the interventions take negligible times and their costs are fixed, irrespective of the

degradation level (i.e., crack length and/or crack number) of the system. Even though both the PR and CR actions put the

system back in the as-good-as-new state, they are not necessarily identical in practice because the CR is unplanned and it

has to be performed on a more deteriorated system, and the cost Cc can also comprise different costs associated to failure

like damage to the environment. It is thus likely to be more complex and more expensive (i.e. Cc > Cp). Moreover, we

assume that a replacement can only be instantaneously performed at predetermined inspection times. Therefore, there exists

a system inactivity after failure and an additional cost is incurred from the failure time until the next replacement time at

a cost rate Cd.

9



For the above maintenance costs, Ci, Cp and Cc are measured in cost unit, while Cd is measured in cost unit/time unit.

The cost unit may be U.S. Dollar, Euro, or British Pound, etc., and time unit may be month, quarter, or year, etc.

4.2. Maintenance Strategies

The majority of maintenance strategies developed in the literature are of control-limit type [54], and their optimality in a

Markovian framework has been shown in [55–58]. Within this class of control-limit rule maintenance strategies, we propose

four periodic inspection and replacement strategies: two diagnosis-based strategies called (T,M) and (T,M,Np), and two

prognosis-based strategies called (T, µp) and (T,Rp). The only difference among these strategies is the way to make a PR

decision. So, for a compact representation, in the following, we present first the common structure of periodic inspection

and replacement strategies, then we make explicit the PR decision for each considered strategy.

4.2.1. Common structure of periodic inspection and replacement strategies

Under the framework of periodic inspection and replacement strategies, the system is regularly inspected with period T

(T is measured in time unit). At an inspection date τj = jT , j = 1, 2, . . . , if the systems fails due to an excessive level of

sum of crack size (i.e., XS
τj

≥ L) or due to an excessive number of cracks (i.e., Nτj ≥ N), it is correctively replaced. But if

the system is still running at this date, a decision based on one of above condition indices is made. If the PR condition is

satisfied, the system is preventively replaced at τj . Otherwise, the system is considered healthy, so nothing is done at τj ,

and the maintenance decision is postponed, at least, until the next inspection time τj+1 = τj + T .

4.2.2. (T,M) strategy

This maintenance strategy represents a traditional and naive use of condition indices where only partial information

about the current health state of system is integrated in maintenance decision-making. In our present case, this corresponds

to the use of the diagnostic condition index XS
t . Since the growing of the sum of crack size XS

t increases the probability of

system failure, a threshold M should be introduced to anticipate the system failure. In fact, at an inspection date τj = jT ,

j = 1, 2, . . . , if M ≤ XS
τj

< L, the running system is considered too degraded, and a PR should be carried out. As such, the

inspection period T and PR threshold M are the two decision parameters to be optimized, and we call this strategy (T,M)

to enhance the importance of these parameters.

For an illustration, we apply the (T,M) strategy with the decision parameters T = 2 and M = 30 for the system defined

as above, then we sketch the evolution of the sum of crack sizes
{

XS
τj

}

j∈N

and the associated numbers of cracks
{

Nτj

}

j∈N

at inspection times. Fig. 3 shows the numerical results. In this figure, as well as in following figures, the notations Qτ
−

j
and

Qτ
+
j

refer respectively to the values of the quantity Q at the time just before, and just after the inspection or replacement

time τj (Q may be the sum of crack sizes, the number of cracks, the system MRL or the system conditional reliability). We

can see clearly that the behavior of the maintained system depends closely on the values of the inspection period T and of

the threshold M . Although the PR threshold is only applied for the sum of crack sizes, it can still drive the evolution of the

number of cracks thanks to the dependence between these two quantities. In other words, besides avoiding the failures due to

crack size, the threshold M also helps to prevent the failures due to cracks number indirectly. The sequences of maintenance

operations in Fig. 3 is explicitly presented in Table 1.
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Fig. 3 – Behavior of the maintained system under the (T,M) strategy.
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Time 5T 9T 14T 18T

Operation PR CRN CRX PR

Table 1 – Sequence of maintenance operations under the (T,M) strategy.

4.2.3. (T,M,Np) strategy

Using solely the threshold M to prevent both kinds of failures due to crack size and cracks number as in the (T,M)

strategy might seem suboptimal, as it could better to take also into account the number of cracks. A simple way to improve

this is to introduce, along with the threshold M , an additional threshold Np for the number of cracks to anticipate separately

these failures. Such a strategy allows exploiting the complete information about the current system health (i.e., couple of

diagnostic condition indices
(

XS
t , Nt

)

in our present case) for maintenance decision-making purpose. More precisely, a PR

should be carried out at an inspection date τj = jT , j = 1, 2, . . . , if M ≤ XS
τj

< L or Np ≤ Nτj < N . The inspection

period T and the PR thresholds M and Np are the three decision parameters to be optimized, and thus this strategy is called

(T,M,Np).
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Fig. 4 – Behavior of the maintained system under the (T,M,Np) strategy.

To illustrate the (T,M,Np) strategy, we chose decision parameters as T = 2, M = 30 and Np = 6. The evolution of

the sum of crack sizes
{

XS
τj

}

j∈N

and the associated number of cracks
{

Nτj

}

j∈N
under the (T,M,Np) strategy are sketched

in Fig. 4. Obviously, the use of both thresholds M and Np allows more flexibility in PR decision-making: the (T,M,Np)

strategy returns to the (T,M) strategy when Np ≡ N . This is why the former can lead to more cost saving than the latter.

Table 2 explicitly presents the sequences of maintenance operations in Fig. 4.

Time 4T 7T 11T 14T 20T

Operation PRN CRX PRX PRXor PRN CRN

Table 2 – Sequence of maintenance operations under the (T,M,Np) strategy.

4.2.4. (T, µp) strategy

Unlike the above strategies whose PR decisions are based on diagnostic condition indices, we use here an average-based

RUL prognostic index of the future system health to provide a decision. More precisely, the MRL of the system is taken

into account. Since the value of MRL is always decreasing and reaches 0 when the system fails, to anticipate the system

failure, we should introduce a threshold on the MRL (denoted µp) below which a PR operation is carried out. Based on

this idea, Huynh et al. have build in [23] a predictive maintenance strategy for a so-called DTDS model. A similar strategy

is considered in this paper. Indeed, if the system is still running at an inspection time τj = jT , j = 1, 2, . . . ,, given the

detected number of cracks Nτj and the sum of all appeared crack sizes XS
τj
, we compute the system MRL, µ

(

τj | X
S
τj
, Nτj

)

,

according to (12). If 0 < µ
(

τj | X
S
τj
, Nτj

)

< µp, the running system is considered too degraded and should be preventively

replaced at τj . The inspection period T and the PR threshold µp are the two decision parameters to be optimized, and thus

this strategy is called (T, µp).

Applying the (T, µp) strategy with decision parameters T = 2 and µp = 3 for the considered system, we obtain its behavior

as in Fig. 5. Fig. 5a shows the evolution of the sum of crack sizes
{

XS
τj

}

j∈N

and the associated number of cracks
{

Nτj

}

j∈N
,
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Fig. 5 – Behavior of the maintained system under the (T, µp) strategy.

while Fig. 5b represents the evolution of system MRL
{

µ
(

τj | X
S
τj
, Nτj

)}

j∈N

under the (T, µp) strategy. Indirectly, the

behavior of the maintained system is driven by the value of the PR threshold µp. Indeed, through µp, the (T, µp) strategy also

allows incorporating the complete information about the current system health into maintenance decision as the (T,M,Np)

strategy. What is more, only two instead of three decision parameters have to be controlled in the (T, µp) strategy, the

maintenance decision-making and the parameters optimization in the former are hence easier than in the latter. These are

some advantages of using the system MRL instead of diagnostic condition indices. The sequences of maintenance operations

in Fig. 5 are explicitly presented in Table 3.

Time 8T 16T 24T 36T 42T 46T

Operation CRX PR CRN PR PR CRXor CRN

Table 3 – Sequence of maintenance operations under the (T, µp) strategy.

4.2.5. (T,Rp) strategy

Through this strategy, we aim at showing a way to incorporate a distribution-based RUL prognosis index of the future

system health into maintenance decision-making. To do so, we base the maintenance decisions on the system conditional

reliability and its monotony (see also the end of Section 3). Indeed, a threshold Rp is introduced, and whenever the value

of the system conditional reliability at an inspection time is lower than Rp, PR operations are done. More in detail, if the

system running at an inspection date τj = jT , j = 1, 2, . . . , given the detected number of cracks Nτj and the sum of all

appeared crack sizes XS
τj
, we compute the system conditional reliability at the next inspection time, R

(

τj + T | XS
τj
, Nτj

)

,

according to (11) and we trigger a PR at the current inspection date if 0 < R
(

τj + T | XS
τj
, Nτj

)

< Rp. The inspection

period T and the PR threshold Rp are the two decision parameters to be optimized, and this strategy is hence called (T,Rp).

For an illustration, we apply the (T,Rp) strategy with decision parameters T = 2 and Rp = 0.45 for the considered system,

and we sketch its behavior. Fig. 6a shows the evolution of the sum of crack sizes
{

XS
τj

}

j∈N

and the number of cracks

{

Nτj

}

j∈N
, and Fig. 6b represents the associated evolution of system conditional reliability

{

R
(

τj + T | XS
τj
, Nτj

)}

j∈N

.

Table 4 explicitly presents the sequences of maintenance operations in Fig. 6. One can remark that, as the system MRL,

Time 14T 24T 30T 40T 48T

Operation CRN CRX PR PR PR

Table 4 – Sequence of maintenance operations under the (T,Rp) strategy.

the system conditional reliability contains the complete information about the current system health.

5. Maintenance Cost Models, and Optimization

To have a precise analysis on the performances and robustness of the four maintenance strategies considered in Section

4, we should rely on their mathematical cost models. This is the main aim of this section. For the illustrations of the cost
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Fig. 6 – Behavior of the maintained system under the (T,Rp) strategy.

models developed within this section, the system is defined by the set of parameters α = 1, β = 1, λ = 0.5, L = 50 and

N = 9, and the used set of maintenance costs is Ci = 5, Cp = 50, Cc = 100 and Cd = 25.

5.1. Cost Criterion, and General Cost Model of Periodic Inspection and Replacement Strategies

To assess the performance and robustness of the considered maintenance strategies, we focus on a widely used criterion

which is the long-run expected maintenance cost rate C∞ defined as [17]

C∞ = lim
t→∞

E [C (t)]

t
, (13)

where C (t) is the total maintenance cost including the downtime cost up to time t. C∞ is measured in cost unit/time

unit. Under the considered maintenance strategies, after an as-good-as-new (preventive or corrective) replacement, the

system starts again from the new state and evolves independently from the past (i.e., the history and past events of the

system before the replacement) with the same probabilistic behavior. The evolution of the maintained system can be hence

assimilated to a regenerative process in which renewal points are replacement times. Thus, we can apply the well-known

renewal-reward theorem to compute (13) as the ratio of the expected maintenance cost on the first renewal cycle over the

expected length of the first cycle [28, page 42]

C∞ =
E [C (S1)]

E [S1]
, (14)

where S1 denotes the first replacement time of the system.

Now, we give a general framework to compute the long-run expected cost rate of periodic inspection and replacement

strategies. Since a replacement, whether preventive or corrective, is only performed at an inspection date, we can assume,

without loss of generality, that the system is first replaced at S1 = kT , k = 1, 2, . . .. The cumulative maintenance cost at

S1 consist of the cost of k inspections, a PR cost or a CR cost, and downtime cost if the maintained system fails at a time

Y ∈ [(k − 1)T, kT ]. Thus, the expected maintenance cost accumulated in a renewal cycle is computed as

E [C (S1)] =

∞
∑

k=1

{(Cp + kCi)Pp,k (kT ) + (Cc + kCi)Pc,k (kT ) + CdE [Wd,k (kT )]} , (15)

where E [Wd,k (kT )] denotes the expected downtime in a renewal cycle, which can be obtained by

E [Wd,k (kT )] = E [kT − Y ] = E

[

∫ kT

(k−1)T

1{(k−1)T<Y<t}dt

]

=

∫ kT

(k−1)T

P ((k − 1)T < Y < t) dt, (16)

Pp,k (kT ) and Pc,k (kT ) represent respectively the probabilities of PR and CR at time kT . The probability Pc,k (kT ) can be

explained through the variable Y as

Pc,k (kT ) = P ((k − 1)T < Y < kT ) . (17)
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The expected length of the first renewal cycle is given by

E [S1] =
∞
∑

k=1

{kT (Pp,k (kT ) + Pc,k (kT ))} , (18)

As such, the long-run expected cost rate of any periodic inspection and replacement strategies can be completely evaluated

by

C∞ =

∑∞
k=1 {(Cp + kCi)Pp,k (kT ) + (Cc + kCi)Pc,k (kT ) + CdE [Wd,k (kT )]}

∑∞
k=1 {kT (Pp,k (kT ) + Pc,k (kT ))}

(19)

if Pp,k (kT ) and P ((k − 1)T < Y < t) are known. Evidently, the values of these two probabilities closely depend on the

used maintenance strategies and on the value of the maintenance decision variables in each of them. As such, the cost C∞

depends on the maintenance decision variables through Pp,k (kT ) and P ((k − 1)T < Y < t). In the following, we focus on

formulating these quantities according to the four proposed strategies.

5.2. Maintenance Cost Model of The (T,M) Strategy

The long-run expected maintenance cost rate of the (T,M) strategy, C
(T,M)
∞ , is obtained from (19), where the probabilities

P
(T,M)
p,k (kT ) and P (T,M) ((k − 1)T < Y < t) are formulated as follows.

According to the (T,M) strategy, a PR is triggered if the sum of crack sizes of the running system belongs to the interval

[M,L[. Its probability at time kT is therefore computed as

P
(T,M)
p,k (kT ) = P

(

XS
(k−1)T < M ≤ XS

kT < L,N(k−1)T ≤ NkT < N
)

=

N−1
∑

n=0

e−λ(k−1)T (λ (k − 1)T )
n

n!

∫ M

0

N−1−n
∑

m=0

(λT )
m

m!
e−λT

(

FXS
[(k−1)T,kT ]

|N(k−1)T ,NkT−N(k−1)T
(L− x | n,m)−

FXS
[(k−1)T,kT ]

|N(k−1)T ,NkT−N(k−1)T
(M − x | n,m)

)

fXS
(k−1)T

|N(k−1)T
(x | n) dx, (20)

where fXS
(k−1)T

|N(k−1)T
(·) and FXS

[(k−1)T,kT ]
|N(k−1)T ,NkT−N(k−1)T

(·) are given by (6) and (7) respectively.

The probability that the system fails in the time interval [(k − 1)T, t] under the (T,M) strategy is given by

P (T,M) ((k − 1)T < Y < t) = P
(

XS
(k−1)T < M,N(k−1)T < N,

(

XS
t ≥ L or Nt ≥ N

)

)

= P
(T,M)
Y,1 + P

(T,M)
Y,2 , (21)

where P
(T,M)
Y,1 and P

(T,M)
Y,2 are expressed as

P
(T,M)
Y,1 = P

(

XS
(k−1)T < M,N(k−1)T < N ≤ Nt

)

=

N−1
∑

n=0

e−λ(k−1)T (λ (k − 1)T )
n

n!

(

1−

N−1−n
∑

m=0

e−λ(t−(k−1)T ) (λ (t− (k − 1)T ))
m

m!

)

FXS
(k−1)T

|N(k−1)T
(M | n) , (22)

P
(T,M)
Y,2 = P

(

XS
(k−1)T < M < L ≤ XS

t , N(k−1)T < Nt < N
)

=

N−1
∑

n=0

e−λ(k−1)T (λ (k − 1)T )
n

n!

∫ M

0

N−1−n
∑

m=0

e−λ(t−(k−1)T ) (λ (t− (k − 1)T ))
m

m!
×

(

1− FXS
[(k−1)T,t]

|N(k−1)T ,Nt−N(k−1)T
(L− x | n,m)

)

fXS
(k−1)T

|N(k−1)T
(x | n) dx, (23)

in which FXS
(k−1)T

|N(k−1)T
(·), fXS

(k−1)T
|N(k−1)T

(·) and FXS
[(k−1)T,t]

|N(k−1)T ,Nt−N(k−1)T
(·) are given by (5), (6) and (7) respectively.

Optimizing the (T,M) strategy amounts to finding the couple of decision parameters (Topt,Mopt) which minimizes C
(T,M)
∞

C(T,M)
∞ (Topt,Mopt) = min

T>0,0<M<L

{

C(T,M)
∞ (T,M)

}

. (24)

Generalized pattern search algorithms representing in [59] can be used for the optimization purpose. Fig. 7 shows the surface

of cost rate of the (T,M) strategy as a function of T and M for the considered system. The form of the cost rate surface
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justifies the existence of a global minimum, and hence finding optimal decision parameters is needed to obtain the best

performance of the maintenance strategy. As for the considered system, the (T,M) strategy reaches the minimal cost rate

C
(T,M)
∞ (Topt,Mopt) = 6.0339 at Topt = 4.6 and Mopt = 19.
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Fig. 7 – Cost rate surface of the (T,M) strategy.

5.3. Maintenance Cost Model of The (T,M,Np) Strategy

The long-run expected maintenance cost rate of the (T,M,Np) strategy, C
(T,M,Np)
∞ , is obtained from (19), where the

probabilities P
(T,M,Np)
p,k (kT ) and P (T,M,Np) ((k − 1)T < Y < t) are computed as follows.

For the (T,M,Np) strategy, a PR is carried out when the sum of crack sizes of the running system or the associated

number of cracks belongs to the interval [M,L) and [Np, N) respectively. Its probability at time kT is thus given as

P
(T,M,Np)
p,k (kT ) = P

(

XS
(k−1)T < M,N(k−1)T < Np,

(

M ≤ XS
kT < L or Np ≤ NkT < N

)

)

= P
(T,M,Np)
p,k,1 + P

(T,M,Np)
p,k,2 , (25)

where P
(T,M,Np)
p,k,1 and P

(T,M,Np)
p,k,1 are calculated as

P
(T,M,Np)
p,k,1 = P

(

XS
(k−1)T < M,XS

kT < L,N(k−1)T < Np ≤ NkT < N
)

=

Np−1
∑

n=0

(λ (k − 1)T )n

n!
e−λ(k−1)T

∫ M

0

N−1−n
∑

m=Np−n

(λT )m

m!
e−λT×

FXS
[(k−1)T,kT ]

|N(k−1)T ,NkT−N(k−1)T
(L− x | n,m) fXS

(k−1)T
|N(k−1)T

(x | n) dx, (26)

P
(T,M,Np)
p,k,2 = P

(

XS
(k−1)T < M ≤ XS

kT < L,N(k−1)T ≤ NkT < Np

)

=

Np−1
∑

n=0

(λ (k − 1)T )
n

n!
e−λ(k−1)T

∫ M

0

Np−1−n
∑

m=0

(λT )
m

m!
e−λT

(

FXS
[(k−1)T,kT ]

|N(k−1)T ,NkT−N(k−1)T
(L− x | n,m)−

FXS
[(k−1)T,kT ]

|N(k−1)T ,NkT−N(k−1)T
(M − x | n,m)

)

fXS
(k−1)T

|N(k−1)T
(x | n) dx, (27)

where fXS
(k−1)T

|N(k−1)T
(·) and FXS

[(k−1)T,kT ]
|N(k−1)T ,NkT−N(k−1)T

(·) are given by (6) and (7) respectively.

The probability that the system fails in the time interval [(k − 1)T, t] under the (T,M,Np) strategy is given by

P (T,M,Np) ((k − 1)T < Y < t) = P
(

XS
(k−1)T < M,N(k−1)T < Np,

(

XS
t ≥ L or Nt ≥ N

)

)

= P
(T,M,Np)
Y,1 + P

(T,M,Np)
Y,2 , (28)

where P
(T,M,Np)
Y,1 and P

(T,M,Np)
Y,2 are expressed as

P
(T,M,Np)
Y,1 = P

(

XS
(k−1)T < M,N(k−1)T < Np, Nt ≥ N

)

=

Np−1
∑

n=0

e−λ(k−1)T (λ (k − 1)T )
n

n!

(

1−

N−1−n
∑

m=0

e−λ(t−(k−1)T ) (λ (t− (k − 1)T ))
m

m!

)

FXS
(k−1)T

|N(k−1)T
(M | n) , (29)
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P
(T,M,Np)
Y,2 = P

(

XS
(k−1)T < M < L ≤ XS

t , N(k−1)T < Np, Nt < N
)

=

Np−1
∑

n=0

e−λ(k−1)T (λ (k − 1)T )
n

n!

∫ M

0

N−1−n
∑

m=0

e−λ(t−(k−1)T ) (λ (t− (k − 1)T ))
m

m!
×

(

1− FXS
[(k−1)T,t]

|N(k−1)T ,Nt−N(k−1)T
(L− x | n,m)

)

fXS
(k−1)T

|N(k−1)T
(x | n) dx, (30)

in which FXS
(k−1)T

|N(k−1)T
(·), fXS

(k−1)T
|N(k−1)T

(·) and FXS
[(k−1)T,t]

|N(k−1)T ,Nt−N(k−1)T
(·) are given by (5), (6) and (7) respectively.

Optimizing the (T,M,Np) strategy is to find the set of decision parameters (Topt,Mopt, Np,opt) which minimizes C
(T,M,Np)
∞

C(T,M,Np)
∞ (Topt,Mopt, Np,opt) = min

T>0,0<M<L,0<Np<N

{

C(T,M,Np)
∞ (T,M)

}

. (31)

In reality, we apply the generalized pattern search algorithms [59] to determine the optimum. Fig. 8 shows the shape of the

cost rate of the (T,M,Np) strategy for the considered system. We obtain the minimal cost rateC
(T,M,Np)
∞ (Topt,Mopt, Np,opt) =

5.785 at Topt = 5, Mopt = 23 and Np,opt = 5.
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Fig. 8 – Shape of the cost rate of the (T,M,Np) strategy.

5.4. Maintenance Cost Models of The (T, µp) Strategy and The (T,Rp) Strategy

This section aims at computing the long-run expected maintenance cost rate of the (T, µp) strategy and the (T,Rp) strat-

egy. We will find that the cost rate formulae of both these strategies are the same, despite of their different condition indices

used. This is not very surprising because the criterion of interest is the long-run expected maintenance cost rate (13), and

from this average viewpoint, the system MRL contains all the information about the system RUL. Consequently, the (T, µp)

strategy and the (T,Rp) strategy share the same cost model. For a more compact presentation, η
(

XS
t , Nt

)

and ηp are used

to denote either µ
(

t | XS
t , Nt

)

or R
(

t+ T | XS
t , Nt

)

and either µp or Rp respectively, and the label RUL is used to represent

both strategies name. In the following, we focus on formulating the quantities PRUL
p,k (kT ) and PRUL ((k − 1)T < Y < t).

The idea is, firstly, to present all the possible events affecting η
(

XS
t , Nt

)

related to each quantity, then to transform these

events into the events of sums of crack sizes XS
t thanks to the monotonicity property of η

(

XS
t , Nt

)

(review Section 3), and
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finally, to compute the associated probabilities. As such, we must define a threshold of crack size corresponding to ηp as

follows. For a fixed number of appeared cracks k, Mk is the minimum value of sums of crack sizes x such that the value

η (x, k) is less than ηp, that is

Mk = inf {x ≥ 0, η (x, k) ≤ ηp} . (32)

If Mk > L, we impose Mk ≡ L. We can see that the value of Mk is not constant, but adaptive to the appeared cracks

number k. Using the above idea, the PR probability PRUL
p,k (kT ) is computed as

PRUL
p,k (kT ) = P

(

0 < η
(

XS
kT , NkT

)

≤ ηp < η
(

XS
(k−1)T , N(k−1)T

))

=

P
(

N(k−1)T ≤ NkT < N,XS
(k−1)T < MN(k−1)T

,MNkT
≤ XS

kT < L
)

. (33)

Hence,

PRUL
p,k (kT ) =

N−1
∑

n=0

(λ (k − 1)T )
n

n!
e−λ(k−1)T

∫ Mn

0

N−1−n
∑

m=0

(λT )
m

m!
e−λT

(

FXS
[(k−1)T,kT ]

|N(k−1)T ,NkT−N(k−1)T
(L− x | n,m)−

FXS
[(k−1)T,kT ]

|N(k−1)T ,NkT−N(k−1)T
(Mn+m − x | n,m)

)

fXS
(k−1)T

|N(k−1)T
(x | n) dx, (34)

where fXS
(k−1)T

|N(k−1)T
(·) and FXS

[(k−1)T,kT ]
|N(k−1)T ,NkT−N(k−1)T

(·) are given by (6) and (7) respectively.

The probability that the system fails in the time interval [(k − 1)T, t] under the (T, µp) strategy and the (T,Rp) strategy

is given by

PRUL ((k − 1)T < Y < t) = P
(

η
(

XS
(k−1)T , N(k−1)T

)

> ηp,
(

XS
t ≥ L or Nt ≥ N

)

)

=

P
(

N(k−1)T < N,XS
(k−1)T < MN(k−1)T

,
(

XS
t ≥ L or Nt ≥ N

)

)

= PRUL
Y,1 + PRUL

Y,2 , (35)

where PRUL
Y,1 and PRUL

Y,2 are respectively calculated as

PRUL
Y,1 = P

(

N(k−1)T < N ≤ Nt, X
S
(k−1)T < MN(k−1)T

)

=

N−1
∑

n=0

e−λ(k−1)T (λ (k − 1)T )
n

n!

(

1−

N−1−n
∑

m=0

e−λ(t−(k−1)T ) (λ (t− (k − 1)T ))
m

m!

)

FXS
(k−1)T

|N(k−1)T
(Mn | n) , (36)

PRUL
Y,2 = P

(

N(k−1)T ≤ Nt < N,XS
(k−1)T < MN(k−1)T

< L ≤ XS
t

)

=

N−1
∑

n=0

e−λ(k−1)T (λ (k − 1)T )
n

n!

∫ Mn

0

N−1−n
∑

m=0

e−λ(t−(k−1)T ) (λ (t− (k − 1)T ))
m

m!
×

(

1− FXS
[(k−1)T,t]

|N(k−1)T ,Nt−N(k−1)T
(L− x | n,m)

)

fXS
(k−1)T

|N(k−1)T
(x | n) dx, (37)

in which FXS
(k−1)T

|N(k−1)T
(·), fXS

(k−1)T
|N(k−1)T

(·) and FXS
[(k−1)T,t]

|N(k−1)T ,Nt−N(k−1)T
(·) are given by (5), (6) and (7) respectively.

Thus, the long-run expected maintenance cost rates of the (T, µp) strategy and the (T,Rp) strategy are obtained from

(19), where the probabilities PRUL
p,k (kT ) and PRUL ((k − 1)T < Y < t) are given by (34) and (35) respectively. Optimizing

these strategies amounts to determine the couples of decision parameters (Topt, µp,opt) and (Topt, Rp,opt) which minimize the

long-run expected maintenance cost rates

C(T,µp)
∞ (Topt, µp,opt) = min

T>0,0<µp<MTTF

{

C(T,µp)
∞ (T, µp)

}

, (38)

C(T,Rp)
∞ (Topt, Rp,opt) = min

T>0,0<Rp<1

{

C(T,Rp)
∞ (T,Rp)

}

, (39)

where MTTF denotes the mean time to failure of the system. Once again, the generalized pattern search algorithm

represented in [59] is used to find the optima of the (T, µp) strategy and the (T,Rp) strategy. The cost surface of both these
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strategies as a function of their decision parameters are shown in Fig. 9a and Fig. 9b. The form of the cost rate surfaces

justifies the existence of optimal decision parameters. As shown in Fig. 9, for the considered system, the (T, µp) strategy

reaches the optimal cost rate C∞(Topt, µp,opt) = 5.7627 at Topt = 5 and µp,opt = 5.5, and the (T,Rp) strategy reaches the

optimal cost rate C∞(Topt, Rp,opt) = 5.7552 at Topt = 5 and Rp,opt = 0.7.
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Fig. 9 – Shape of the cost rates of the (T, µp) strategy and the (T,Rp) strategy.

6. Performance and Robustness Assessment of Condition-based Maintenance Strategies

The mathematical cost models developed above help us to quantitatively analyze in this section the performance and

robustness of the four proposed CBM strategies. Indeed, through the comparison results on their cost rates in different

configurations of maintenance operations costs and system characteristics, we can draw some conclusions on their performance

and robustness, and hence find out reliable condition indices for maintenance decision-making.

6.1. Performance Analysis

To evaluate the performance of the four considered maintenance strategies, we compare their optimal cost rates in different

configuration of maintenance operations costs. The practical constraint Ci < Cp < Cc leads us to fix Cc = 100 and to consider

three following case studies

• varied inspection cost : Ci varies from 1 to 50 with step equals 1, Cp = 50, and Cd = 25,

• varied PR cost : Ci = 5, Cp varies from 5 to 99 with step equals 1, and Cd = 25,

• varied downtime cost rate: Ci = 5, Cp = 50, and Cd varies from 5 to 100 with step equals 1.

These cost configurations are applied for the system characterized by the set of parameters: L = 50, N = 9, α = 0.1,

β = 0.1 and λ = 0.5. Fig. 10a, Fig. 10b and Fig. 10c show the results for the three above case studies. In each figure,

the lower curve means that the associated strategy has higher performance. We can see clearly that the (T,M) strategy

is the least profitable one among the considered strategies, because the sum of crack sizes XS
t considered alone cannot

completely characterize the system health state. The other strategies allow taking the complete information about the

current system health state into maintenance decision-making, so they lead to almost identical cost savings. However, the

(T,M,Np) strategy is not really equivalent to the (T,Rp) strategy and (T, µp) strategy. To clarify this point, we look at

the evolution of their optimal decision parameters sketched in Fig. 11a, Fig. 11b and Fig. 11c respectively. In each figure,

the subfigures on the top and at the bottom represent respectively the evolutions of the optimal inspection periods Topt

and of the optimal PR thresholds of each strategy (i.e., Mopt and Np,opt of the (T,M,Np) strategy, µp,opt of the (T, µp)

strategy, and Rp,opt of the (T,Rp) strategy). Note that, for an easier comparison, we have transformed the Mopt and Np,opt

of the (T,M,Np) strategy, and µp,opt of the (T, µp) strategy into the corresponding conditional system reliabilities using

(11) and (12) (i.e., (Mopt, Np,opt) ⇒ R (t+ Topt | Mopt, Np,opt) and µp,opt ⇒
(

xµp,opt
, kµp,opt

)

⇒ R
(

t+ Topt | xµp,opt
, kµp,opt

)

).

One can see from these figures that the values of Topt of these strategies are almost the same, while Rp,opt is almost equals
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Fig. 10 – Comparison on the performance of the considered maintenance strategies.

to R
(

t+ Topt | xµp,opt
, kµp,opt

)

and is different than R (t+ Topt | Mopt, Np,opt). This means that, from the performance

viewpoint, the (T,Rp) strategy and the (T, µp) strategy are equivalent, and they differ from the (T,M,Np) strategy. This

remark is also justified by observing the events of PR of the considered strategies in (25) and (33) respectively. More precisely,

the optimal long-run expected maintenance cost of the (T,M,Np) strategy is slightly higher than the (T,Rp) strategy and

(T, µp) strategy (see Fig. 10a, Fig. 10b and Fig. 10c). This is because the PR thresholds on the sum of crack size M and

on the number of appeared cracks Np are defined independently, and the PR thresholds on the system MRL µp and the

system conditional reliability Rp can contain the information about the dependence between the sum of crack size and the

number of cracks. While such a dependence is obviously inherent in the degradation and failure model of the system, it is

not surprising that the (T,Rp) strategy and (T, µp) strategy are more profitable than the (T,M,Np) strategy. Although such

a profit is not much significant, in practical applications, we still prefer the (T,Rp) strategy and (T, µp) strategy than the

(T,M,Np) strategy because of their simpler maintenance decision-making structures and parameters optimization. Thus,

from the performance viewpoint, it is more interesting to use prognostic condition indices for maintenance decision-making

instead of diagnostic condition indices.

6.2. Robustness Analysis

The above studies show that the performances in term of the long-run expected average cost rate of the three maintenance

strategies (T,M,Np), (T, µp) and (T,Rp) are almost identical under the assumption of perfect estimation of model parameters.

However, in many practical applications, the estimation may be imprecise owing to the lack of data, measurement errors,

variability, modeling uncertainties, etc. This leads to errors in determining the optimal decision parameters of a maintenance

strategy, and hence a loss in its performance. This section therefore aims at analyzing the impact of such errors on the

maintenance cost of these three strategies, and hence giving some conclusions on their robustness. Recall that the robustness

refers to the sensitivity of the maintenance cost rate C∞ to the suboptimal choice of decision parameters. As such, looking

at the flatness of the optimal zones the (T, µp) strategy and the (T,Rp) strategy (zones around the optimal values of µp and

Rp) in Fig. 9, it seems that the latter is robuster than the former. However, to objectively assess their robustness, we rely
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Fig. 11 – Evolution of optimal decision parameters of the considered maintenance strategies.

on a criterion similar to the one proposed in [25]

ǫC =
C∞ − Copt

∞

Copt
∞

× 100%. (40)

It represents the relative increase in the long-run expected maintenance cost rate of a maintenance strategy when the decision

parameters are different than their optimal values. This robustness criterion is then studied with respect to the variability

of crack growth behavior.

Specifically, the study is based on the set of maintenance operations costs Ci = 5, Cp = 50, Cc = 100 and Cd = 25,

and on the system characterized by the set of parameters L = 50, N = 9 and λ = 0.5. Two configurations of crack growth

behaviors with the average propagation rate m = 1 are considered

• small variance rate: σ2 = 0.1 (α = 10, β = 10),

• high variance rate: σ2 = 10 (α = 0.1, β = 0.1).

Moreover, since the only difference between these three strategies is the way to make the PR decisions, it is sufficient to

assess their robustness by analyzing the impact of the suboptimal choice of the PR thresholds on the maintenance cost rate

C∞. This is why, for each above configuration, we fix the inspection period T at its optimal value and we vary the other

decision parameters (i.e., M for the (T,M,Np) strategy, µp for the (T, µp) strategy, and Rp for the (T,Rp) strategy) around

their optimal values with a relative error ǫp varied from −20% to +20% (ǫp = 0 corresponds to the optimal configurations of

the maintenance strategies), and we investigate the evolution of ǫC . Note that the parameter Np of the (T,M,Np) strategy,

Np ∈ N, is firstly set at its optimal value. The optimal decision parameters of the considered strategies are shown in Table 5.

Table 6 represents the evolution of the PR thresholds Rp and µp ⇒ R
(

t+ Topt | xµp
, kµp

)

with respect to ǫp. We can remark

that with a same ǫp, the values of Rp and R
(

t+ Topt | xµp
, kµp

)

are different, and the difference becomes higher for smaller

variance of crack growth behavior. This means that the (T, µp) strategy and the (T,Rp) strategy are no longer equivalent

when they are out of their optimal configurations, and this is even more true when the variance of crack growth behavior is
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less important.

Config. Strategy Optimal decision parameters

σ2 = 0.1
(T,M,Np) Topt = 5.4,Mopt = 22, Np,opt = 5
(T, µp) Topt = 4.6, µp,opt = 5
(T,Rp) Topt = 4.6, Rp,opt = 0.65

σ2 = 10
(T,M,Np) Topt = 4.6,Mopt = 23, Np = 5
(T, µp) Topt = 4.6, µp,opt = 6
(T,Rp) Topt = 4.6, Rp,opt = 0.7

Table 5 – Optimal decision parameters of the three considered strategies.

Config. ǫp -20% -15% -10% -5% 0% 5% 10% 15% 20%

σ2 = 0.1
µp 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6

R
(

t+ Topt | xµp
, kµp

)

0.3552 0.3223 0.4395 0.596 0.7009 0.7876 0.8206 0.8946 0.9201
Rp 0.52 0.5525 0.585 0.6175 0.65 0.6825 0.715 0.7475 0.78

σ2 = 10
µp 4.8 5.1 5.4 5.7 6 6.3 6.6 6.9 7.2

R
(

t+ Topt | xµp
, kµp

)

0.4888 0.5523 0.6009 0.6443 0.6840 0.7008 0.7629 0.7939 0.8145
Rp 0.56 0.595 0.63 0.665 0.7 0.735 0.77 0.805 0.84

Table 6 – Evolution of Rp and µp ⇒ R
(

t+ Topt | xµp , kµp

)

with respect to ǫp.
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Fig. 12 – Comparison on the robustness of the considered maintenance strategies.

More precise discussions about the robustness of these two strategies can be drawn from Fig. 12a and Fig. 12b. In these

figures, the flatter curve corresponds to robuster strategy. Obviously, the values of ǫC increase with respect to the error in

decision parameters. Thanks to the nature of the decision parameter (conditional reliability vs. MRL), the ǫC curve of the

(T,Rp) strategy is generally flatter than the one of the (T, µP ) strategy. This can be explained by looking at Figure 12c. In

fact, µp,opt corresponds to a point on the curve of the pdf of RUL, and Rp,opt corresponds to area below the curve. With a

same error magnitude in a decision parameter, a deviation from a point is intuitively more critical than a deviation from an

area. As a result, the (T,Rp) strategy is less sensitive to the parameter error, and hence robuster than the (T, µp) strategy.

However, this seems no more true when the variance of crack paths is high (Fig. 12a vs. Fig. 12b). The reason is that the
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curve of the pdf RUL becomes less peaky in this case, and thus the relative deviation of µp from its optimal value is less

important.
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Fig. 13 – Focusing on the robustness of the (T,M,Np) strategy.

For the (T,M,Np) strategy, we can see from Fig. 12a and Fig. 12b that its ǫC curves are flat. This means that the

(T,M,Np) strategy remains insensitive to the influence of the variability of M . However, it is very sensitive to the change of

Np. Indeed, observing the ǫC curves of the (T,M,Np) strategy when Np = Np,opt ± 1, T = Topt and M = Mopt in Figure 13,

even with one unit of deviation in Np from its optimum, the value of ǫC increases significantly and become much higher than

the ones of the (T, µp) strategy and the (T,Rp) strategy. As such, in general, the (T,M,Np) strategy is less robust than the

(T, µp) strategy and the (T,Rp) strategy. In other words,using the prognostic condition indices instead of diagnostic ones

can lead to robuster maintenance decisions.

7. Conclusions and Perspectives

The present paper considers a system subject to competing risks due to multiple degradation paths of SCC which appear

on different passive components or structures. A degradation and failure model based on a combination of Poisson process

and Gamma processes is developed to describe the system behavior. Compared to the existing models, the way to define

the system failure in our model makes it more realistic and reliable for safety and reliability analysis. Furthermore, it can

be easily extended to be a new element in the class of DTS reliability modes. Based on this competing risks model, two

prognostic condition indices (i.e., the average-based RUL and the distribution-based RUL indices) are synthesized, and the

associated maintenance cost models are also developed. These models are optimized and compared with the ones whose

maintenance decision are based on diagnostic condition indices. The differences among the considered CBM strategies lie in

the way the knowledge on the degradation model is used, either implicitly in the optimization process when the diagnostic

condition indices are used, or more explicitly with the diagnostic prognostic indices. The CBM strategy implemented without

using the full information on the degradation model, would be for sure not optimal, and would incur a greater maintenance

cost. However, it does not make a significant difference to use this information either implicitly or explicitly as far as

the expected maintenance cost is considered, and not surprisingly all the strategies using correctly the same amount of

information lead more or less to the same expected maintenance cost. But this is true only under the assumption of a perfect

knowledge of the degradation model. The work shows that using explicitly the knowledge of the degradation model by

building prognostic condition indices (instead of using it only implicitly in the maintenance optimization) leads to robuster

maintenance strategies. This robustness property is very important for a practical implementation of the strategy since most

often the degradation phenomenon is not perfectly modeled. Furthermore, between the two considered prognostic indices,

the distribution-based RUL index is more informative and reliable for maintenance decision-making than the average-based

RUL index, because it can lead to robuster maintenance strategy. This result therefore encourages us to invest more strongly

in prognosis methods which can give a probability law of future system heath state. The work in this paper also convinces

us that the value of prognostic information can be only properly assessed in light of the downstream maintenance decision

process and of the overall maintenance performance and robustness.
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For our future works, we continue studying the effectiveness of diagnostic and prognostic condition indices based on other

degradation and failure models of SCC. For instance, we can consider a model whose the system failure occurs when there

are at least some number of cracks bigger than some length.

Appendix A. Proof of (5)

XS
t | Nt is a random variable representing the sum of all crack increments in the time intervals [0, t] given the number of

cracks up to time t, Nt, its cdf can be computed as

FXS
t |Nt

(x | k) = P
(

XS
t < x | Nt = k

)

=
∫ t

0

∫ t

t1

· · ·

∫ t

tk−1

P
(

XS
t < x | T1 = t1, · · · , Tk = tk, Nt = k

)

fT1,··· ,Tk|Nt
(t1, · · · , tk|k) dt1dt2 · · · dtn. (A.1)

From (2), FXS
t |Nt

(x | k) is rewritten as

FXS
t |Nt

(x | k) =

∫ t

0

∫ t

t1

· · ·

∫ t

tn−1

F
α(nt−

∑
n
i=1 ti),β (x)

n!

tn
dt1dt2 · · · dtn =

∫ t

0

∫ t

0

· · ·

∫ t

0

F
α(nt−

∑
n
i=1 ti),β (x)

1

tn
dt1dt2 · · · dtn = EΘ

[

F
α(kt−

∑
k
i=1 θi),β (x)

]

, (A.2)

where F
α·(kt−

∑
k
i=1 ti),β (x) is derived from (4), EΘ [·] denotes the expectation with respect to the random vector Θ =

{θ1, . . . , θk} whose each element follows a uniform distribution θj ∼ U (0, t), j = 1, . . . , k.

Appendix B. Proof of (7)

XS
[t,t+u] | Nt, Nt+u−Nt is a random variable representing the sum of crack increments in the time intervals [t, t+ u] given

the number of cracks appeared at time t, Nt, and the additional number of cracks in the time interval [t, t+ u], Nt+u −Nt.

Knowing Nt = k and Nt+u −Nt = h, this variable can be decomposed by to parts

• the increase of the k old cracks appeared before t. This quantity follows a Gamma probability law with parameters

αkt and β,

• the increase of the h new cracks appeared in the time interval [t, t+ u]. This quantity follows a Gamma probability

law with parameters α
(

h (t+ u)−
∑k+h

i=k+1 Ti

)

and β, where Tk+1, Tk+2, . . . , Tk+h are the arrival times of cracks in

the time interval [t, t+ u].

As such, if ti, i = k + 1, . . . , k + h, is a realization of the random variable Ti (t < tk+1 < tk+2 < · · · < tk+h < t + u), then

the cdf of XS
[t,t+u] | Nt, Nt+u −Nt can be computed as

FXS
[t,t+u]

|Nt,Nt+u−Nt
(x | k, h) = P

(

XS
[t,t+u] < x | Nt = k,Nt+u −Nt = h

)

=
∫ t+u

t

∫ t+u

tk+1

· · ·

∫ t+u

tk+h−1

P
(

XS
[t,t+u] < x | Nt = k, Tk+1 = tk+1, , · · · , Tk+h = tk+h

)

×

fTk+1,...,Tk+h|Nt+u−Nt
(tk+1, tk+2, · · · , tk+h|h) dtk+1dtk+2 · · · dtk+h. (B.1)

From (2), FXS
[t,t+u]

|Nt,Nt+u−Nt
(x | k, h) is rewritten as

FXS
[t,t+u]

|Nt,Nt+u−Nt
(x | k, h) =

∫ t+u

t

∫ t+u

tk+1

· · ·

∫ t+u

tk+h−1

F
α(kt+h(t+u)−

∑k+h
i=k+1 ti),β (x)

h!

th
dtk+1dtk+2 · · · dtk+h. (B.2)
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Let’s denote li = tk+i − t,

FXS
[t,t+u]

|Nt,Nt+u−Nt
(x | k, h) =

∫ t

u

∫ t

l1

· · ·

∫ t

lh−1

F
α((k+h)t−

∑
h
i=1 li),β (x)

h!

th
dl1dl2 · · · dlh =

∫ t

0

∫ t

0

· · ·

∫ t

0

F
α((k+h)t−

∑
h
i=1 li),β (x)

1

th
dl1dl2 · · · dlh = EΘ

[

F
α((k+h)u−

∑
h
i=1 θi),β (x)

]

, (B.3)

where F
α((k+h)u−

∑
h
i=1 θi),β (x) is derived from (4), EΘ [·] denotes the expectation with respect to the random vector Θ =

{θ1, . . . , θh} whose each element follows a uniform distribution θj ∼ U (0, t), j = 1, . . . , h.

Appendix C. Proof of the monotonicity of the system conditional reliability R (t + u | x, k)

• For a fixed k, 0 ≤ k ≤ N , the conditional reliability R (t+ u | x, k) is non-increasing in x.

We have to prove that, given a fixed k, 0 ≤ k ≤ N , and x1 ≤ x2, then R (t+ u | x1, k) ≥ R (t+ u | x2, k). Indeed,

when x1 ≤ x2, L − x1 ≥ L − x2, and thus FXS
[t,t+u]

|Nt,Nt+u−Nt
(L− x1 | k, h) ≥ FXS

[t,t+u]
|Nt,Nt+u−Nt

(L− x2 | k, h).

Consequently, one can derive from (11) that R (t+ u | x1, k) ≥ R (t+ u | x2, k).

• For a fixed x, 0 ≤ x ≤ L, the conditional reliability R (t+ u | x, k) is non-increasing in k.

We have to prove that, given a fixed x, 0 ≤ x ≤ L, and k1 ≤ k2, then R (t+ u | x, k1) ≥ R (t+ u | x, k2). Indeed,

we have from (7) that FXS
[t,t+u]

|Nt,Nt+u−Nt
(L− x | k, h) = EΘ

[

F
α((k+h)u−

∑
h
i=1 θi),β (L− x)

]

where Θ = {θ1, . . . , θh}

and θj ∼ U (0, t), j = 1, . . . , h. Since k1 ≤ k2, Fα((k1+h)u−
∑

h
i=1 θi),β (L− x) ≥ F

α((k2+h)u−
∑

h
i=1 θi),β (L− x), and thus

FXS
[t,t+u]

|Nt,Nt+u−Nt
(L− x | k1, h) ≥ FXS

[t,t+u]
|Nt,Nt+u−Nt

(L− x | k2, h). Consequently, according to (11), R (t+ u | x, k1) ≥

R (t+ u | x, k2).
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[30] A. Grall, L. Dieulle, C. Bérenguer, and M. Roussignol, “Continuous-time predictive-maintenance scheduling for a deteriorating system,” IEEE

Transactions on Reliability, vol. 51, no. 2, pp. 141–150, 2002.
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