
HAL Id: hal-01411255
https://hal.science/hal-01411255v2

Submitted on 9 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Few-cycle solitons in supercontinuum generation
dynamics

Hervé Leblond, Philippe Grelu, Dumitru Mihalache, Houria Triki

To cite this version:
Hervé Leblond, Philippe Grelu, Dumitru Mihalache, Houria Triki. Few-cycle solitons in supercontin-
uum generation dynamics. The European Physical Journal. Special Topics, 2016, 225 (13), pp.2435-
2451. �10.1140/epjst/e2016-60020-x�. �hal-01411255v2�

https://hal.science/hal-01411255v2
https://hal.archives-ouvertes.fr


EPJ manuscript No.
(will be inserted by the editor)

Few-cycle solitons in supercontinuum
generation dynamics
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1 LUNAM Université, Université d’Angers, Laboratoire de Photonique d’Angers, EA 4464,
2 Boulevard Lavoisier, F-49045 Angers Cedex 01, France

2 Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bour-
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Abstract. We review several propagation models that do not rely on
the slowly-varying-envelope approximation (SVEA), and can thus be
considered as fundamental models addressing the formation and prop-
agation of few-cycle pulsed field structures and solitary waves arising in
the course of intense ultrashort optical pulse evolution in nonlinear me-
dia and beyond octave-bandwidth optical spectrum broadening. These
generic models are: the modified-Korteweg-de-Vries (mKdV), the sine-
Gordon (sG), and the mixed mKdV-sG equations. To include wave
polarization dynamics, the vector extensions of both mKdV and sG
equations are introduced. Multi-octave-spanning supercontinuum gen-
eration and few-cycle soliton structures are highlighted from numerical
simulations.

1 Introduction

At the turning of the last century, the improvement of titanium-sapphire laser cavities
mode locked through the Kerr-lensing effect, including for instance chirped mirrors
for precise dispersion compensation, allowed an efficient exploitation of the very large
gain medium bandwidth with the direct generation of amazingly short laser pulses,
with a duration down to a few optical cycles. As one of the first realizations, Ref.
[1] reported in 2001 the generation of 5 fs-long pulses with a spectrum extending
from 600 to 1200 nm, namely, pulses about two optical cycles long spanning over an
octave across the central 800-nm wavelength, directly from the laser oscillator. For
such intense ultrashort pulses, even diluted media such as the surrounding air can
manifest as strongly dispersive and nonlinear ones.

The question was then, how the propagation of such pulses could be modeled.
Popular ultrashort propagation models had been centered around the slowly-varying-
envelope approximation (SVEA) that is fundamentally a perturbative approach valid
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(a) (b)

Fig. 1. Schematic representation of (a) envelope vs. (b) solitary wave types of solitons.

when the pulse duration is much longer than the optical cycle or, equivalently, when
the spectral bandwidth is much smaller than the central frequency, which can thus be
considered as a carrier frequency. At the lowest orders of dispersion and nonlinearity,
propagation in cubic nonlinear media can be effectively described by the nonlinear
Schrödinger (NLS) equation, which can be accurate for pulsewidths down to about
ten optical cycles at moderate optical intensities. In addition, the NLS equation has
served as a central model in the investigation of envelope soliton formation and prop-
agation. With an increase in the optical intensity, additional nonlinear effects need
to be included, such as Raman and self-steepening effects. As the optical bandwidth
increases, higher-order dispersion terms cannot be neglected. Thus, within the frame
of the SVEA, the answer to shorter and higher-intensity pulse modeling implies an
increasing number of terms added to the NLS equation, which is the so-called general-
ized NLS equation (GNLSE) approach [2]. The GNLSE implies numerical integration,
and has indeed provided successful modeling of supercontinuum generation experi-
ments in well-characterized optical media such as silica glass fibers [3]. Despite its
actual success in a range of applications for pulse duration down to a few optical
cycles, the GNLSE relies on a large number of coefficients, and it is not integrable in
general.

In the present contribution, our general motivation is to unveil stable few-cycle
pulse propagation effects in the context of supercontinuum generation spanning over
several octaves. This investigation, from the theoretical point of view, can hardly
be undertaken in the frame of an arbitrarily high-order GNLSE since, beyond the
mathematical complexity, the validity of the latter approach remains questionable.
Instead, we propose to consider field models that do not use the SVEA, and rely
on few equation parameters, allowing the investigation of general classes of few-cycle
pulse dynamics.

At this point, let us emphasize on two main different types of solitons. This clas-
sification is decisive in the frame of the mathematical soliton theory of integrable
equations and the inverse-scattering-transform method. One type corresponds to the
envelope soliton, which is the usual description of optical solitons in the picosec-
ond range (Fig. 1(a)). As discussed above, the definition of the envelope assumes
the SVEA, which means that the pulse spatial extension L is much larger than the
wavelength λ. The other type, called a solitary wave, consists in a single oscillation,
without any carrier wave (Fig. 1(b)). It is best portayed by the hydrodynamical soli-
ton that was first observed by John Scott Russel in 1834 [4], and was modeled by the
Korteweg-de Vries (KdV) nonlinear partial differential equation, which was in fact
discovered by Boussinesq [5,6]. The case of few-cycle pulses (FCPs) may appear as an
intermediate situation, where we could consider an envelope and a carrier. However,
since the pulse duration L has the same order of magnitude as the wavelength λ,
the SVEA, which is intrinsically a perturbative approach, is not valid in general, and
uselessly complicates the mathematical approach of solitary waves. Therefore a com-
pletely different approach to few-optical-cycle pulse propagation has been developed,
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Fig. 2. General scheme of the material spectral model.

based on KdV-type models [7,8]; see also the reviews [9–11]. The first objective of this
approach is to highlight a few classes of few-cycle pulse formation and solitary wave
dynamics, which can be relevant in supercontinuum generation and other ultrashort
pulse propagation in highly nonlinear waveguides. Note that in the following, the
transverse spatial dimensions are excluded. At this early stage, since the parameters
of the KdV-type equations are not easily connected with the experimental character-
ization parameters of materials, we leave a quantitative comparison between model
predictions and experiments for future investigations, while focusing on the major
physical mechanisms at play.

2 Models for few-cycle solitons

2.1 Assumptions

With the goal to build simple but effective models, some approximations were re-
quired, while taking into account the very large bandwidth required for FCP soliton
propagation. The absorption spectrum of most transparent media contains two ab-
sorption bands in general: one below, and one above the transparency window. In
a first approximation, we can reduce both absorption bands to single transitions as
sketched in Fig. 2, so that the general material becomes modeled by the very sim-
ple model of a two-component medium, each component being described by density
matrix equations for two-level models.

The approximation used to simplify the mathematical model is that the bandwidth
of the transparency window is very large, i.e., we assume that the FCP duration τp
is such that ω1 ≪ (1/τp) ≪ ω2, where ω1 and ω2 are the central frequencies of the
infrared (IR) and ultraviolet (UV) transitions, respectively.

2.2 Models

The mKdV equation. In a first stage, the two components are treated separately. We
first consider the UV transition only, with the assumption that (1/τp) ≪ ω2. This as-
sumption corresponds to a long-wave approximation, which is performed according to
the standard procedure of the reductive perturbation method, or multiscale expansion
method [12]. It results in an asymptotic model, which is the modified Korteweg-de
Vries (mKdV) equation, as [8]

∂E

∂ζ
=

1

6

d3k

dω3

∣

∣

∣

∣

ω=0

∂3E

∂τ3
− 6π
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∣

∣

∣

∣
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∂E3

∂τ
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Here E is the electric field, ζ is the propagation distance and τ is the retarded time
in a frame moving at the speed of light c/n, where c is the light speed in vacuum, and
n is the medium optical index in the limit of long wavelengths and low amplitudes.
The coefficients of Eq. (1) reflect in a simple general form the dispersion relation k(ω)
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Fig. 3. The typical analytical breather solution.

of the medium and its cubic nonlinear susceptibility χ(3). It should be emphasized
that the mKdV equation is completely integrable by means of the inverse scattering
transform (IST) method [13,14].

The sine-Gordon equation. In a second stage, we consider the IR transition only,
with the assumption ω1 ≪ (1/τp). This corresponds to a short-wave approximation,
which is another situation well-known within the frame of the reductive perturbation
method, although a bit less standard than the previous one. It results in the sine-
Gordon (sG) equation, as [8]

∂2ψ

∂z∂t
= c1 sinψ. (2)

In Eq. (2), c1 = w∞/wr is the normalized initial population difference, and the field
ψ is defined so that ∂ψ/∂t = E/Er is the normalized electric field. The propagation
distance z and retarded time t are also normalized, see [8].

The mKdV-sG equation. Then the two approximations are brought together to
yield a general model, which is known as the mKdV-sG equation. It is expressed in
terms of the field ψ as [15]:

∂2ψ

∂z∂t
+ c1 sinψ + c2

∂

∂t

(

∂ψ

∂t

)3

+ c3
∂4ψ

∂t4
= 0, (3)

and in terms of the normalized electric field u = ∂ψ/∂t = E/Er as

∂u

∂z
+ c1 sin

∫ t

u+ c2
∂u3

∂t
+ c3

∂3u

∂t3
= 0. (4)

Equation (3) or (4) is integrable by the IST method in some special cases: when
it reduces to the mKdV equation (c1 = 0), or to the sG equation (c2 = c3 = 0) [16],
or if a specific relation between the coefficients is satisfied, namely c3 = 2c2 [17]. In
each integrable case it possesses an analytical solution, called a breather, which is a
localized oscillatory pulse that propagates without deformation except for periodic
oscillations (Fig. 3). The breather is hence a stable short pulse that propagates with-
out being spread out by dispersion, and closely corresponds to the intended shape of
a few-cycle optical soliton.
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3 A few generalizations

3.1 General Hamiltonian

We assumed that each of the IR and UV absorption bands could be reduced to a
single transition. How does the models described above generalize to a higher number
of atomic levels? In the case of the UV transitions, it has been shown that the mKdV
model as given by Eq. (1) generalizes without modification to a general Hamiltonian,
with an arbitrary number of atomic levels [18]. In the case of the IR transitions, the
generalization is not so simple.

Indeed, the sG model (Eq. (2)) originates from the following coupled equations:

∂E

∂z
=

−N
ε0c

ΩQ, (5)

~
∂w

∂t
= −EQ, (6)

~
∂Q

∂t
= |µ|2Ew, (7)

in which Ω is the angular frequency of the transition, N is the density of atoms, µ
is the dipolar momentum matrix element, w is the population difference, and Q is
some auxiliary field, while obviously ε0 is the dielectric permittivity of vacuum, and
~ is Planck’s constant. The system (5)-(7) is formally identical to the equations of
the self-induced transparency (SIT) equations, with the major difference that here E
and Q are real fields, and Q is not the polarization density, but is proportional to its
τ -derivative. We recall that the SIT model concerns the envelope of the field close to
resonance, while Eqs. (5)-(7) concern the electric field itself, far from the resonance.

Since the population difference is explicitly involved, the generalization to a multi-
level model requires one population difference wj variable for each transition. As an
example, for a four-level system with two allowed transitions, the system (5)-(7)
generalizes to [19]

∂E

∂z
=

−NΩ
ε0c

(Ω1Q1 +Ω2Q2), (8)

~
∂wj

∂t
= −EQj , j = 1, 2, (9)

~
∂Qj

∂t
= |µj |2Ewj , j = 1, 2, (10)

which in turn reduces to

∂u

∂z
+ c1 sin

∫ τ

udτ ′ + qc1 sin ν

∫ τ

udτ ′ = 0, (11)

in normalized form, with some real coefficients c1, q, and ν depending on the Ωj ,
|µj |, and initial values of wj . Equation (11) is a generalized double sine-Gordon equa-
tion. Under certain conditions, it becomes precisely the so-called double sine-Gordon
equation, when the argument of the second sine function is the second-harmonic of
argument of the first one (ν = 2). Both original and generalized double sG equations
admit breather solutions, examples of which are shown on Fig. 4.

3.2 Circular polarization - long wave case

Importantly, both mKdV and sG models can be generalized in order to incorporate
wave polarization dynamics. In the case of the mKdV model, i.e., when only the UV
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Fig. 4. Breathers of the generalized double sG equation. Left: ν = 2, q = 0.2; right: ν =
√
3,

q = 0.4.

transition is considered, assuming as above that the wave central frequency is very
far from the resonance, the normalized vector electric field (U, V ) obeys the following
system of two coupled mKdV equations [20]:

UZ = UTTT +
[(

U2 + V 2
)

U
]

T
, (12)

VZ = VTTT +
[(

U2 + V 2
)

V
]

T
. (13)

Setting
f = U + iV, (14)

the coupled mKdV equations Eqs. (12) and (13) reduce to

fZ = fTTT +
(

|f |2 f
)

T
, (15)

which is the complex modified Korteweg-de Vries (cmKdV) equation. However, con-
fusion must be avoided between equation (15) and the other cmKdV equation

fZ = fTTT +
(

|f |2
)

fT . (16)

Indeed, Eq. (16) is completely integrable [21] while Eq. (15) is not. Equation (15) is
usually referred to as cmKdV I, while Eq. (16) is called cmKdV II.

Linearly polarized solitons can be described by the solutions of Eq. (15) of the
form

f = f0(Z, T )e
iφ, (17)

where f0 is a solution of the real mKdV equation and φ is a constant.
More interesting would be a circularly polarized soliton, of the form

f = u(T − wZ)ei(ωT−kZ). (18)

However no exact, even numerical, steady state solution of this type do exist. It is
however shown that very robust approximate ones do exist. An example is shown on
Fig. 5.

The circularly polarized FCP is unstable in the sub-cycle range (for ωτp < 1.4),
as appears on Fig. 6. The initial circularly polarized sub-cycle pulse evolves into a
single-humped, linearly polarized pulse, which is nothing but a fundamental soliton
of the real mKdV equation.
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Fig. 5. The stable circularly polarized FCP: amplitude |u|.

Fig. 6. The instability of the circularly polarized FCP in the sub-cycle range. Initial (Z =
100): breather with ω = 1, τp = 1. Blue (dotted line), |f |; light blue (thick solid line),
U = Re(f). Final (Z = 10000): Red (solid line), |f |; pink (dash-dotted line): final, U ; green
(short dashing): final, V = Im(f). Black (long dashed line): fit of final |f | by a fundamental
soliton of the real mKdV model.

3.3 Circular polarization - short wave case

The case of one IR transition, i.e., when we intend to generalize the sG model to
a vectorial normalized field (U, V ), is far from being identical, although analogous
features are observed. Since the excited state for x-polarization cannot be identified
with the excited state for y-polarization, two distinct population differences w1 and
w2 are required. The asymptotic equations cannot be reduced to coupled sG-type
equations, but yield a complicated system instead, which can be written in complex
form as [22]:

fZ = −PT , (19)

PT = −M − iUK, (20)

MT = wf − sf∗, (21)

KT = Im (f∗P ) , (22)

sT = fM, (23)

wT = −3Re (f∗M) , (24)
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where f is the complex electric field defined as in Eq. (14) above, P = Px + iPy is
the polarization density, w = (w1 + w2)/2, s = (w2 − w1)/2− iS are the population
differences (S is the coherence between the two excited states), and the real quantity
K and the complex one M are auxiliary fields.

As in the case of the cmKdVmodel, we can retrieve the scalar model form for linear
polarizations by setting f as in Eq. (17); then the system (19)-(24) reduces to the
sG equation. More interesting are the solutions corresponding to circularly polarized
FCP solitons. As in the case of the cmKdV, it is seen that no exact solutions of this
type exist, whereas robust approximate ones do exist.

An approximate solution valid in the SVEA can be derived, as

f = be
i
[(

k− b
2
k

ω2

)

Z−ωT
]

sech

[

b

(

T +
k

ω
Z

)]

. (25)

The solution given by (25) can be used as initial data for the numerical resolution of
the system (19)-(24). It is shown that the circular pulse is stable in the SVEA limit,
but it is unstable in the sub-cycle range. Figure 8 shows the initial circular polar-
ization, and the final state with two pulses having orthogonal linear polarizations.

4 Supercontinuum generation

4.1 Supercontinuum generation in the mKdV and sG models

It is known that an intense laser pulse launched in an optical fiber experiences spectral
broadening, which can extend to several octaves, generating white light flashes, whose
coherence largely depends on the input pulse parameters [23–26]. Experiments have
been performed in particular in photonic crystal fibers and in tapered fibers, where
confinement and nonlinearity can be exacerbated. A GNLSE model is used in general
to confront the experimental data. However, the GNLSE model requires numerous
parameters, whereas fundamentally, it remains based on the SVEA, whose validity
is restricted to less than one octave spectral width. In spite of the good agreement
between some theoretical works using GNLSE and experimental results, the principle
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of a SVEA is highly questionable from the fundamental point of view. We show in
the present paper that the non-SVEA models presented above are consistent with
supercontinuum generation with a reduced number of model parameters.

The mKdV equation (4) with c1 = 0, in a normalized (dimensionless) form with
c2 = c3 = 1, is solved numerically using a standard fourth-order Runge-Kutta scheme,
and finite differences for the t-derivatives. The initial condition is a Gaussian pulse,
with carrier angular frequency ω and duration τ :

u(0, t) = A sin(ωt)e−t2/τ2

. (26)

The ratio between the optical period 2π/ω and the pulse duration τ is chosen to be
the same as in a 100 fs long pulse with wavelength λ = 1 µm. Therefore, it is more
convenient to do as if t was expressed in fs and ω = 2πc/λ, with c = 0.3 µm/fs, and

τ = FWHM/
√
2 ln 2, where FWHM is the full width at half maximum of the pulse.

Numerical resolution shows that a very broad spectrum quickly develops, see Fig. 9.
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Fig. 10. a: The mKdV model, input with FWHM = 100, ν = 0.3, A = 0.7, for z = 0, 3.1,
6.2, 9.3, 12.4, and 15.5. b: The sG model, input with FWHM = 100, ν = 0.3, A = 2.5, for
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4.2 Generation of long wavelengths

Among the questions which naturally arise, let us first ask ourselves how frequen-
cies lower than the initial pulse frequency ω can be generated? The low-frequency
spectrum is more easily seen when the spectrum is plotted against the wavelength
λ. Figure 10(a) shows this spectrum for the mKdV model, whereas Fig. 10(b) is the
analogous one for the sG model, starting with the same input (26) as above, corre-
sponding to a 100 fs pulse, λ = 1 µm. By comparing Fig. 10(a) to Fig. 10(b) it is
seen that analogous spectrum profiles are obtained when either the pulse duration
or its amplitude is varied. In the case of the mKdV model, a few specific features
are observed, see Fig. 10(a). A supercontinuum is generated in both cases; there is
a strong asymmetry between Stokes and anti-Stokes sides. The asymmetry is more
pronounced in the case of the sG model (Fig. 10(b)), which in addition shows more
broadening towards large wavelengths than the mKdV model (Fig. 10(a)), for which
the spectrum first extends towards the short wavelength, the anti-Stokes side.

Recalling that the mKdV model accounts for the UV transitions, while the sG
model accounts for the IR transitions, a complete description of a general medium
naturally requires both models. The extension of the spectrum towards low frequencies
at the beginning of the supercontinuum generation process is frequently attributed
to the effect of Raman scattering, where Raman scattering is due to the interaction
of light with the IR transitions of the medium. The spectral broadening towards low
frequencies we observe is thus nothing but the one due to Raman scattering. Hence,
although we cannot pretend that the sG model describes the Raman effect alone, we
see that it gives an account of the corresponding spectral broadening.

4.3 Self-phase modulation

Let us consider a quasi-monochromatic wave with angular frequency ω and wave
vector k, as

u = U(z, t)ei(kz−ωt) + cc+ u1(z, t), (27)

where U is the amplitude of the fundamental wave, cc holds for ‘complex conjugate’,
and u1 is some small correction. Equation (27) is reported into Eq. (4), in which we
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neglect dispersion, and disregard third harmonic generation, which yields

U =
A

2
exp

[

i
( c1
2ω3

+ 3ωc2

) A2

4
z

]

. (28)

Equation (28) accounts for the self-phase modulation (SPM), a well-known phe-
nomenon which leads to a broadening of the spectrum with typical oscillations of
the spectral density. We can compare the analytical expression of the self-phase mod-
ulation given by Eq. (28) to the numerical solution of the mKdV equation, see Fig.
11. It is seen that the analytic envelope approximation coincides with numerics until
z ≃ 4, then actual broadening becomes asymmetric, while analytic formula remains
symmetric. This shows that the very beginning of the broadening process is actually
due to self-phase modulation.

4.4 High harmonics generation

Lots of high harmonics are created and involved in the process of supercontinuum
generation. Such effect cannot be accounted for within the SVEA unless an amplitude
is explicitly included for each harmonic in the model. Up to 15 harmonics can be seen
in the example of Fig. 12. Oscillations of their amplitudes can be observed, and are
easily retrieved by a simple analytical approach.

We can gain further understanding from a simple analytic approach of the third
harmonic generation. Let us indeed consider the approximate solution of the mKdV-
sG equation given by (27) and (28). The correction term u1 in (27) is a third harmonic

u1(z, t) = V (z, t)ei(k
′z−3ωt) + cc+ u2(z, t), (29)

with k′ = k(3ω) and u2 a higher-order correction term. Its amplitude V can be
computed with the same approximations as above, as

∂V

∂z
= i

(−c1
6ω3

+ 3ωc2

)

U3ei(3k−k′)z. (30)

Assuming that U is a constant, and no incident third harmonic (V = 0 at z = 0), this
expression leads to well-known oscillations of the third harmonic amplitude due to
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Fig. 12. Initial pulse with FWHM = 80, ν = 0.375, and A = 5, according to the sG model.
Notice the high number of harmonics, and the oscillations of their amplitudes.

the phase mismatch ∆k = 3k−k′, with V ∝ sin ∆kz
2 . Notice that, if the SPM effect is

important, the phase of U in Eq. (30) evolves according to Eq. (28), and consequently
the phase mismatch ∆k should be replaced by

∆k′ = 3k − k′ + 3
( c1
2ω3

+ 3ωc2

)

. (31)

These simple analytical results are found to be in quantitative agreement with nu-
merics. Let us now determine the spectral width of harmonics. Assuming a Gaussian
profile

u = Ae
−
t2

τ2 e−iω0t, (32)

its Fourier transform has the well-known expression

û =
2
√
π

Aτ
e
−
(ω − ω0)

2τ2

4 . (33)

The nth harmonic evolves essentially as un does, and is straightforwardly seen that
its duration is τ/

√
n. Consequently its Fourier transform is given by replacing τ by

τ/
√
n (and A by An) in (33), and hence the spectral width of the nth harmonic is

2
√
n

τ
. (34)

It increases as
√
n. Figure 13 shows the comparison between the actual spectrum

obtained by resolution of the mKdV equation (blue), and Gaussian profiles with
width increasing as

√
n (red). The agreement allows to conclude that the spectral

width of the harmonics is actually governed by this law, at least at the considered
stage of the process.

We expect also some spectral broadening due to parametric interaction between
the sidebands of the harmonics and the ones of the fundamental. We denote by ω the
fundamental angular frequency, and assume some sideband ω + δω. Then the third
harmonics contains the sideband 3 (ω + δω). It may interact with the fundamental
with frequency ±ω, according to 3 (ω + δω) − ω − ω = ω + 3δω. Such a parametric
process relates a sideband at ω + δω to another one at ω + 3δω, and is expected to
result in spectral broadening. However, it was difficult to get convincing numerical
evidence of the occurring of this process, due to the concurrence of another one, which
will be discussed in the next section.
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Fig. 14. Evolution of the profile of an initial pulse with FWHM = 100, ν = 0.3, and A = 1,
according to the sG model at the end of our computation (z = 20).

5 Few cycle solitons in supercontinuum generation

5.1 The sG model

We solve numerically the sG equation, Eq. (4) with c2 = c3 = 0, and c1 = 50 (a
change in c1 results only in a change of the unit along the z-axis), with an initial
data in a form of a Gaussian pulse as Eq. (26). For moderate amplitudes and high
frequencies, a few FCP solitons form and tend to separate (Fig. 14).

However, due to the dispersion properties of the sG equation and the character-
istics of the input pulse, their velocity is quite small; they don’t separate completely,
but interact forming some interference pattern, see panel (a) in Fig. 15. Nonlinear
interaction between FCP solitons produces very sharp peaks, which induce a huge
broadening of the spectrum, see see panel (b) in Fig. 15. Finally, the evolution of the
supercontinuum generation process according to the sG model can be summarized as
illustrated by Fig. 16. The input spectrum (z = 0) is the blue curve. First, it occurs
the generation of harmonics (dark green, z = 4), then the harmonics start to broaden
(red, z = 8), and the gaps between them start to fill. When the first soliton becomes
apparent (light blue, z = 9.2), the gaps are completely filled. Then the slope of the
decay of the spectrum reduces, as seen in the green curve when the second soliton
is just formed (z = 11.16), to reach eventually an ultrabroad spectrum (magenta,
z = 20).
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Fig. 15. Initial pulse with FWHM = 100, ν = 0.3, and A = 2.5, according to the sG
model. a) FCP solitons form, don’t separate, but interact; b) generation of an ultrabroad
supercontinuum.
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Fig. 16. Initial pulse with FWHM = 100, ν = 0.3, and A = 1, according to the sG model
(logarithmic scale): blue (z = 0), dark green (z = 4), red (z = 8), light blue (z = 9.2), green
(z = 11.16), magenta (z = 20).
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Fig. 17. Evolution of an initial pulse with FWHM = 100, ν = 0.3, and A = 0.7, according
to the mKdV model (same as in Fig. 18). a) initial pulse, z = 0, b) set of emerging FCP
solitons, z = 999, c) zoom on some FCP solitons in b) (the soliton speed is compensated for
clarity).
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Fig. 18. Initial pulse with FWHM = 100, ν = 0.3, and A = 0.7, according to the mKdV
model. left: temporal evolution, right: spectrum evolution.

5.2 The mKdV model

We solve in a same way the mKdV equation (4) with c1 = 0, starting from the
same initial data with FWHM = 100 and ν = 0.3. At high amplitude level (A ∼ 2),
an initial 100 fs pulse splits into a set of FCP solitons, which are mKdV breathers
(Fig. 17). The FCPs form in a first stage until z ≃ 12 then slowly go away one from
the other. A huge spectral broadening occurs when they form. Comparison between
temporal profile and spectrum shows indeed that the spectrum extends at the very
point when the solitons separate (Fig. 18). At a lower amplitude (A ∼ 0.1, 0.2), it may
happen that only two solitons form. They interact and form a kind of superbreather
(Fig. 19). In the meantime, the spectrum oscillates, showing a recurrence to the initial
state that recalls the Fermi-Pasta-Ulam recurrent dynamics (Fig. 20), see Ref. [27].
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Fig. 20. Evolution of the ’super-breather’ spectrum generated by an initial pulse with
FWHM = 100, ν = 0.3, and A = 0.17.

6 Conclusion

We have presented three generic non-SVEA models: modified Korteweg-de Vries, sine-
Gordon, and mKdV-sG models. Initially developed in the frame of a scalar model, of
a two-component medium in which each component obeys a two-level model, these
models have been generalized to more complicated Hamitonians, and to vector fields.
We showed numerically that circularly polarized few-cycle solitons are particularly
robust, but when sub-cycle duration is considered, for a spectral bandwidth spanning
over several octaves, these solitons become unstable and decay into one or two linearly
polarized single-humped solitons.

The non-SVEA models numerically predict supercontinuum generation over sev-
eral octaves, and we identified several mechanisms in the process. First, the sG term
accounts for Raman broadening. Second, a modulation instability mechanism entails
spectral broadening at the beginning of the process. Generation of high-harmonics
has also been evidenced, with its relation to the formation of the supercontinuum.
Finally, we observed that FCP solitons are formed in the process, and interact nonlin-
early together: their formation is closely related to that of the ultrabroad spectrum,
in correspondence with the known impact of picosecond/subpicosecond soliton for-
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mation for supercontinuum generation from GNLSE modeling. At present time, a
definite advantage of non-SVEA models is that they do not require a high number
of terms and coefficients, while they procure the possibility to explore few-cycle to
sub-cycle ultrashort pulse dynamics on safer theoretical grounds. However, the tun-
ing of non-SVEA models and parameters to realistic material properties and actual
experiments calls for further studies.
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