
HAL Id: hal-01411198
https://hal.science/hal-01411198v1

Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A First Look at Real Multipath TCP Traffic
Benjamin Hesmans, Hoang Tran-Viet, Ramin Sadre, Olivier Bonaventure

To cite this version:
Benjamin Hesmans, Hoang Tran-Viet, Ramin Sadre, Olivier Bonaventure. A First Look at Real Mul-
tipath TCP Traffic. 7th Workshop on Traffic Monitoring and Analysis (TMA), Apr 2015, Barcelona,
Spain. pp.233-246, �10.1007/978-3-319-17172-2_16�. �hal-01411198�

https://hal.science/hal-01411198v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A first look at real Multipath TCP traffic

B. Hesmans, H. Tran-Viet, R. Sadre, O. Bonaventure

ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract. Multipath TCP is a new TCP extension that attracts a grow-
ing interest from both researchers and industry. It enables hosts to send
data over several interfaces or paths and has use cases on smartphones,
datacenters or dual-stack hosts. We provide the first analysis of the oper-
ation of Multipath TCP on a public Internet server based on a one-week
long packet trace. We analyse the main new features of Multipath TCP,
namely the utilisation of subflows, the address advertisement mechanism,
the data transfers and the reinjections and the connection release mech-
anisms. Our results confirm that Multipath TCP operates correctly over
the real Internet, despite the presence of middleboxes and that it is used
over very heterogeneous paths.

1 Introduction

The Transmission Control Protocol (TCP) [23] was designed when hosts were
equipped with a single interface. When two hosts exchange data through a TCP
connection, all packets generated by the client (resp. server) must be sent from
the same IP address. This remains true even if the communicating hosts have
several interfaces and thus IP addresses that could be used to improve perfor-
mance or resilience. In today’s networks, this limitation is becoming a major
drawback. Cellular and WiFi networks are available in most cities and smart-
phone users would like to be able to start a TCP connection in a WiFi hotspot
and continue it later via their 3G interface. Reality with TCP is different [20].
Datacenters provide multiple paths between servers, but all packets from a given
connection always follow the same path [24]. Dual stack hosts would like to ex-
ploit their IPv6 and IPv4 paths simultaneously but with regular TCP they can
only rely on Happy Eyeballs [29].

Multipath TCP (MPTCP) is a recent TCP extension that has been stan-
dardised by the Internet Engineering Task Force [10] to solve this problem. In
a nutshell, thanks to Multipath TCP, a multihomed host can use several inter-
faces (and thus IP addresses) to support a single TCP connection. Multipath
TCP can pool all the resources available to improve the performance and the
resilience of the service provided to the applications [30]. Several use cases for
Multipath TCP have already been studied by the research community includ-
ing datacenters [24] and WiFi/3G offload [20, 4, 6]. Implementers and industry
are adopting Multipath TCP quickly. As of this writing, Multipath TCP im-
plementations exist on Linux [18], Apple iOS and MacOS [1], FreeBSD [28] and
Solaris [7]. Apple has enabled Multipath TCP by default for its voice recognition

SIRI application running on all recent iPhones and iPads. Today, there are thus
hundreds of millions of devices that use Multipath TCP on the Internet.

Despite of this large scale deployment, little is known about how Multipath
TCP really behaves in the global Internet. In this paper, we provide a first
analysis of the Multipath TCP packets received and sent by the server that
hosts the reference implementation in the Linux kernel 1. Besides Apple’s servers
that support the SIRI application, this is probably the most widely used public
Multipath TCP server. By observing how real users use this new protocol, we
complement the existing measurement that relied on simulations, emulations or
active measurements.

This paper is organised as follows. In Section 2, we describe our dataset,
how the packets have been collected and the software that we used to analyse
them. Section 3 describes the main features of the Multipath TCP protocol and
analyses their impact based on the collected packets. Section 4 compares our
work with related work. We conclude the paper in Section 5.

2 Dataset

The dataset2 used in this paper is a one-week long packet trace collected in
November 2014 at Université catholique de Louvain (UCL). It has been collected
using tcpdump and contains the headers of all TCP packets received and sent
by the server hosting the Multipath TCP Linux kernel implementation. Apart
from a web server, the machine also hosts an FTP server and an iperf server. It
has one physical network interface with two IP addresses (IPv4 and IPv6) and
runs the stable version 0.89 of the Multipath TCP implementation in the Linux
kernel [18].

To analyse the Multipath TCP connections in the dataset, we have extended
the mptcptrace software [11] developed by the same authors. mptcptrace han-
dles all the main features of the Multipath TCP protocol and can extract various
statistics from a packet trace. Our extensions to mptcptrace have been included
in the last release. Furthermore, we have combined it with tcptrace [17] and
its output has been further processed by custom python scripts.

Table 1 summarizes the general characteristics of the dataset. In total, the
server received around 136 million TCP packets carrying 134 GiBytes of data
(including the TCP and IP headers) during the measurement period. As shown in
table 1 (in the block “Multipath TCP”), a significant fraction of the TCP traffic
was related to Multipath TCP. Unsurprisingly, IPv4 remains more popular than
IPv6, but it is interesting to note that the fraction of IPv6 traffic from the
hosts that are using Multipath TCP (9.8%) is larger than from the hosts using
regular TCP (3.7%). On the monitored server, dual-stack hosts are already an
important use case for Multipath TCP. It should be noted that the monitored
server is mainly used by Multipath TCP users and developers who are likely to be

1 http://www.multipath-tcp.org
2 The anonymised packet trace is available at http://multipath-tcp.org/data/

TMA-2015.tar.gz.

Table 1: Dataset characteristics

Collection period Nov. 17 – 24, 2014

All TCP Total IPv4 IPv6

of packets [Mpkt] 136.1 128.5 7.6
of bytes [GiByte] 134.0 129.0 5.0

Multipath TCP Total IPv4 IPv6

of packets [Mpkt] 29.4 25.0 4.4
of bytes [GiByte] 20.5 18.5 2.0

researchers or computer scientists. These users probably have better connectivity
that the average Internet user.

We have also studied the application protocols used in the Multipath TCP
traffic. Around 22.7% of the packets were sent or received on port 80 (HTTP).
A similar percentage of packets (21.2%) was sent to port 5001 (iperf) by users
conducting throughput measurements. The FTP server, was responsible for the
majority of packets. It hosts the Debian and Ubuntu packages for the Multipath
TCP kernel and is thus often used by Multipath TCP developers.

Considering the number of connections, 89.7% of them were targeted on
HTTP, 6.4% for iperf, 1.9% for FTP control connections and the remaining
2.0% on higher ports are likely FTP data connections.

Another important figure is the number of distinct Multipath TCP clients
connected to our server. While identifying this figure exactly is not trivial, infor-
mation about client IP addresses may be useful to give some feeling about the
variety of clients’ location. Among 790 distinct client IP addresses we observed,
there are 562 IPv4 addresses coming from 464 distinct class C IPv4 network
prefixes and 228 different IPv6 addresses coming from 79 distinct 48-bit IPv6
prefixes.

3 Analysis

Multipath TCP is a major extension to TCP that modifies many features of the
protocol. A detailed overview of Multipath TCP is outside the scope of this paper
and may be found in [19, 10]. In this section, we first describe the key features
of Multipath TCP. Then, each subsection focuses on a particular aspect of the
protocol that is explained and analysed in more details based on the collected
packet trace.

Like most TCP extensions, Multipath TCP defines a new TCP option that
is used during the initial three-way handshake. This MP CAPABLE option contains
several important parameters [19, 10]. A prominent characteristic of Multipath
TCP is that, to be able to use several paths, Multipath TCP combines sev-
eral TCP connections called subflows inside a single Multipath TCP connec-
tion. These subflows are linked together by using a token extracted from the

MP CAPABLE option and included in the MP JOIN option that is exchanged during
the handshake of the other subflows. To support mobile hosts, Multipath TCP
allows each host to advertise its current list of addresses to its peer [10]. This is
done thanks to the ADD ADDR and REMOVE ADDR options that can be sent at any
time over one of the TCP subflows. It is important to note that the subflows that
compose a Multipath TCP connection is not fixed. The set of subflows changes
during the lifetime of the connection since each host can add or remove a subflow
at any time.

3.1 Which hosts use Multipath TCP?

The first question that we asked ourselves while analysing the trace was the char-
acteristics of the clients that contacted the monitored server. Since the packet
trace was collected on the server that hosts the Multipath TCP implementation
in the Linux kernel, we can expect that many Linux enthusiasts use it to down-
load new versions of the code, visit the documentation, perform tests or verify
that their configuration is correct. These users might run different versions of
Multipath TCP in the Linux kernel or on other operating systems[7]. Unfortu-
nately, as of this writing, there is not enough experience with the Multipath
TCP implementations to detect which operating system was used to generate
specific Multipath TCP packets. This is an interesting direction for future work.
Instead, we focus our analysis on the number of addresses used by the clients.

Thanks to the ADD ADDR option, it is possible to collect interesting data about
the characteristics of the clients that contact our server. Over the 5098 observed
Multipath TCP connections, 3321 of them announced at least one additional
address. Surprisingly, only 21% of the collected IPv4 addresses in the ADD ADDR

option were globally routable addresses. The remaining 79% of the IPv4 ad-
dresses found in the ADD ADDR option were private addresses and in some cases
link-local addresses. The large number of private address confirms that Multi-
path TCP’s ability to pass through NATs is an important feature of the protocol
[10].

The IPv6 addresses collected in the ADD ADDR option had more diversity.
We first observed 72% of globally routable IPv6 addresses. The other types of
addresses that we observed are shown in Table 2. The IPv4-compatible and
the 6to4 IPv6 addresses were expected, but the link local and documentation
addresses should have been filtered by the client and never be announced over
Multipath TCP connections. The Multipath TCP specification [10] does not
currently specify the types of addresses that can be advertised over a Multipath
TCP connection. It should probably be updated to specify which types of IPv4
and IPv6 addresses can be announced with the the ADD ADDR option.

Another interesting point to note is that although the ADD ADDR option de-
fined in [10] can also be used to advertise transport protocol port numbers to-
gether with IP addresses, we didn’t detect any utilisation of this feature in our
trace.

Table 2: Special addresses advertised by clients

Address type Count

Link-local (IPv4) 51
Link-local (IPv6) 241

Documentation only (IPv6) 21
IPv4-compatible IPv6 13

6to4 206

3.2 How quickly are subflows established?

The previous section has shown that a large number of (multihomed) hosts
exchange Multipath TCP packets with our server. Our server has a single in-
terface but two IP addresses (IPv4 and IPv6). Like the other Multipath TCP
implementations [7], it never creates subflows [18] because, as confirmed by the
measurements in the previous section, the client is likely to reside behind a NAT
or a firewall that would block these subflow establishments.

The current implementation of Multipath TCP in the Linux kernel [18] uses
two strategies to create subflows. The first strategy, supported by the default
path manager on multihomed hosts, is to create a full-mesh of subflows as soon
as possible. Figure 1 shows the delay between the SYN segment sent on the initial
subflow and the SYN segment of the first subflow. For 88.9% of the Multipath
TCP connections composed of two or more subflows, the first subflow is estab-
lished within less than one second. For 46.5% of the connections, this delay is
shorter than 100 msec. The longest delay between the establishment of a Multi-
path TCP connection and the first subflow is 360 seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
D

F

Delay CAPA-SYN to First Join (ms)

Fig. 1: Delay between the SYN of initial flow and the first MP JOIN

For test purposes and to support local balancing over multiple equal cost
paths [24], another path manager can be used on single-homed hosts. This path
manager creates n subflows from the single IP address of the client to the server.
An analysis of all the observed Multipath TCP connections indicates that this
path manager was used by about one third of the connections that we observed.

Multipath TCP can also support backup subflows [20]. In this case, the client
indicates that a subflow is a backup subflow at subflow establishment time or
by sending the MP PRIO option on an existing subflow. In the analysed trace, we
did not observe any utilisation of this option.

When Multipath TCP is used over heterogeneous paths, its performance can
decrease if the paths have different round-trip-times or bandwidth [22]. Figure 2
plots, for all Multipath TCP connections using two or more subflows, the CDF
of the difference between the minimum and the maximum average round-trip-
times over all the subflows that compose each Multipath TCP connection. These
average round-trip-times were computed by using tcptrace [17]. Less than 10%
of the Multipath TCP connections have subflows having the same average round-
trip-times. Almost 54.3% of the Multipath TCP connections combine subflows
with a spread of up to 10 msec. 13.7% of the connections have a spread larger
than 50 msec. This is an important indication about the heterogeneity of the
paths over which Multipath TCP is used today.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

RTT difference (ms)

Fig. 2: Difference between the maximum RTT and minimum RTT among subflows
belonging to one MPTCP connection

3.3 How many subflows are used?

In theory, a Multipath TCP connection can gather an unlimited number of sub-
flows. In practice, implementations [7] limit the number of concurrent subflows.

The Linux implementation [18] used on the monitored server can support up to
32 different subflows. We analyse here the number of subflows that are estab-
lished for each Multipath TCP connection. Since our server never establishes
subflows, this number is an indication of the capabilities of the clients that in-
teract with it.

Figure 3 provides the distribution of the number of subflows per Multipath
TCP connection. We show the distribution for the number of successfully es-
tablished subflows, i.e., subflows that complete the handshake, as well as for all
attempted ones. As can be seen, several connection attempts either fail com-
pletely or establish less subflows than intended. In total, we observe 5098 suc-
cessful connections with 8701 subflows. The majority of the observed connections
(57%) only establish one subflow. Around 27% of them use two subflows. Only
10 connections use more than 8 subflows, which are omitted from the figure.

 0

 500

 1000

 1500

 2000

 2500

 3000

0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
c
o
n
n
e
c
ti
o
n
s

Number of subflows per connection

Successful
Attempted

Fig. 3: Distribution of subflows per connection

The fact that many Multipath TCP connections establish more than one
subflow affects the connection sizes as perceived on TCP level. In Figure 4 we
show the cumulative distribution of the number of payload bytes exchanged on
the Multipath TCP connections and compare it with the size distribution of the
individual TCP connections. As expected, we see a larger number of small TCP
subflow connections.

It should be noted that establishing multiple subflows does not necessarily
mean that the payload of a Multipath TCP connection is evenly distributed over
them. This will be further discussed in Section 3.6. While the MP PRIO option
has been introduced to Multipath TCP providing the capability to change the
priority of a subflow, we do not observe any subflow using this option.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

C
D

F

Transfered data (Bytes)

Multipath TCP connections
Subflows

Fig. 4: Distribution of data on Multipath TCP connections and the subflows

3.4 Do middleboxes interfere with Multipath TCP?

The interference caused by various types of middleboxes has significantly affected
the design of the Multipath TCP protocol [10, 25, 13]. Multipath TCP can cope
with middleboxes that modify the source/destination IP addresses and ports,
but also change the TCP sequence numbers or split/reassemble TCP segments
[12]. If a middlebox strips TCP options, the Multipath TCP implementation in
the Linux kernel performs a fallback to regular TCP [10]. The worst middlebox
interference for Multipath TCP is when a middlebox such as a NAT using a
Application Level Gateway changes “transparently” the payload of TCP seg-
ments, e.g. to translate the ASCII representation of an IP address. Multipath
TCP can detect this type of interference by using the DSS checksum which is
computed over the data and the Multipath TCP option [25, 10]. Given that the
TCP segments are already protected by the TCP checksum, an error in the DSS
checksum is always a sign of middlebox interference.

If a host receives a TCP segment with a valid TCP checksum and an invalid
DSS checksum, it sends an MP FAIL option to inform the peer of the interference
and performs a fallback to regular TCP. Among more than 5000 Multipath
TCP connections that we have analysed, we observe three transmissions of the
MP FAIL option. In all three cases, MP FAILs are sent on port 21 (FTP). This
is a relatively small number knowing that the monitored server provides FTP
services that are subject to middlebox interference [12] due to Application Level
Gateways included in NAT devices. We did not observe the MP FAIL option
on port 80 despite the fact that transparent proxies are often reported [26].
Surprisingly, we also observe this MP FAIL option inside IPv6 packets.

As explained earlier, the utilisation of the DSS Checksum [10] ensures that
middlebox interference is detected and that the data is transported correctly.
However, computing the DSS Checksum consumes CPU ressources [25] and the

DSS checksum can be disabled on a per connection basis. During the three-way
handshake on the initial subflow, the client and the server can opt out the DSS
Checksum. The DSS Checksum is only disabled if both propose to disable it. If
either the client or the server is configured to use the DSS Checksum, then it
is used in both directions. Since the monitored server was configured to always
us the DSS Checksum, it was active for all Multipath TCP connections. This is
the default configuration which is recommended in the Internet [10]. The DSS
Checksum should only be disabled in controlled environments such as datacen-
ters that are known to be immune of middlebox interference. We were surprised
to measure that about 5% of the Multipath TCP connections established with
our server requested to disable the DSS Checksum. This configuration was prob-
ably chosen for performance reasons, but it puts the data transfert at risk of
undetected middlebox interference.

3.5 How do Multipath TCP connections terminate?

TCP uses two different mechanisms to terminate a connection. Most connections
should terminate by exchanging FIN segments in both directions [23]. Some
connections terminate abruptly with the transmission of a RST segment due to
problems or because the server does not want to wait in the CLOSE WAIT state
[2]. Each of the TCP subflows that compose a Multipath TCP connection can be
terminated using one of these mechanisms. Above the subflows, Multipath TCP
also includes similar mechanisms to terminate the Multipath TCP connection
[10]. If all the data has been transferred correctly, a Multipath TCP connection
should terminate with the exchange of DATA FIN options in both directions.
We observe that 89% of the 5098 monitored Multipath TCP connections are
terminated by exchanging DATA FINs. Multipath TCP also includes a fast close
mechanism that allows a host to terminate a Multipath TCP connection by
sending a FAST CLOSE option inside a RST segment. This feature was included in
[10] to enable a server to quickly terminate a Multipath TCP connection. It is
used by roughly 10% of the observed Multipath TCP connections.

3.6 How is data distributed?

Since a Multipath TCP connection combines several TCP subflows, data can be
transmitted over any of these subflows. The Linux implementation of Multipath
TCP uses a packet scheduler [21] to select the subflow over which each data
segment is transmitted. The monitored server uses the default scheduler that
tries to send data on the subflow having the smallest round-trip-time among
the subflows whose congestion window is open. The client could use another
scheduler such as the round-robin scheduler or any custom scheduler [21].

The utilisation of the default scheduler implies that the data is not evenly
distributed among the different subflows. Figure 5 shows, for connections com-
posed of more than one subflow, how the data is distributed among the initial
subflow and the other subflows of the connection. We observe that around 52%
of the connections send less than half of their data over the initial subflow.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of data sent through initial subflow

Fig. 5: Fraction of data on initial subflow over total data for connections with more
than one subflow

In contrast, around 30% of the connections transfer their data nearly en-
tirely over the initial subflow. There are different possible explanations for this
behaviour. One reason could be that those connections are simply too short or
too small to use the additional subflows. However, we have studied their length
and size distribution and could not find any prevalence of very short or small
connections among them in comparison to other connections.

Like regular TCP connections, Multipath TCP connections can be impacted
by packet losses. The Multipath TCP implementation in the Linux kernel in-
cludes three main strategies to cope with losses. If an isolated packet is lost,
Multipath TCP will use the fast retransmit mechanism to retransmit it over
the subflow where it was initially sent. This is the normal behaviour of a TCP
connection. If a retransmission timer expires, this usually indicates a more se-
vere loss. In this case, Multipath TCP evaluates whether the data should be
retransmitted over the same subflow as the original transmission or over another
subflow. In the latter case (reinjection), data will be retransmitted over both sub-
flows to ensure that any middlebox over one of the paths observes in-sequence
data [10, 12]. In some cases, such retransmissions can also occur when one of the
subflows is too slow compared to the other ones [25]. If a subflow dies, e.g. due
to the failure of a WiFi interface, then all unacknowledged data sent over this
subflow is retransmitted over the remaining subflows. These reinjections are an
indication of the inefficiency of Multipath TCP. Since reinjected data is sent over
two or more subflows, a large reinjection rate will result in a badly performing
Multipath TCP connection.

Figure 6 shows the fractions of reinjected data (bytes) for the Multipath
TCP connections composed of at least two subflows. We provide the CDF for
transmissions from the client to the server resp. from the server to the client.
We observe that more than 90% of the connections do not have any reinjection.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Fraction of reinjected data

Client to server
Server to client

Fig. 6: Fraction of reinjected data over total data for connections

More than 98% of the connections have fewer than 2% of reinjections. This shows
that reinjections are rare and that the overhead caused by them is very low in
comparison to the overall TCP retransmission rate of 0.8–2.4% reported in [5].
We also observe that the fraction of reinjections is larger in the client-to-server
direction than in the opposite one. The reasons for this will be the topic of future
work. Finally, it should be noted that the results shown in the figure should be
taken with caution for fractions above 30%. Due to the small population size and
the presence of very short connections, extreme cases, such as a single-packet
connection with reinjection, do have a visible impact on the tail of the empirical
CDF.

4 Related work

Various researchers have studied the performance of Multipath TCP on cellular
networks and/or the global Internet. As of this writing, most of these studies
have focussed on performing active measurements among a relatively small set
of connected devices. We are not aware of published studies where large Multi-
path TCP packet traces have been analysed in details. In this section, we thus
compare our findings with the main results obtained with active measurements.
Although several implementations of Multipath TCP exist [7], we are not aware
of published results that compare their performance. In fact, most of the pub-
lished papers use the Linux implementation.

Several researchers have analysed the performance of Multipath TCP in cellu-
lar networks. Paasch et al. propose, implement and evaluate path management
strategies to efficiently support 3G and WiFi interfaces with Multipath TCP
[20]. The Linux implementation [18] is used by the monitored server and likely
most of the clients that sent packets. Chen et al. [4] and Deng et al. [6] also

perform measurements with the Multipath TCP implementation in the Linux
kernel. Chen et al. focus on bulk transfers over WiFi and 3G and conclude that
Multipath TCP provides performance benefits compared to regular TCP. Deng
et al. analyse different scenarios. Their measurements show that the benefits
of using Multipath TCP increase with the volume of data transferred. Lim et
al. present other measurements with cellular and WiFi networks in [16] and
focus on tuning the Multipath TCP implementation to reduce the energy con-
sumption. Williams et al. use experiments to investigate the use of Multipath
TCP (MPTCP) to augment cellular 3G connections with roadside infrastructure
[27]. Ferlin et al. use the NorNet infrastructure [15] to analyse the performance
of Multipath TCP in heterogeneous networks (WiFi and 2G or 3G) [9]. Their
measurements show that when the difference in bandwidth between the two in-
terfaces is large (e.g. 2G and WiFi), then the performance of Multipath TCP
may suffer. They propose an algorithm that monitors the subflow performance
and disables the under-performing ones.

Multipath TCP is not the only transport protocol that is capable of support-
ing multiple paths. The Stream Control Transmission Protocol [8] (SCTP) has
been implemented in most operating systems. It was designed with multihoming
in mind and support for concurrent multipath was added to SCTP [14] before
the deployment of Multipath TCP. However, we have not found in the scientific
literature detailed measurements of the performance of SCTP based on passive
measurements. As shown in [3] only a small fraction of the published SCTP
research is based on real measurements on the Internet.

5 Conclusion

In this paper, we have presented a first analysis of the behaviour of Multipath
TCP based on a one-week long packet trace collected on a popular Multipath
TCP server. Since the server hosts the Multipath TCP implementation in the
Linux kernel, it is mainly used by developpers and researchers. Furthermore,
we expect that most clients use the same Linux implementation as the one
running on the server. We have analysed the real utilisation of the new features
introduced in this TCP extension, namely the establishment of the subflows, the
advertisement of addresses, the reinjection of data, the detection of middlebox
interference and the termination of the Multipath TCP connections.

Some of our results confirm that the protocol operates correctly over the
Internet. Others were less expected and provide an insight on the operation of
this protocol over the Internet. Firstly, Multipath TCP hosts can use many in-
terfaces. Some hosts announced up to 14 different IP addresses over a single
Multipath TCP connection. Secondly, the subflows that compose a Multipath
TCP connection are usually established very quickly. This corresponds to the
default strategy of the current Linux implementation and confirms that clients
mainly use this implementation. Thirdly, when two or more subflows are used,
their average round-trip-times can differ by 10-100 msec for 40% of the Multipath
TCP connections. This is a large delay difference that indicates that Multipath

TCP is used in heterogeneous environments. This delay difference must be taken
into account by Multipath TCP implementors who are tuning their implemen-
tations. Fourthly, Multipath TCP spreads the data over the different subflows
and rarely needs to reinject some data over another subflow. Finally, there are
middleboxes that interfere with Multipath TCP, even in IPv6 networks.

For our future work, we will collect a longer trace to study in more details
other aspects of the protocol such as identifying the congestion control scheme
used on the subflows, the packet scheduler used by the client, or measuring
the short term dynamics of the data transmission on the different subflows or
middlebox interference.

Acknowledgements

This work was partially supported by the ITN METRICS and the FP7 TRIL-
OGY 2 projects funded by the European Commission and by the BESTCOM
IAP.

References

1. Apple. ios: Multipath tcp support in ios 7. http://support.apple.com/en-us/

HT201373.

2. M. Arlitt and C. Williamson. An Analysis of TCP Reset Behaviour on the Internet.
SIGCOMM Comput. Commun. Rev., 35(1):37–44, January 2005.

3. L. Budzisz, J. Garcia, A. Brunstrom, and R. Ferrús. A Taxonomy and Survey of
SCTP Research. ACM Comput. Surv., 44(4):18:1–18:36, September 2012.

4. Y-C Chen, Y-S Lim, R. Gibbens, E. Nahum, R. Khalili, and D. Towsley. A
Measurement-based Study of Multipath TCP Performance over Wireless Networks.
In ACM SIGCOMM IMC, 2013.

5. H.K. Jerry Chu. Tuning TCP Parameters. In Proceedings of The Seventy-Fifth
Internet Engineering Task Force. IETF, 2009.

6. S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan. WiFi, LTE, or Both?:
Measuring Multi-Homed Wireless Internet Performance. In IMC ’14, pages 181–
194, New York, NY, USA, 2014. ACM.

7. P. Eardley. Survey of MPTCP Implementations. Internet-Draft draft-eardley-
mptcp-implementations-survey-02, IETF Secretariat, July 2013.

8. R. Stewart (Ed.). Stream Control Transmission Protocol. IETF RFC 4960, Septem-
ber 2007.

9. S. Ferlin, T. Dreibholz, and O. Alay. Multi-Path Transport over Heterogeneous
Wireless Networks: Does it really pay off? In Proceedings of the IEEE Global Com-
munications Conference (GLOBECOM), Austin, Texas/U.S.A., December 2014.

10. A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multi-
path Operation with Multiple Addresses. IETF RFC 6824, January 2013.

11. B. Hesmans and O. Bonaventure. Tracing Multipath TCP Connections. In SIG-
COMM ’14 (poster), pages 361–362, 2014.

12. B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaventure. Are TCP
Extensions Middlebox-proof? In CoNEXT Workshop HotMiddlebox, 2013.

13. Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Han-
dley, and Hideyuki Tokuda. Is It Still Possible to Extend TCP? In 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, IMC ’11, pages 181–
194, 2011.

14. J. Iyengar, P. Amer, and R. Stewart. Concurrent multipath transfer using SCTP
multihoming over independent end-to-end paths. Networking, IEEE/ACM Trans-
actions on, 14(5):951–964, 2006.

15. A. Kvalbein, D. Baltrūnas, K. Evensen, J. Xiang, A. Elmokashfi, and S. Ferlin. The
NorNet Edge Platform for Mobile Broadband Measurements. Computer Networks,
Special Issue on Future Internet Testbeds, 61:88–101, March 2014. ISSN 1389-1286.

16. Y. Lim, Y. Chen, E. Nahum, D., and R. Gibbens. Improving energy efficiency of
MPTCP for mobile devices. CoRR, abs/1406.4463, 2014.

17. S. Ostermann. tcptrace. http://www.tcptrace.org.
18. C. Paasch, S. Barre, et al. Multipath TCP implementation in the Linux kernel.

available from http://www.multipath-tcp.org, 2014.
19. C. Paasch and O. Bonaventure. Multipath TCP. ACM Queue, 12(2):40:40–40:51,

2014.
20. C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring Mo-

bile/WiFi Handover with Multipath TCP. In ACM SIGCOMM workshop CellNet,
pages 31–36, 2012.

21. C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental Evaluation of
Multipath TCP Schedulers. In 2014 ACM SIGCOMM Workshop on Capacity
Sharing Workshop, CSWS ’14, pages 27–32, 2014.

22. C. Paasch, R. Khalili, and O. Bonaventure. On the Benefits of Applying Experi-
mental Design to Improve Multipath TCP. In Proceedings of CoNEXT ’13, pages
393–398, New York, NY, USA, 2013. ACM.

23. J. Postel. Transmission Control Protocol. IETF RFC 793, September 1981.
24. C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.

Improving Datacenter Performance and Robustness with Multipath TCP. In ACM
SIGCOMM 2011, 2011.

25. C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,
and M. Handley. How Hard Can It Be? Designing and Implementing a Deployable
Multipath TCP. In USENIX NSDI, 2012.

26. Nicholas Weaver, Christian Kreibich, Martin Dam, and Vern Paxson. Here be
web proxies. In Passive and Active Measurement, volume 8362 of Lecture Notes in
Computer Science, pages 183–192. Springer, 2014.

27. N. Williams, P. Abeysekera, N. Dyer, H. Vu, and G. Armitage. Multipath TCP
in Vehicular to Infrastructure Communications. Technical Report Centre for Ad-
vanced Internet Architectures, Technical Report 140828A, Swinburne University
of Technology, 2014.

28. N. Williams, L. Stewart, and G. Armitage. FreeBSD kernel patch for Multipath
TCP. available from http://caia.swin.edu.au/urp/newtcp/mptcp/tools.html,
July 2014.

29. D. Wing and A. Yourtchenko. Happy Eyeballs: Success with Dual-Stack Hosts.
RFC 6555, April 2012.

30. D. Wischik, M. Handley, and M. Braun. The Resource Pooling Principle. ACM
SIGCOMM Computer Communication Review, 38(5):47–52, 2008.

