
HAL Id: hal-01411189
https://hal.science/hal-01411189

Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SFMap: Inferring Services over Encrypted Web Flows
Using Dynamical Domain Name Graphs

Tatsuya Mori, Takeru Inoue, Akihiro Shimoda, Kazumichi Sato, Keisuke
Ishibashi, Shigeki Goto

To cite this version:
Tatsuya Mori, Takeru Inoue, Akihiro Shimoda, Kazumichi Sato, Keisuke Ishibashi, et al.. SFMap:
Inferring Services over Encrypted Web Flows Using Dynamical Domain Name Graphs. 7th Workshop
on Traffic Monitoring and Analysis (TMA), Apr 2015, Barcelona, Spain. pp.126-139, �10.1007/978-3-
319-17172-2_9�. �hal-01411189�

https://hal.science/hal-01411189
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

SFMap: Inferring Services over Encrypted Web Flows
using Dynamical Domain Name Graphs

Tatsuya Mori1, Takeru Inoue2, Akihiro Shimoda3, Kazumichi Sato3, Keisuke
Ishibashi3, and Shigeki Goto1

1 Department of Computer Science and Communications Engineering, Waseda University
2 NTT Network Innovation Laboratories, NTT Corporation

3 NTT Network Technology Laboratories, NTT Corporation

Abstract. Most modern Internet services are carried over the web. A significant
amount of web transactions is now encrypted and the transition to encryption
has made it difficult for network operators to understand traffic mix. The goal
of this study is to enable network operators to infer hostnames within HTTPS
traffic because hostname information is useful to understand the breakdown of
encrypted web traffic. The proposed approach correlates HTTPS flows and DNS
queries/responses. Although this approach may appear trivial, recent deployment
and implementation of DNS ecosystems have made it a challenging research
problem; i.e., canonical name tricks used by CDNs, the dynamic and diverse na-
ture of DNS TTL settings, and incomplete measurements due to the existence of
various caching mechanisms. To tackle these challenges, we introduce domain
name graph (DNG), which is a formal expression that characterizes the highly
dynamic and diverse nature of DNS mechanisms. Furthermore, we have devel-
oped a framework called Service-Flow map (SFMap) that works on top of the
DNG. SFMap statistically estimates the hostname of an HTTPS server, given a
pair of client and server IP addresses. We evaluate the performance of SFMap
through extensive analysis using real packet traces collected from two locations
with different scales. We demonstrate that SFMap establishes good estimation
accuracies and outperforms a state-of-the-art approach.

1 Introduction

Background:
Monitoring and understanding traffic mix is crucial for network operators. Port num-

ber conventions and deep packet inspection (DPI) are widely used to understand the
breakdown of traffic mix. However, these techniques have become less effective for
the following reasons. First, the majority of modern services, such as social network-
ing service, video, and messaging services, are all performed over web traffic [9], and
port number information is too coarse-grained to distinguish such services from each
other. Second, the encryption of communication channels has disabled inspection of
HTTP headers, which include useful information such as uniform resource identifiers
(URIs). Modern protocols for accelerating the web such as SPDY and Websocket em-
ploy mandatory encryption of HTTP with SSL/TLS (secure socket layer/transport layer
security), i.e., HTTPS. Naylor et al. [7] recently reported that fraction of HTTPS traffic

2 T. Mori, T. Inoue, A. Shimoda, K. Sato, K. Ishibashi, and S. Goto

s1	 m1	 n1	m2	

23.2.132.181	

e1630.c.akamaiedge.net	

www.ieee.org.edgekey.net	

www.ieee.org	

Fig. 1. Example of a CNAME chain.

1 10 100 1000 10000 100000 1000000
TTL values (seconds)

0

0.2

0.4

0.6

0.8

1

C
D

F

A records
CNAME records

Fig. 2. CDFs of TTL values.

s1	

m1	

n1	

s1	

m1	

n1	

n2	

Observa(on	 1: n1à s1	

Observa(on	 2: n2à s2	

s2	 edgar.img.g.yahoo.co.jp	

edgar.img.g.yahoo.co.jp	

182.22.11.124 	

124.83.241.251	

124.83.241.251	 headlines.yahoo.co.jp	

 headlines.yahoo.co.jp	

crisis.yahoo.co.jp 	

Fig. 3. An example of CNAME ambiguity.

volume measured at a large-scale ISP has significantly increased over these 2+ years
(from April 2012 to July 2014). They also found that their meausrement study suggests
that cost of deploying HTTPS is decreasing. Hence, the increasing adoption of HTTPS
brings new research challenges to traffic classification problems [2, 5]4.
Goal and Challenges:

Based on the aforementioned information, this work aims to enable network op-
erators to infer the hostnames of HTTPS traffic. Hostname information is useful for
network operators to understand what types of services are carried over HTTPS flows.
Although the IP address property of an HTTPS server may reveal that the server is
used by a particular company such as Google, this information often fails to provide us
with information about the services that are used over the flow, such as web searches,
blogs, and videos. Such services are associated with distinct hostnames such as www.
google.com, www.blogspot.com, and www.youtube.com. Bermudez et al. [2] re-
vealed that simple reverse DNS lookup does not return accurate domain information
used by HTTPS servers. Thus, to understand the traffic mix of HTTPS flows, we need
to infer server hostnames.

4 We note that server name indication (SNI) extention of TLS can be used to obtain hostname of
HTTPS server. However, there are many client/server implementations that do not adopt SNI.
In fact, in our dataset, roughly half of HTTPS clients did not use the SNI extention.

SFMap: Inferring Services over Encrypted Web Flows using Dynamical DNG 3

The main idea of our approach is to correlate HTTPS flows and DNS queries/re-
sponses. The basic assumption is that prior to requesting an HTTPS flow, a web appli-
cation should resolve the IP address of the HTTPS server by querying a DNS query.
Therefore, by monitoring prior DNS queries/responses, we can estimate the hostname
that is associated with IP address of the HTTPS server. Although this approach might
look trivial, there are three practical challenges.
(Challenge 1) Canonical name (CNAME) tricks used by CDNs

First, modern CDN providers leverage CNAME tricks to accelerate the efficiency
of content delivery [10]. Figure 1 shows an example of a CNAME chain used by a
CDN provider. Here, assume that we know that the IP address of an observed HTTPS
server is s1 = 23.2.132.181. Now, our task is to associate s1 with the original hostname,
n1 = www.ieee.org. However, as is shown in Fig. 1, n1 is not directly resolved to s1 due
to the existence of the CNAME chain. Using this chain structure, a CDN provider can
provide the optimal server IP address s1 to serve the content of n1 to client c1. Thus,
to associate s1 and n1, we need to keep track of the CNAME chain, which exhibits
dynamic and complex behavior as we shall see soon.
(Challenge 2) Incomplete measurements

A DNS record can be cached by several mechanisms such as local DNS resolvers,
DNS caching within operating systems, and DNS caching within applications such as
web browsers. The implementations of these caching mechanisms are diverse. Some re-
cent implementations used in web browsers store DNS records aggressively to improve
response time, thereby ignoring DNS TTL settings [4]. Even though such implemen-
tations violate the rule of DNS TTL, they can work because even if a selected server
IP address is no longer an optimal one, the server IP address generally continues to be
valid. Thus, due to the standard and illicit caching mechanisms, a DNS query, which
should have appeared prior to an HTTP request, is often invisible. The absence of DNS
queries suggests that we require estimation techniques to recover incomplete measure-
ments.
(Challenge 3) Dynamicity, diversity, and ambiguity

Every hostname used in DNS is assigned a time-to-live (TTL), which defines the
lifetime of the hostname within a stub DNS resolver. If the hostname is not queried
again before the TTL has expired, the DNS record of the hostname will be removed
from a stub DNS resolver. In general, the hostnames in a CNAME chain have different
TTL values. Figure 2 presents an example of cumulative distributive function (CDF)
of TTL values for hostnames that are resolved to IP addresses (A record) and host-
names that are resolved to CNAMEs (CNAME record). Note that the data was taken
from a mid-sized production network, and the characteristics of CDF were the same
for other dataset. The graph clearly shows that A record hostnames have shorter TTLs
than CNAME hostnames. For example, more than 50% of A record hostnames have
TTL values that are less than 60 seconds. This indicates that the association between
hostnames and IP addresses is highly dynamic. These hostnames have shorter TTLs
because CDN providers tend to control traffic at a fine granularity [4].

The diversity of TTL values and DNS caching mechanisms leads to ambiguity of
CNAME association behavior. We illustrate an actual sample in Fig. 3, which presents
DNS resolutions for a client, c1. The first observation generates the relationship be-

4 T. Mori, T. Inoue, A. Shimoda, K. Sato, K. Ishibashi, and S. Goto

tween s1 and n1 for client c1. The second observation generates the relationship be-
tween s2 and n2 for client c1. Now, assume an estimation problem. If we observe the
pair (c1, s1), which hostname should it be associated with? If we simply keep the rela-
tionships shown above, the answer is n1. However, due to the existence of intermediate
CNAME node m1, the actual answer is n2 because m1 is now associated with s2 by a
query of n2, and n1 is associated with m1 due to a caching mechanism. Note that this
behavior depends on the implementation of the stub DNS resolver used by the client
c1. If the implementation ignores intermediate CNAME nodes, the answer could be n1.
Thus, there is an intrinsic ambiguity in CNAME associations.
Contributions:

In this work, we present a novel methodology that aims to infer the hostnames of
HTTPS flows, given the three research challenges shown above. The key contributions
of this work are summarized as follows.

– We present domain name graph (DNG), which is a formal expression that can keep
track of CNAME chains (Challenge 1) and characterize the dynamic and diverse
nature of DNS mechanisms and deployments (Challenge 3).

– We develop a framework called Service-Flow map (SFMap) that works on top of
the DNG. SFMap estimates the hostname of an HTTPS server given a pair of client
and server IP addresses. It can statistically estimate the hostname even when asso-
ciating DNS queries are unobserved due to caching mechanisms, etc. (Challenge
2).

– Through extensive analysis using real packet traces, we validate the performance
of SFMap in terms of accuracy and resource consumption.

The remainder of this paper is organized as follows. Section 2 summarizes the re-
lated work. Section 3 describes the proposed SFMap framework in detail. We evaluate
the performance of SFMap in Section 4. Section 5 discusses the limitations of SFMap
and future research directions. We conclude our work in Section 6.

2 Related work

Many studies have examined the Internet traffic classification problem. Ref. [3] lists
68 studies on the topic. Here, we focus our attention on the studies that make use of
DNS information to the traffic classification problem [2, 6, 8]. Mori et al. [6] proposed
a method to identify traffic originating from large-scale video-sharing services such as
YouTube. The key idea was to extract the rules of IP address numbering and naming
conventions of fully qualified domain names (FQDNs) used for the services. Although
their approach may work for a limited scope, it cannot be used to solve more generic
web traffic classification problems. Plonka et al. [8] presented a traffic classification
method that uses DNS traffic. They developed a method that stores per client DNS
rendezvous state information in a tree-like data structure. Although their results demon-
strated that the DNS rendezvous-based method performs well, even for encrypted traf-
fic, their goal was different from ours because they assumed that DNS traffic implies the
ground truth. In contrast, our goal is to estimate the hostnames of HTTPS traffic from

SFMap: Inferring Services over Encrypted Web Flows using Dynamical DNG 5

the observations of DNS traffic. Bermudez et al. [2] developed a framework called DN-
Hunter, which aims to classify traffic flows using DNS traffic. DN-Hunter uses a FIFO
(first-in first-out) circular list to store the relationships among FQDN information and
client-server pairs. Since the scope of DN-Hunter is mostly similar to ours, this work
compares the performance of SFMap with DN-Hunter.

3 SFMap framework

This section describes SFMap in detail. Section 3.1 presents the overview of the SFMap
framework. Section 3.2 describes DNG, which is a key component of the SFMap frame-
work. Section 3.3 details how SFMap estimates hostnames. Lastly, Section 3.4 explains
how SFMap updates DNG and statistics that are used for the estimation.

3.1 Overview

The goal of SFMap is to infer a hostname n of an HTTPS flow by associating preceding
DNS responses with a flow key, which is defined with a pair of server IP address s
and client IP address c. To this end, SFMap needs to address the research challenges
discussed in Section 1. To tackle the research challenges, the SFMap framework works
on top of DNG, which will be detailed in the next subsection. A DNG keeps track of the
structure of DNS records; thus, it can deal with CNAME chains (Challenge 1). Next, by
relaxing the constraints of the DNG, the SFMap framework can handle cases wherein
there are no preceding DNS responses that are associated with the client-server pair
(challenge 2). The details of the hostname estimation will be described in Section 3.3.
Finally, by adequately maintaining the DNG and using the observed TTL values, the
SFMap framework can deal with the dynamic nature of DNS mechanisms (Challenge
3). The updating mechanism for the DNG will be discussed in Section 3.4.

Figure 4 summarizes the components of the SFMap framework. SFMap has three
main functions, i.e., Learner, Estimator, and Updater. Learner consists of two compo-
nents: the DNG and the Frequency counter. Learner component reads DNS queries/re-
sponses and builds and keeps the DNG and Frequency counter. Estimator performs host
estimation; i.e., given a pair of client-server IP addresses (c, s) for an HTTPS flow, es-
timator returns the most plausible hostname(s) using the information collected from
DNG and Frequency counters. Updater reads DNS queries/responses and updates the
status of the DNG and the Frequency counter.

Given these primitives, our problem can be formulated as maximum likelihood es-
timation (MLE) under the constraints of a DNG. Given c and s in an HTTPS flow, the
MLE is formulated as follows.

n̂(c, s) = argmax
n∈N

Pr(n, c, s) (1)

s.t. N = {n ∈ Vc : n→
Gc

s}, (2)

where Gc = (Vc, Ec) denotes a DNG built for c, and binary operator x →
G

y represents

whether vertex x can reach to vertex y on graph G. In the following, we describe how
we build and update Gc, how we extract N, how we compute the likelihood probability
Pr(n, c, s), and how we get the final estimation n̂.

6 T. Mori, T. Inoue, A. Shimoda, K. Sato, K. Ishibashi, and S. Goto

DNS	 	
queries/	 responses	

HTTPS	 flow	
DNG	
Sec	 3.2	

Flow key: {s, c}	

Hostname, n	

input	

output	

Freq.	 Counter	
Es*mator	
Sec	 3.3	

Learner	

Updater	
Sec	 3.4	

Fig. 4. Components of SFMap.

3.2 DNG

A DNG, Gc, is a directed graph used to keep A and CNAME records observed in DNS
responses queried by client c. DNGs can be built separately for each client c. A vertex,
v ∈ Vc, is a server IP address or a hostname, while an edge, e ∈ Ec, represents an
A or CNAME record that links a vertex to another vertex. Each edge is grafted by a
corresponding A or CNAME record observed in a DNS response, and is associated
with its expire time determined by observed TTL. If an edge, e ∈ Ec, is expired, it will
be removed from Gc.

Here, we examine how the DNG expression naturally represents the behavior of
DNS resolution. Assume that clients obtain a server address via DNS responses only
and that we have never missed any DNS response for the clients; i.e., DNG Gc rep-
resents all name resolutions requested by a client c. When a client c sends an HTTP
request to a server n, the server n’s IP address s should have been resolved by DNS.
This association of n and s obtained through the DNS mechanism can be expressed
as a path from n to s on the DNG Gc. Note that there are cases where we cannot find
such a path due to the caching mechanisms. In such cases, we need to employ several
techniques that will be described soon.

3.3 Estimator

In the estimation phase, we must first select candidate hostnames that are likely the
original hostname for a given client-server pair (c, s). We extract a set of candidate
hostnames N from DNG Gc, using Eq. 2. If |N| ≥ 1, we estimate the hostname with the
MLE shown in Eq. 1. A method to calculate the likelihood probability Pr(n, c, s) will be
shown later.

As we mentioned in Section 1, N can be an empty set due to the standard and illicit
DNS caching mechanisms. In such cases, we cannot directly associate an HTTPS flow
with preceding DNS responses. To deal with these cases, SFMap extends the candidate
hostnames by relaxing the constraint of edge expiration. This relaxation enables us to

SFMap: Inferring Services over Encrypted Web Flows using Dynamical DNG 7

select hostnames that are missed due to the existence of DNS clients that ignore DNS
TTL for improving the user experience. Now, N is obtained as

N = {n ∈ Vc : n →̃
Gc

s}, (3)

where G̃c = (Vc, Ẽc) and Ẽc include both valid and expired edges.
Finally, if we do not have any candidate hostnames at this stage, we use the union of

all clients’ DNGs (union DNG). In other words, we use the observations of other clients
as a hint to estimate the most plausible hostname. Let C denote a set of all clients. The
union DNG is defined as G = (V =

∪
c∈C Vc, E =

∪
c∈C Ec). Using the union DNG G,

the candidate hostnames can be selected as

N = {n ∈ V : n→
G

s}. (4)

It then estimates the hostname with the following MLE formulation:

n̂ = argmax
n∈N

Pr(n, s). (5)

Like Eq. 3, we can further relax the constraint of expiration for the union DNG G; i.e.,

N = {n ∈ V : n →̃
G

s}, (6)

where G̃ = (V, Ẽ) and Ẽ include both valid and expired edges.
To recap, the Estimator runs the combinations below from top to bottom in a step-

by-step manner until a plausible hostname is found. For future reference, we give names
to these steps, where LE and UE refer to Local and Union Estimators, and NTE refers
to “No TTL Expiration”. For instance, the estimator LE-NTE (Local Estimator with No
TTL Expiration) starts with the first step and continues to the second step until at least
one candidate hostname is found, but will not proceed to the third and fourth steps. We
will examine the accuracies of these estimators to study the factors that contribute to
improve the estimation accuracies.

Step MLE constraint Name
1st Eq. (1) Eq. (2) LE
2nd Eq. (1) Eq. (3) LE-NTE
3rd Eq. (5) Eq. (4) UE
4th Eq. (5) Eq. (6) UE-NTE

Finally, we note the time complexity of the Union Estimators. In the Union DNG,
a single-source path search from s with reverse edges requires O(|E|) on a directed
acyclic graph with topological sort, and frequency lookups are executed for n ∈ N ⊆
V . Therefore, the time complexity of Union Estimators is O(|V | + |E|). However, we
empirically revealed that the actual mean time complexity is much smaller than this
worst-case upper bound, and is close to O(|Vc| + |Ec|) because majority of hostnames
can be estimated with LE and LE-NTE as we shall show in Section 4. The details are
omitted due to the space limitation.

8 T. Mori, T. Inoue, A. Shimoda, K. Sato, K. Ishibashi, and S. Goto

Calculation of the likelihood probabilities To calculate the likelihood probabilities,
we make use of empirical data. Let Fc(n, s) denote the frequency of DNS messages
queried by client c for hostname n with resolved address s. Using Fc(n, s), Eq. 1 can be
calculated as

argmax
n∈N

Pr(n, c, s) = argmax
n∈N

Fc(n, s).

Similarly, Eq. 5 can be calculated as

argmax
n∈N

Pr(n, s) = argmax
n∈N

F(n, s),

where F(n, s) =
∑

c∈C Fc(n, s). The method to update the frequency will be shown in
the next subsection.

3.4 Updater

The Updater updates DNG Gc and frequency Fc when it receives a DNS response. A
DNS response is associated with client c and queried hostname n⋆. The response also
includes a set of A records and another set of CNAME records. Let these sets be A
and M, respectively. An A record associates hostname n and server address s, while a
CNAME record associates two hostnames n′ and n. Let these records be (n, s) ∈ A and
(n′, n) ∈ M, respectively.

Due to the existence of short TTL value set for an A record, a client often resolves
an intermediate hostname (i.e., CNAME) instead of the original one. In such a case, the
frequency of an original hostname is undervalued. To cope with such a case, SFMap
increments the frequencies of all original hostnames that can reach to the queried host-
name. Let a set of edges be Ec = {(n′′, n), (n′, n), (n, s)}, where n is a CNAME of n′′

or n′. If n⋆ = n is queried, the Updater increments Fc(n′′, s) and Fc(n′, s), instead of
Fc(n, s). Note that we assume that original hostnames should be leaf vertices on a DNG
(a leaf is a vertex without incoming edge). In fact, more than 99.7% of requested host-
names are leaf vertices in our observations.

Algorithm 1 presents an algorithm that updates Gc and Fc upon receiving a DNS
response, (c, n⋆, A,M). We discount the incremental value by the number of (n′, s) pairs
at Line 7, because the algorithm increments Fc for all n′ ∈ V reachable to n⋆ and
for all s in A. At Line 3, we update the expiration time of edge (u, v). In addition to
Algorithm 1, the Updater periodically checks the TTL expiration for all edges. If the
DNS TTL expires for an edge (u, v), the edge will be removed. The time complexity of
maintenance is O(|Vc|) for the loop at Line 5, assuming O(|A|) = O(|M|) = O(1).

4 Evaluation

Here, we first describe the datasets used and present some basic statistics derived from
the data. We then evaluate the estimation accuracy of SFMap. For reference, we com-
pare the performance of SFMap with DN-Hunter [2]. Finally, we examine the resource
consumption of SFMap, which was implemented with Python.

SFMap: Inferring Services over Encrypted Web Flows using Dynamical DNG 9

Algorithm 1: Updater
Input: c, n⋆, A, M // DNS response

1 for (u, v) ∈ A ∪ M do
2 Ec = Ec ∪ {(u, v)} // to add edge

3 update expire time of edge (u, v)

4 N′ = {n′ ∈ Vc : (∗, n′) < Ec, n′ →
Gc

n⋆} // leaf vertices reachable to n⋆

5 for n′ ∈ N′ do
6 for (∗, s) ∈ A do
7 Fc(n′, s) = Fc(n′, s) + 1

|N′ |·|A| // to increment frequency

8 return Gc, Fc

Table 1. Basic statistics of the datasets.

learning # of # of DNS estimating # of # of HTTP # of
time clients responses time servers requests hostnames

LAB 0 ∼ 12 h 10 5,226 10 ∼ 12 h 1,705 542 1,135
PROD 0 ∼ 12 h 4,250 86,854 10 ∼ 12 h 10,785 55,091 10,534

Table 2. Statistics of the DNGs at the end of measurement period.

Local DNG Union DNG
w/o TTL expiration w/o TTL expiration

mean mean total total
of nodes # of edges # of nodes # of edges

LAB 460 755 2,849 5,979
PROD 56 80 25,403 172,974

4.1 Datasets and statistics

To investigate the effectiveness of SFMap, we used the two datasets, LAB and PROD,
which are the packet traces collected from a gateway router of local area network used
by a research group and a gateway router of middle-scale production network, respec-
tively. The basic statistics of the datasets are summarized in Table 1. As is shown in
Table 1, the datasets cover two different scales, small and middle. Both datasets have
same time length, twelve hours. Of the twelve hours, the last two hours are used to
examine the accuracy; i.e., the first 10 hours are used for warm-up phase. We adopted
the length of warm-up from the observation of TTL distribution shown in Fig. 2; i.e.,
majority of the DNS resource records had TTL values less than 10 hours.

Here, we present the characteristics of DNGs derived from our datasets. Table 2
presents the statistics of the DNGs. For brevity, we omit DNGs with TTL expiration
because these DNGs should be smaller than those without TTL expiration. As is shown
in the table, Union DNGs have fewer nodes and edges. For instance, since the number
of clients for the LAB dataset is 10 (see Table 1), the total number of nodes in the Local

10 T. Mori, T. Inoue, A. Shimoda, K. Sato, K. Ishibashi, and S. Goto

1 2 3 4 5 6 7 8 9 10
Number of candidate hosts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

1 2 3 4 5 6 7 8 9 10
Number of candidate hosts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Fig. 5. CDFs of the number of candidate hostnames for each HTTP request: LAB (left) and PROD
(right).

DNGs should be 10 × 460 = 4600. Thus, the number of total nodes in the Union DNG
(=2849) is less than the number of total nodes in the Local DNGs. This observation
implies that (1) each client-server pair in the Local DNGs has duplicate nodes and
edges, and (2) the Union DNGs can be maintained with less memory. Figure 5 shows
the CDF of the number of candidate hostnames for each HTTP request. The results
suggest that roughly 15% of the HTTP requests have multiple candidates; i.e., we must
statistically estimate the original hostname from these candidates.

4.2 Estimation accuracy

Our methodology was evaluated using the two datasets. We make use of HTTP as a
means to evaluate the accuracy of our methodologies. The ground truth was obtained
from HTTP request headers, which contain hostname information. We note that al-
though the distributions of hostnames could be different between HTTP and HTTPS,
the fundamental mechanism of resolving hostname before starting HTTP/HTTPS com-
munication should be identical. From the packet traces, we read DNS packets to build
and update the DNGs. For each HTTP request pair (c, s), we estimate the hostname
and compare it against the ground truth. For comparison purposes, we implemented
DN-Hunter [2]. DN-Hunter has a single parameter that determines the size of memory,
which keeps track of tuples of (c, s,N), where N is a hostname. To obtain the highest
performance of DN-Hunter, we set infinite amount of memory size. We note that this
configuration did not overflow physical memory we used in our experiments.

Table 3 and Table 4 summarize the results, where we use the notations introduced
in Section 3.3. Table 3 shows the estimation accuracies in the context of exact match-
ing, and Table 4 relaxes matching using a public suffix [1]; i.e., we can see that aaa.
example.com and bbb.example.com are matched in the context of the public suf-
fix. Using the public suffix matching allows us to distinguish hostnames with different
domains, e.g., youtube.com and google.com.

First, the accuracies were improved for estimators with no TTL expiration (NTE).
This observation suggests that there are a non-negligible number of DNS implemen-
tations that ignore TTL settings, which agrees with a previous report [4]. Second, the

SFMap: Inferring Services over Encrypted Web Flows using Dynamical DNG 11

Table 3. Accuracies of the estimators (exact matching).

LE LE-NTE UE UE-NTE DN-Hunter
LAB 54.98% 68.08% 71.59% 92.25% 67.90%
PROD 79.90% 88.29% 90.88% 90.88% 85.40%

Table 4. Accuracies of the estimators (public suffix matching).

LE LE-NTE UE UE-NTE DN-Hunter
LAB 57.20% 70.30% 73.80% 94.46% 73.43%
PROD 83.20% 92.12% 94.52% 94.98% 89.98%

Table 5. Accuracies of the Top-3 estimations (UE-NTE).

Exact matching Public suffix
Hit in 1 Hit in 2 Hit in 3 Hit in 1 Hit in 2 Hit in 3

LAB 92.25 97.23 98.16 94.46 98.16 98.16
PROD 90.88 95.77 96.71 94.98 97.01 97.43

Union DNG also contributed to improve the accuracy. This observation suggests that us-
ing other clients’ information is useful in improving the accuracy when no other hint is
available. Third, if we allow public suffix matching, accuracies are further improved for
all the estimators. The UE-NTE achieved roughly 95% of accuracy for both datasets.
Finally, the UE-NTE outperformed DN-Hunter. For the exact matching experiments,
while the estimation error rates of DN-Hunter were 15-32%, the estimation error rates
of UE-NTE were 8–9%. Thus, UE-NTE successfully reduced the error rates by 50-70%.

DN-hunter returns a single hostname given a client-server pair; however, if there
are multiple candidate hostnames, SFMap can return several hostnames with the high-
est likelihood probabilities. Table 5 shows the results where we accept the top three
hostnames as estimation. Notably, accuracies exceed 96-98% for exact matching if we
pick up the top three hostnames. We note that in most cases, the hostnames ranked
in the top three look similar. For instance, the top three hostnames are: pagead2.
googlesyndication.com, pubads.g.doubleclick.net, and googleads.g.doubleclick.
net, which are all attributed to Ad Network services. Thus, by extending the candidate
hostnames, we can establish better estimations that work in practice. This extension is
acceptable for our original motivation; i.e., understanding the mix of HTTPS traffic.

4.3 Resource consumption

We study the resource consumption of SFMap, using its implementation with Python.
We note that the implementation has a much room for improvement in terms of op-
timizing resource management. Table 6 shows the amount of memory consumed and
the amount of time to process the entire data, including data for warm-up. The results
demonstrate that our implementation of SFMap works within a reasonable amount of

12 T. Mori, T. Inoue, A. Shimoda, K. Sato, K. Ishibashi, and S. Goto

Table 6. Memory usage of RAM and processing time for UE-NTE.

memory (MB) time (s)
LAB 35.1 0.8
PROD 686.2 20.6

memory, i.e., less than 40 MB for LAB and less than 700 MB for PROD. Also, process-
ing time is much shorter than the actual measurement length, 12 hours. Thus, SFMap
should work in a real-time fashion. We will further discuss the scalability of SFMap in
the next section.

5 Discussion

Here, we discuss the limitations of the proposed SFMap framework. We also outline
several future research directions that can help extend our framework.

5.1 Sources of misclassification

By carefully examining the estimation results, we found several intrinsic sources of
misclassification. There are several factors that are associated with the incomplete mea-
surements. As we mentioned before, the first factor is the existence of aggressive DNS
caching mechanisms that ignore DNS TTL setting. The second factor we found through
this study was mobility of terminals; i.e., an IP address had already been resolved in
other network before the terminal arrived to the vantage point. The third factor we
found was the use of an IP address in the URI. We found a non-negligible number of
HTTP requests had such URIs. We manually inspected the cases and found that there
are several applications that likely hard-coded an IP address; thus, they never send DNS
queries. Although these are not the controlling factors today, we may need to address
them if such deployments become popular in future.

5.2 Scalability

As shown in Section 4.3, our SFMap implementation processed traffic collected at
middle-scale production network within a reasonable amount of memory; i.e., less than
700 MB. Then, we may want to ask whether SFMap works for large-scale networks.
First, because SFMap does not require per-packet processing, we believe that the pro-
cessing time does not matter in practice. It just processes DNS response packets and
the first packets of HTTPS flows, ignoring remaining packets. Furthermore, as we dis-
cussed in Section 3.3, empirical studies revealed that time complexity of estimation is
close to O(|Vc| + |Ec|), which is fairly small as shown in Table 2. We also note that es-
timation processes can be parallelized if we need it. Second, it is clear that the size of
DNGs increases as the number of observed client increases. If the size of DNG becomes
large enough to press the capacity of memory, we need to eliminate old records. Instead
of keeping all the records for a certain amount of time, e.g., 12 hours, we may want to

SFMap: Inferring Services over Encrypted Web Flows using Dynamical DNG 13

quickly delete old records that are less-likely to be reused in future. More sophisticated
way to manage the elements in DNGs is left for the future study. Another possible so-
lution would be to build a new algorithm that can maintain and update DNGs in a more
compact data structure. The topic is also left for the future study.

6 Summary

The SFMap hostname estimation framework was presented. SFMap enables network
operators to estimate the hostnames of HTTPS traffic by observing DNS queries/re-
sponses. To tackle the challenges that arise from the recent dynamic deployment and
diverse implementations of DNS ecosystems, the proposed SFMap framework runs on
top of a single key component; i.e., a DNG, which is a formal expression that char-
acterizes the highly dynamic and diverse nature of DNS mechanisms. From extensive
analyses using real packet traces collected from two distinct locations with different
network scales, we have demonstrated that SFMap has good estimation accuracy and
can outperform DN-Hunter, which is a state-of-the-art estimation technique. Our exper-
iments using middle-scale network traffic with thousands of clients demonstrated that
SFMap can be run on a standard commodity PC, using less than 700 MB of memory
space. In future, we plan to enhance the scalability of SFMap.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 25880020.

References

1. Public suffix list. https://publicsuffix.org/.
2. I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, and A. Nucci. DNS to the Rescue:

Discerning Content and Services in a Tangled Web. In Proc. of IMC, pages 413–426, 2012.
3. CAIDA. Internet traffic classification. http://www.caida.org/research/traffic-
analysis/classification-overview/.

4. T. Callahan, M. Allman, and M. Rabinovich. On Modern DNS Behavior and Properties.
SIGCOMM Comput. Commun. Rev., 43(3):7–15, July 2013.

5. M. Korczynski and A. Duda. Markov chain fingerprinting to classify encrypted traffic. In
Proc. of INFOCOM, pages 781–789, 2014.

6. T. Mori, R. Kawahara, H. Hasegawa, and S. Shimogawa. Characterizing Traffic Flows Orig-
inating from Large-scale Video Sharing Services. In Proc. of TMA, pages 17–31, 2010.

7. D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafo, K. Papa-
giannaki, and P. Steenkiste. The Cost of the “S” in HTTP. In Proc. of CoNext, 2014.

8. D. Plonka and P. Barford. Flexible Traffic and Host Profiling via DNS Rendezvous. In Proc.
of SATIN, 2011.

9. sandvine. Global internet phenomena report: 1h 2014. http://bit.ly/1jHpsW5.
10. A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante. Drafting Behind Akamai

(Travelocity-based Detouring). In Proc. of SIGCOMM, pages 435–446, 2006.

