
HAL Id: hal-01411186
https://hal.science/hal-01411186

Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Assessing Affinity Between Users and CDN Sites
Xun Fan, Ethan Katz-Bassett, John Heidemann

To cite this version:
Xun Fan, Ethan Katz-Bassett, John Heidemann. Assessing Affinity Between Users and CDN Sites.
7th Workshop on Traffic Monitoring and Analysis (TMA), Apr 2015, Barcelona, Spain. pp.95-110,
�10.1007/978-3-319-17172-2_7�. �hal-01411186�

https://hal.science/hal-01411186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Assessing Affinity Between Users and CDN Sites

Xun Fan1,2 Ethan Katz-Bassett2 John Heidemann1,2

1: USC/Information Sciences Institute 2: USC/Computer Science Dept.
xunfan@usc.edu ethan.kb@usc.edu johnh@isi.edu

Abstract. Large web services employ CDNs to improve user perfor-
mance. CDNs improve performance by serving users from nearby Front-
End (FE) Clusters. They also spread users across FE Clusters when one
is overloaded or unavailable and others have unused capacity. Our paper
is the first to study the dynamics of the user-to-FE Cluster mapping for
Google and Akamai from a large range of client prefixes. We measure
how 32,000 prefixes associate with FE Clusters in their CDNs every 15
minutes for more than a month. We study geographic and latency effects
of mapping changes, showing that 50–70% of prefixes switch between FE
Clusters that are very distant from each other (more than 1,000 km), and
that these shifts sometimes (28–40% of the time) result in large latency
shifts (100 ms or more). Most prefixes see large latencies only briefly, but
a few (2–5%) see high latency much of the time. We also find that many
prefixes are directed to several countries over the course of a month,
complicating questions of jurisdiction.

1 Introduction

Large web services serve their content from multiple sites to reduce client la-
tency, to spread load, and to provide redundancy against failure. These services
use Content Distribution Networks (CDNs) that operate Front-End (FE) Clus-
ters, each consisting of multiple servers in a specific location [7, 31]. The CDN
dynamically directs users to specific FE Clusters at the granularity of network
prefix which Google does and perhaps so do other CDNs. The CDN may direct a
user to a FE Cluster using routing (anycast with BGP) or using DNS controlled
by a mapping algorithm [3,6, 14,28].

Ideally user prefixes might map to the nearest FE Cluster to minimize net-
work latency. In practice, user-FE Cluster mapping is often more involved—a
FE Cluster may be temporarily down, a nearby FE Cluster may be overloaded,
estimates of user location may be incorrect or out-of-date, or peering costs may
influence FE Cluster choice, as reported by Facebook [16].

There are several reasons users, regulators, researchers, and CDN operators
should care about the dynamics of a CDN’s mapping from users to FE Clusters.
Users care about performance, and we show that changes in FE Cluster can re-
sult in noticeable performance differences (§ 4). Regulators and some users may
care about where their data goes, particularly when different political jurisdic-
tions have different requirements for privacy. Countries have different policies
about censorship [29], and requirements for law enforcement access to user data
vary by jurisdiction. Recent concerns about surveillance prompted countries to
suggest data should be kept domestically [8]. While prior studies enumerated



and geolocated CDN networks [1,2,15], an understanding of dynamics helps in-
terpret such mappings. In addition, a better understanding of user-FE Cluster
mapping might help CDN operators understand better how other CDNs work.

The first contribution of this paper is to provide the first evaluation of how
user prefixes associate with FE Clusters of CDNs from a large number of network
prefixes. We regularly collect data for the Google and Akamai CDNs from a very
broad range of vantage points for an extended period—we consider over 32k user
prefixes, covering 180 countries and 5158 ASes, with data every 15 minutes for
four weeks (§ 3). In addition, we use 192 PlanetLab nodes to measure network
and application latency of the two CDNs over one week. We find that many
user prefixes experience mapping changes frequently. About 20% of Google user
prefixes and 70% of Akamai user prefixes see more than 60 mapping changes
(twice everyday on average) in a month (§ 4.1).

Second, we show how changes in user/FE Cluster associations may affect
user performance (§ 4). We find that, over one month, most prefixes (50–70%)
are redirected from one FE Cluster to another that is very distant, and that
sometimes (28–40%) these shifts result in large changes in latency. These shifts
are usually brief, but a few users (2–5%) receive poor performance much of the
time. We also identify several reasons for these changes, including load balancing
and servers being temporarily taken out of production and later restored.

Finally, we look at the geographic footprint of which FE Clusters users em-
ploy (§ 4.5). We find that many prefixes are directed to several countries over
the course of a month, complicating questions of jurisdiction.

2 Background: CDNs and DNS Redirection
CDNs deploy front-ends around the Internet. Front-ends (FEs) are servers

that users connect to request web pages or services. For our purposes, we are
interested in FE Clusters, each of which represents the FEs in a single physical
and network location that provide the same services.

Some CDNs use DNS to direct users to front-ends. When a user performs a
DNS lookup for CDN-hosted content, the CDN’s DNS returns IP addresses of
a front-end(s) to serve that user. In practice, CDNs generally perform the same
redirection for all users in a given network prefix. We call this association between
network prefix and front-end the CDN’s prefix-FE Cluster mapping. Generally,
CDNs strive to map prefixes to nearby FE Clusters to reduce network latency,
but the mapping may also be influenced by load, maintenance, or other factors.
This paper focuses on observing the results of CDN’s prefix-FE Cluster mapping;
we do not attempt to reverse engineer the CDN’s specific algorithm.

When a prefix p is mapped to FE Cluster A at one time, then later mapped
to FE Cluster B, we call this a prefix-FE Cluster mapping change. We call (A,B)
the switching pair. Our goal is to understand these mapping changes—how often
do they occur, how many users change, where did they go before and after.

3 Data Collection
We measure Google and Akamai using existing methodology. Our contribu-

tion is new long-term observations and analysis of dynamics. Our datasets (Ta-



coverage frequ- start date
name where used target (prefixes) ency (length)
Google-15min-EDNS § 4.1 § 4.2 § 4.5 Google 32,871 15 min. 2014/03/28 (30)
Akamai-Apple-15min-ODNS § 4.1 § 4.2 § 4.5 Akamai 29,535 15 min. 2014/03/28 (30)
Akamai-Huff-15min-ODNS § 4.1 § 4.2 § 4.5 Akamai 28,308 15 min. 2014/11/17 (30)
PlanetLab-DNS-TTL § 4.3 both 192 20 s/5 m 2014/04/23 (7)
Google-15min-early § 4.4 Google 32,324 15 min. 2013/12/13 (30)
Google-location-EDNS § 3.3 Google 10,057,110 1 day 2014/03/28 (30)
Akamai-Apple-location-ODNS § 3.3 Akamai 271,357 once 2014/04/14 (-)
Akamai-Huff-location-ODNS § 3.3 Akamai 185,370 once 2014/11/12 (-)
ODNS-2013 § 3 - 271,357 once 2013/10/21 (-)

Table 1: Datasets collected as part of this work.

ble 1) provide daily observations for a month from 10M prefixes, and frequent
(15-minute) observations for a 30k subset of prefixes.

3.1 Enumerating CDN Front-End Servers with DNS

We focus on the Google and Akamai CDNs because they are massively dis-
tributed, host popular services, and use DNS (not anycast) to map users to FE
Clusters. Following prior work, we enumerate CDN infrastructure by issuing DNS
queries for a service hosted by the CDN. For Google, we query for www.google.

com. For Akamai, we query www.apple.com in Akamai-Apple-15min-ODNS dataset
and www.huffingtonpost.com in Akamai-Huff-15min-ODNS dataset. They are
both static websites hosted by Akamai. We query two websites for Akamai be-
cause our initial queries for www.apple.com, turned out to only cover a small set
of Akamai’s FE Clusters while www.huffingtonpost.com has larger coverage. We
expect our results for the specific Google and Akamai services that we study to
generalize to other services they each operate that also use DNS-based redirec-
tion. Since the fundamentals of replica selection are similar, they may also apply
to application-level redirection such as in YouTube and Akamai’s web caching,
but we do not evaluate application-level services in this paper.

To better understand prefix-FE Cluster mapping we use three techniques.
We get broad coverage with both EDNS-client-subnet and queries through open
resolvers. We get more controlled, detailed measurements from PlanetLab.

Broad probing We probe Google with the DNS EDNS-client-subnet extension,
following prior work [2,24]. This approach allows one to simulate queries from any
location, but while Google supports it, Akamai added support only in mid-2014,
which as part-way through our study [23]. Thus we do not use it with Akamai
and instead probe Akamai with open DNS resolvers to make DNS queries from
around the globe, again following prior work [9, 15]. Open resolvers are often in
people’s homes, so we use them judiciously to measure Akamai. We choose a
subset of global open resolvers that we collected in 2013 (ODNS-2013 ) as the
source user prefixes. It contains 32,871 open resolver IPs, each from a unique /24
prefix, and covers 180 countries/regions and 5158 ASes. We use about 32k open
resolvers so that our measurement settings can finish a query in 15 minutes.
To identify this subset, we start with all open resolvers and take five complete
enumerations of mappings for both CDNs over two months. We then discard

www.google.com
www.google.com
www.apple.com
www.huffingtonpost.com
www.apple.com
www.huffingtonpost.com
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Fig. 1: Number of different FE Clus-
ters and number of mapping changes
that user prefixes seen in one month
for Google and Akamai. Datasets:
Google-15min-EDNS, Akamai-Apple-
15min-ODNS and Akamai-Huff-15min-
ODNS

Akamai
Google -Huff

Total IPs 24,150 100% 9,492 100%

Clustered 22,679 94% 8,843 93%
Un-clustered 1,471 6% 649 7%

Geolocated 22,101 92% 7,953 84%
Un-geolocated 2,049 8% 1,593 16%

Clustered and 20,861 86% 7,953 84%
Geolocated

Total FE Clusters 983 1,195

Table 2: Statistics on the number
of IPs and FEs found for Google
and Akamai. Datasets: Google-15min-
EDNS and Akamai-Huff-15min-ODNS

those that do not respond in every trial, and finally we keep only those necessary
to complete the IP-level enumeration that we saw in our five trials.

For Google, we issue DNS EDNS-client-subnet extension queries for the /24
prefixes1 of the chosen open resolvers. Google hosts front-ends both on its back-
bone network and data centers (on-net) and in other ISPs around the world
(off-net). We select prefixes to get broad coverage of FE Clusters, thus under-
representing prefixes that are served directly from on-net FE Clusters. However,
we believe our data is not drastically different from what we observe from all
routable /24 prefixes, as the difference is moderate (70% of prefixes are mapped
to on-net FE Clusters in our data and 88% of all routable /24 prefixes are
mapped to on-net FE Clusters from Google-location-EDNS dataset). For Aka-
mai, we probe directly to the chosen open resolvers. We probe both Google and
Akamai every 15 minutes for all the 32,871 prefixes. We choose 15 minutes to
limit load we impose on open resolvers.

Since open resolvers sometimes do not respond, we discard prefixes that miss
more than 10% of their probes, leaving 29,535 and 28,308 prefixes in Akamai-
Apple and Akamai-Huff.

Table 2 shows the total number of front-end IP addresses we find using broad
probing. In total, we find 24,150 Google front-end IPs. For Akamai, we find 685
front-end IPs hosting www.apple.com (the Akamai-Apple dataset, omitted from
the table for space) and 9,492 Akamai front-end IPs hosting www.huffingtonpost.

com in 30 days (Akamai-Huff, shown in the table). We will see later that there are
also many more FE Clusters hosting www.huffingtonpost.com than www.apple.

com, and we believe this difference comes from the different SLAs used by the
two sites. Compared to published reports of the sizes of the Google [2] and

1 We always use /24 prefixes and so just write prefix from here.

www.apple.com
www.huffingtonpost.com
www.huffingtonpost.com
www.huffingtonpost.com
www.apple.com
www.apple.com


Akamai [19] CDNs, we know that our coverage is incomplete, but we believe
we cover a good part of Google’s CDN (about 70% of prior results [2]). Akamai
runs tens of thousands of servers; our methodology tracks only the part of that
infrastructure used by our targets. We focus on specific clients hosted by Akamai
so we can study user-prefix dynamics for thousands of user prefixes without
creating excessive measurement traffic. We observe about three times more IPs
in Google’s clusters compared to Akamai’s. Our methodology of sampling specific
URLs means that we do not fully enumerate clusters, and load-balancing and
other factors mean IP addresses do not necessarily indicate cluster size, so we
focus on clusters rather than IP addresses.

Performance probing In order to also study the effects of mapping changes
on user-experienced performance, we use PlanetLab to collect ping times to the
front-ends and application-level page fetches, as described in § 4.3.

We also issue frequent DNS queries from PlanetLab. Following prior work [25],
we probe on DNS TTL intervals (the quickest an end user might experience
changes) to capture prefix-FE Cluster mapping changes. (TTL for Google DNS
is 5 minutes and Akamai is 20 seconds.)

We collect our PlanetLab-DNS-TLL dataset using probing at these rates for
7 days. We use 192 PlanetLab nodes, each in a distinct /24 prefix.

3.2 FE Cluster Identification
Since we are interested in mapping changes between FE Clusters, not IP

addresses, we use our previous technique to group IP addresses into FE Clusters
based on similarity of round-trip times from PlanetLab [2]. Table 2 shows our
clustering results. We find 983 FE Clusters for Google from 22,679 replying IP
addresses. We were unable to cluster 1,471 Google IPs because they do not
respond to the pings we need for clustering. For Akamai, we find 1,195 Akamai
FE Clusters from 9,492 IP addresses in Akamai-Huff dataset, (336 Akamai FE
Clusters from 650 IP addresses in Akamai-Apple, not in the table), with 649 IPs
we could not cluster. We have no way of identifying, clustering, or geolocating
IP addresses that do not reply to measurements, so we must discard them.

3.3 Front-End Geolocation
We geolocate FE Clusters in our datasets using our previous CCG technique

(Client-Centric-Geolocation) [2]. CCG geolocates FE Clusters by averaging the
locations of the prefixes they serve after aggressively removing prefixes clearly
distant from the FE. From that earlier work, we have daily measurements of
Google since 2013. We use one month of that data (dataset: Google-location-
EDNS ), selecting the period and subset of prefixes to match our prefix-FE Clus-
ter mapping datasets.

We use an alternate source of data for geolocation since Akamai did not
support EDNS-client-subnet queries when our measurements began (§ 3.1). We
collect data from open resolvers and apply the CCG algorithm to it ourselves. We
use the whole set of open resolvers (ODNS-2013) we collected in 2013 as clients
for CCG. The set of open resolver contain 600,000 open resolver IP addresses
from 271,357 distinct /24 prefixes, covering 217 countries/regions and 11,793



ASes. Since it covers a fraction of the 10 million total routable /24 prefixes, we
validate the use of CCG with open resolvers and find that it provides similar
accuracy to CCG with all routable /24 IP prefixes. Our geolocation is accurate,
with 90% of IP addresses having distance error within 500km [10].

CCG does not provide locations for 8% of Google IP addresses and about
16% of Akamai IPs (Table 2). Typically, CCG fails for FE Clusters that see an
insufficient number of clients, so these servers may be relatively unimportant.

4 Dynamics of User Redirection
4.1 Are user prefixes mapped to different FE Clusters?

We first examine how many mapping changes and how many FE Clusters
each user prefix observes over one month. Figure 1 shows the cumulative dis-
tribution. We see that 20% and 70% of prefixes observe more than 60 mapping
changes ((A) and (B) in Figure 1) in a month (average 2 a day) for Google and
Akamai respectively, suggesting mapping changes are common for many prefixes.
(The number of changes we report here is much smaller than prior work [25] be-
cause we report the changes between clusters, not just IP addresses.) In addition,
we see that most user prefixes have fairly stable mappings for Google, with 92%
of them being mapped to at most 4 FE Clusters ((C) in Figure 1). Akamai user
prefixes seem to experience more variation, with only around 40% being mapped
to 4 FE Clusters or fewer and 14% being mapped to 20 or more FE Clusters ((D)
and (E) in Figure 1). This analysis shows that mappings changes are common,
with some users changing frequently and most occasionally.

4.2 Distances of Mapping Changes
We next examine the distance between the FE Clusters that users switch

between. We expect that a user would see little latency change when switched
between nearby FE Clusters, while mapping changes between very distant FE
Clusters are more likely to lead to large latency change. Unless the client is
equidistant between the old and new FE Clusters, a large change in FE distance
suggests a non-optimal choice of a FE.

We measure distance between the switching pair of a prefix-FE Cluster map-
ping change. We randomly choose an observation time t, then find the switching
pair of the next mapping change (A,B) for each prefix after time t. We then plot
the CDF of distance between A and B over all prefixes. We see nearly identical
distributions after three trials and so report one case as representative.

Figure 2 shows the CDF of the distance between the switching pair for all
prefixes over one randomly chosen observation times for Google and Akamai.
While some prefixes switch between FE Clusters that are near each other (about
26–33% are within 100 km), many prefixes change between FE Clusters that are
far apart. More than 50% Google changes and 30% of Akamai changes move
between switching pairs more than 1000 km apart.

Long-distance remapping: akamai When measured at a random time We
see that many prefixes change between FE Clusters that are distant from each
other. We next consider this question for every time over a month. Figure 3 plots
the distribution of the maximum distance of switching pairs seen by every prefix
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in one month. Many prefixes experience long-distance changes. For example,
50% of prefixes switch between Google FE Clusters that are at least 1000 km
apart, and 60-70% experience such a switch for Akamai servers. Figure 4 shows
the distribution of the number of times prefixes experience large distance switch-
ing pairs. We see that a few Google prefixes (9%) and many Akamai prefixes
(40-50%) move large distances (1000 km) more than 10 times in a single month,
suggesting it’s not rare for these long distance re-mappings to happen. In § 4.4
we explore reasons why these changes may occur.

4.3 Effects of Mapping Changes on Users
To understand how changes to prefix-FE Cluster mappings affect users, we

consider when mapping changes affects (or does not affect) user latency.

Large Distance Leads to Larger Latency While § 4.2 showed that users are
sometimes mapped to FE Clusters in very different places, it does not directly
measure performance. While a prefix equidistant between two FE Clusters may



see similar performance from both, in most cases we expect that a prefix that is
redirected to a very different place will see different user-visible performance.

Here we study measurements taken from 192 prefixes hosting PlanetLab sites
since evaluating user performance requires measurements taken from inside each
prefix. Although these sites are only a small subset, we verified that they gener-
ally are representative of our measurements with 32,871 prefixes [10].

We assess user performance by measuring network latency and application
performance. We measure network and application latencies every DNS TTL,
and also immediately after we observe a prefix p has changed its mapping from
FE Cluster A to B (prior work measured latency [25,27], but not around mapping
changes). We measure network latency with ICMP echo request (ping), observ-
ing RTT p,A and RTT p,B . We measure application latency by fetching a web
page to observe PFT p,A and PFT p,B . To avoid noise in individual observations,
each observation uses two pings and one page fetch, and analysis uses the second
smallest of the 10 most recent observations. For Google we fetch a 75 kB web page
corresponding to a search for “USA” (http://www.google.com/search?q=USA). For
Akamai we fetch the 9.5 kB home page of Apple (http://www.apple.com). We
then evaluate the absolute value of the difference of these metrics: RTT δ

p,A,B =

|RTT p,A−RTT p,B | and PFT δ
p,A,B = |PFT p,A−PFT p,B |. We use absolute value

to judge overall changes, since data shows that at steady state, mapping changes
generally alternate between nearer to further FE Clusters.

For each prefix, we evaluate all mapping changes over the entire measurement
period, giving a set of observations of many RTT δ

p,A,B and PFT δ
p,A,B . Since

changes are generally symmetric, we merge the (A,B) and (B,A) directions
and take the median value of all observations to get RTTmδ

p,A,B and PFTmδ
p,A,B .

Finally, to understand if large distance switches affect performance, we divide
observations into distant switches, where A and B are 1000 km apart or more,
and near switches where they are less than 1000 km. We then plot the CDF of
RTTmδ and PFTmδ for each group.

Figure 6 shows results for Google and Akamai. We first see that the switches
between distant FE Clusters (the wider, right-most lines) show much greater
performance changes than switches between nearby ones (the thinner, left lines).
For Google, near switches show smaller performance changes (RTTmδ < 50 ms
and PFTmδ < 150 ms), while for distant switches group, more than 40% have
changes more than twice that (RTTmδ > 100 ms and PFTmδ > 400 ms). The
results of Akamai are similar, with only 2% of near switches showing RTTmδ >
100 ms, while the number is 28% for distant switches.

To summarize, prefixes that switch between FE Clusters that are far apart
tend to also observe large network and page-fetch latency changes.

How Long Do Prefixes Stay On Non-Optimal FE Clusters? Fortunately,
we next show that switches that increase user latency are usually brief for most
prefixes. We analyze our PlanetLab data to see what fraction of time user pre-
fixes spend in a mapping that has large latency (for this subset of data). We
focus on distant switching pairs, those with distance larger than 1000 km, and
of these, those with long differences in page-fetch times (PFTmδ > 100 ms). The

http://www.google.com/search?q=USA
http://www.apple.com
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Fig. 6: Prefix-FE Cluster latency changes after a mapping change, measured by
RTT (dashes) and page fetch time (solid). Left line are near switches, right line
are distant switches. (Dataset: PlanetLab-DNS-TTL)

resulting subset are all prefixes with large distance switches that raise application
latency. Finally, we look at how long each prefix remained at the larger-latency
FE Cluster, computing the fraction of observations the prefix spent there.

Figure 5 shows the CDF of fraction of time user prefixes spend on FE Clusters
with large latency (where page-fetch time is 100 ms worse than in the prior
mapping). Most of these FE Clusters are used only briefly (97% of Google and
93% of Akamai prefixes spend less than 5% of their time at FE Clusters with
high application latency). But the tail is long, with 2% of Google and 5% of
Akamai prefixes spending more than 60% of time on distant FE Clusters and
seeing higher application latencies, even though lower-latency FE Clusters exist.

4.4 Reasons for Mapping Changes

We have shown that mapping changes are common. We next evaluate why
they occur. Although we cannot categorize every change, we see three general
reasons: FE Clusters drain and restore (that is, temporarily shut down), load
balancing, user-to-FE Clusters mapping reconfiguration. We cannot completely
separate these categories without inside knowledge of each CDN. However, our
external observations provide some evidence of each.

FE Clusters Drain and Restoration CDN sometimes drain some of their
FE Clusters, assigning no user prefixes to them, in order to, for example, perform
maintenance or troubleshoot problems. For example, Facebook recently drained
an entire datacenter as part of an infrastructure stress test [30]. As an example
drain event, Figure 7 shows the number of active FE Clusters in Google over
our Google-15min-EDNS dataset. We see a large drop around April 23rd (from
900 to 60 FE Clusters). Examination of the clusters before and after the drop
shows that Google stopped directing clients to all FE Clusters not in Google
ASes (the off-net FE Clusters). They restored broader service, then shut off-net
FE Clusters again on April 28th.
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We checked if these drains biased our previous observations (§ 4.2 and § 4.3).
To do so, we re-examined the distance user prefixes switched with and without
these days where all off-net FE Clusters drained. We confirmed that overall
changes are small, meaning regular changes in mapping dominate our results.

Load Balancing We observe two patterns of behavior that we believe are due to
load-balancing of user prefixes across multiple FE Clusters. First, we sometimes
see some prefixes (about 10% for Google and 30% for Akamai) switch between
two FE Clusters quite frequently (on average every hour). We sample 10 prefixes
from each of these groups, and for each prefix, both FE Clusters they switched
between are close to each other (within 200 km). This behavior may indicate
that the CDN is spreading the load between FE Clusters at two different PoPs.
Second, we see that a few Google FE Clusters (about 10 of 900) display diurnal
patterns (as seen in spectral analysis [21]), suggesting some load balancing due
to changes in diurnal traffic patterns.

Reconfiguration of User-to-FE Clusters Mapping Both Google and Aka-
mai strive to optimize performance for users by associating prefixes with nearby
FE Clusters [7, 18]. Long-term shifts in routing, user population, and FE Clus-
ter deployments may shift this mapping as the CDN re-optimizes. In early data
(Google-15min-early dataset), we saw that Google would occasionally shift one-
third of user prefixes at the same time [31]. These bulk shifts have diminished
in recent observations of Google and never appeared in Akamai, but both CDNs
currently have a few percent of user prefixes that have stable mappings for weeks.

Changes also happen at short timescales—Facebook reconfigures their map-
ping over the course of a day due to changes in observed client latency [16].
We know that Google and Akamai also have short-term changes, but we do not
know if they are responses to changes in user latency or responses to changes
due to their CDN infrastructure, such as load balancing.

Unknown We also observe some mapping changes that are not explained by
the above reasons. For example, we see Google sometimes map prefixes to very
distant Google FE Clusters (across continents) for a single observation.



Google Akamai-Huff
source non-domestic non-domestic
country % 1st 2nd 3rd % 1st 2nd 3rd
us (United States) 11% be (4%) nl (4%) de (3%) 98% ca (38%) gb (27%) fr (27%)
kr (S. Korea) 97% jp (58%) us (19%) cn (18%) 99% tw (99%) jp (6%) nl (3%)
ru (Russia) 99% us (35%) be (6%) nl (5%) 96% se (74%) no (43%) de (40)
jp (Japan) 55% us (30%) nl (9%) be (7%) 100% cn (92%) us (67%) vn (9%)
br (Brazil) 48% nl (18%) be (17%) us (14%) 83% us (78%) cl (53%) ar (35%)
tw (Taiwan) 45% us (24%) be (9%) nl (9%) 99% cn (74%) us (72%) vn (48%)
cn (China) 51% us (27%) nl (11%) be (11%) 99% jp (93%) us (89%) gb (67%)
it (Italy) 60% us (40%) de (19%) fr (5%) – – – –
gb (U. Kingdom) 54% us (40%) nl (19%) be (8%) – – – –
au (Australia) 52% us (24%) nl (18%) be (11%) – – – –
hk (Hong Kong) – – – – 90% cn (88%) jp (25%) vn (12%)
tr (Turkey) – – – – 91% it (82%) se (46%) de (23%)
fr (France) – – – – 99% pl (69%) gb (57%) es (56%)

Table 3: Top 10 source countries (with ISO country codes) and their percentage
of prefixes that had been mapped to FE Clusters in other countries, and the to
three non-domestic countries serving them. Datasets: Google-15min-EDNS and
Akamai-Huff-15min-ODNS

4.5 Geographic Footprint Seen by User Prefixes
Prefix-FE Cluster mapping changes across long distances, suggesting that

users may see FE Clusters in different countries.2 For some users, traffic leaving
a given country may raise concerns about privacy or legal jurisdiction. We next
show that some prefixes in many countries are often mapped abroad.

First, we assess how many countries each prefix is mapped to over the course
of a month in Figure 8. We see that more than half of prefixes are mapped to
different countries over time (50% for Google, and 60–70% for Akamai). It is
common for a user to be served from multiple countries. We caution that this
result reflects two biases in our data: first, our prefix selection under-representing
prefixes that are served directly from the provider, as described in § 3.1. Second,
because of cluster drain (§ 4.4), we expect many prefixes to shift from off-net
FE Clusters, present in many countries, to on-net FE Clusters that operate in
only a few countries.

We next consider from where prefixes are served. For each service we select
the 10 countries that originate the most user prefixes, then identify from where
they are served. (We exclude prefixes that are never served domestically on the
assumption that they have no local option or that our geolocation is wrong.)
For each country we consider two questions: what portion of prefixes leave the
country? Where does their traffic go?

Table 3 shows the results for Google and Akamai. (The top countries differ
because the CDNs are different.) For each country, the first column shows how
many of that country’s prefixes that are sometimes mapped outside its borders.
The following three columns show which other countries most often provide
service. For Akamai, we show only Akamai-Huff data here for space; we show
Akamai-Apple data in [10] and summarize any differences here.

We see that all prefixes but U.S.-ones have many non-domestic mappings—
around 50% of user prefixes for Google and more than 90% for Akamai. We see

2 We use the term country generically, sometimes considering smaller or larger regions.



that Google often serves from the U.S., Belgium and Netherlands, perhaps those
countreis have good connectivity and host Google datacenters [22]. For Akamai,
we see that U.S. FE Clusters serve prefixes from other countries, perhaps because
of good U.S. connectivity. Akamai-Huff selection (and also Akamai-Apple) shows
a stronger geographic locality than Google, with French and Turkish prefixes
remaining in Europe and Hong Kong prefixes in Asia. Surprisingly, most Chinese
prefixes are sent abroad in both Akamai datasets.

Both Google and Akamai often map prefixes outside their originating country.
Countries that have expressed privacy concerns, such as Brazil [8], or regions with
strict privacy laws, such as the European Union, may find traffic leaving their
legal jurisdiction weakens their ability to implement some policies. For example,
Brazil’s exact set of foreign countries varies depending on CDN or service, but in
all cases their prefixes are served outside Brazil. In other cases, prefixes in some
countries find services in others that have strict limits on domestic handling of
some topics. Examples include South Korea and Japan receiving service from
China (with limits on Chinese politics), and in Akamai-Apple data where Brazil
served from Germany (with limits on Nazi politics). While such issues may
not be a concern for Apple or Huffingtonpost’s home page, it may be for other
services using these CDNs.

5 Related Work
Prior work compared the performance of CDN-selected front-end servers and

other servers of the same CDN [17, 20, 25, 27]. Su et al. use Akamai’s choice of
server location to influence their selection to leverage Akamai’s network measure-
ments [25]. Triukose et al. compare the page download performance difference
between Akamai selected server with 80 other randomly selected Akamai servers
to study if CDNs enhance performance [27]. Krishnamurthy et al. study CDN
DNS load balancing performance by using two dozen clients to detect DNS load
balancing every 30 minutes and performing file download when observing CDN
server changes [17]. Otto et al. compare HTTP latency between CDN servers
returned by different DNS servers to measure the impact of using remote DNS
on CDN performance [20]. Our work differs from this prior work by exploring
how CDNs change their prefix-FE Cluster mappings over time, and how these
changes affect network and application latency for users.

The Ono system uses large set of clients (120,000) to study affinity between
users and CDN servers [5]. They use this information to help peer selection in
peer-to-peer networks to reduce cross-ISP traffic. Our work also uses a large set
of client prefixes to assess user-to-CDN affinity, but we focus on understanding
the properties of prefix-FE Cluster mapping changes and their potential impact
on both users and previous CDN studies.

Huang et al. studied the cache dynamics from users to Facebook Edge Caches
as viewed from within Facebook [16]. Facebook optimizes to balance latency,
server load, and peering cost, sometimes directed users to caches that are not
physically nearest. Our paper complement theirs by looking from the user side.

Torres et al. studied mechanism and policy of user to content server mapping
of Youtube using video flow data collect from 5 distinct locations over a week [26].



They Geolocate Youtube datacenters using CBG and find that non-negligible
fraction of traffic are provided by non-preferred datacenter. They find that the
reasons of non-preferred datacenter access include load balancing, DNS server
variations, limited availability of rarely accessed videos and alleviating hot-spot
due to popular videos. Our work differs from theirs by focusing on the effects of
user to FE Cluster mapping changes on users, while they focus on understanding
the mapping dynamics themselves. We also have a broader coverage on user
prefixes and CDN FE Clusters while theirs is deeper from a few vantage points.

Cases et al. [4] and Finamore et al. [13] each study associations between
web services, hosting organizations, content-server IPs, and service provisioning.
They use min-RTT estimates to cluster IPs to datacenters. They use measure-
ments from one ISP and observe user/datacenter switches suggesting load bal-
ancing. We also cluster IPs to datacenters, but with many vantage points [2].
Both their work and ours identifies load balancing and mapping changes, but
they apply their work to provisioning while we study its effects on end-users.

Fiadino et al. use a month of HTTP flow data collected from a major Eu-
ropean ISP to study the traffic anomaly caused by cache selection dynamics
and the impacts on both ISP and users [11, 12]. They found Facebook traffic
anomaly by identify large amount of flow shift from Akamai to other hosting or-
ganization of Facebook. They report the anomaly may increase the transit cost
of the users’ ISP. They also found Youtube traffic anomaly that shift traffic to
different set of /24 subnets of Youtube and found that the shift affect user ex-
perienced throughput. Our work differs from them in following ways. First, the
methodologies are quite different. They detect synchronized mapping changes
for particular web services by watching for large shifts in flow volumes, while we
directly measure target FE Clusters with EDNS-client-subnet and direct DNS
queries. Their approach is ideal for studying a single ISP when traffic is avail-
able, but the second difference is that our approach allows us to provide much
broader coverage. We examine 32k user prefixes from hundreds of countries and
ASes, while their study focuses only on users of a single ISP. Last, we study how
often users traffic changes countries.

6 Conclusions
This work provides the first evaluation of the dynamics of CDN redirection

of user’s network prefixes to Front-End Clusters from a large range of prefixes.
We gather new data about Google and Akamai, and we find that some prefixes
switch between FE Clusters that are long distances apart, often seeing large
changes in latency and application-level performance. While most of prefixes
only stay shortly on FE Clusters that have large application level latency, a
few percent of prefixes are mapped to those FE Clusters much of the time. We
also find that many user prefixes are directed to multiple countries in a month,
complicating questions of jurisdiction.
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