
HAL Id: hal-01411159
https://hal.science/hal-01411159

Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Overview of YAM++-(not) Yet Another Matcher for
ontology alignment task
Duy Hoa Ngo, Zohra Bellahsene

To cite this version:
Duy Hoa Ngo, Zohra Bellahsene. Overview of YAM++-(not) Yet Another Matcher for ontology
alignment task. Journal of Web Semantics, 2016, 41, pp.30-49. �10.1016/j.websem.2016.09.002�. �hal-
01411159�

https://hal.science/hal-01411159
https://hal.archives-ouvertes.fr

Overview of YAM++ - (not) Yet Another Matcher for ontology alignment task

DuyHoa Ngo, Zohra Bellahsene

University Montpellier, LIRMM
161 rue Ada, 34095, Montpellier, France

Abstract

Several challenges to the field of ontology matching have been outlined in recent research. The selection of the appro-
priate similarity measures as well as the configuration tuning of their combination are known as fundamental issues the
community should deal with. Verifying the semantic coherence of the discovered alignment is also known as a crucial
task. As the challenging issues are both in basic matching techniques and in their combination, our approach is aimed
to provide improvement at the basic matcher level and also at the level of framework. Matching large scale ontologies
is currently one of the most challenging issues in ontology matching field. The main reason is that large ontologies are
highly heterogeneous both at terminological and conceptual levels. Furthermore, matching very large ontologies entails
exploring a very large searching space to discover correspondences. It may also require a huge amount of main memory
to maintain the temporary results at each computational step. These factors strongly impact the effectiveness and
efficiency of any ontology matching tool. To overcome these issues, we have developed a disk-based ontology matching
approach. The underlying idea of our approach is that the complexity and therefore the cost of the matching algorithms
are reduced thanks to the indexing data structures by avoiding exhaustive pair-wise comparisons. Indeed, we extensively
used indexing techniques in many places. For example, we defined a bitmap encoding the structural information of an
ontology. This indexing structure will be exploited for accelerating similarity propagation. Moreover, our approach uses
a disk-based mechanism to store temporary data. This allows to perform any ontology matching task on a simple PC
or laptop instead of a powerful server.In this paper, we describe YAM++, an ontology matching tool, aimed at solving
these issues. We evaluated the efficiency of YAM++ in various OAEI 2012 and OAEI 2013 tracks. YAM++ was one of
the best ontology matching systems in terms of F-measure. Most notably, the current version of YAM++ has passed all
scalability and large scale ontology matching tests and obtained high matching quality results.

Keywords: Ontology Matching, Similarity Measure, Matcher Combination, Similarity Propagation, Mapping
Selection, Large Scale Ontology Matching.

1. Introduction

In recent years, ontologies have attracted a lot of at-
tention in Computer Science, especially in the Semantic
Web field. They serve as explicit conceptual knowledge
models and provide the semantic vocabulary that make
domain knowledge available to be exchanged and inter-
preted among information systems. Hence, they open new
opportunities for developing a new line of semantic appli-
cations such as semantic search [28, 51], semantic portal
[82, 50, 44], semantic information integration [12, 71, 3],
intelligent advisory systems [74, 4], semantic middleware
[43, 7], semantic software engineering [13], etc. However,
one of the most difficult issues is how to deal with het-
erogeneity of ontologies [41, 29]. Due to the decentralized
nature of the semantic web, an explosion in the number of
ontologies is expected. Many of them may describe simi-
lar domains, but they are very different because they have
been designed and developed independently by different

Email addresses: elendh@nus.edu.sg (DuyHoa Ngo),
bella@lirmm.fr (Zohra Bellahsene)

ontology engineers following diverse modeling principles
and patterns.

For example, within a collection of ontologies describ-
ing the domain of organizing conferences [21]. People at-
tending to the conference can be conceptualized with dif-
ferent names such as conference Participant, attendee,
participant, delegate, listener1. The heterogeneity of
ontologies mainly causes problems of variation in meaning
or ambiguity in entity interpretation and, consequently, it
prevents information systems from sharing their own do-
main knowledge to the community. Therefore, without
knowing the semantic mappings between entities of on-
tologies, information systems cannot perform interaction,
communication and collaboration with each other.

According to [24], ontology matching is a key solu-
tion to the semantic heterogeneity problem. It discov-
ers correspondences between semantically related entities
of ontologies. Ontology matching can be done either by
hand or by using (semi) automatic tools. Discovering
manually mappings is tedious, error-prone, and imprac-

1(in conference dataset: confOf.owl, ekaw.owl, edas.owl,
iasted.owl, sigkdd.owl)

Preprint submitted to Elsevier May 24, 2016

*Manuscript
Click here to view linked References

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

http://ees.elsevier.com/jws/viewRCResults.aspx?pdf=1&docID=2557&rev=0&fileID=53695&msid={BBE117D2-5B68-4858-BC98-0F8842F2FC14}
jenard
Rectangle

jenard
Rectangle

tical due to the number, size and heterogeneity of on-
tologies. Hence, the development of fully or semi au-
tomatic ontology matching tools becomes crucial to the
success of the semantic information systems and applica-
tions. In the last decade, through the annual campaign
OAEI2, many ontology matching systems/tools have been
proposed. These state-of-the-art approaches have made
a significant progress in the ontology matching field, but
none of them gained a clear success in terms of matching
quality for all the matching scenarios [23]. In [25, 79, 73,
52], challenging issues in ontology matching have been de-
scribed in detail. Among these challenges, selecting the
appropriate similarity measures as well as tuning the con-
figuration of their combination are the toughest fundamen-
tal problems of all matching systems. Matching scenarios
may require to combine the outcome of the used similarity
measures in a different way. Furthermore, the difficulty of
the problem grows with the size of the ontologies. Indeed,
matching large scale ontologies is one of the most difficult
problems in ontology matching field. In particular, the
size of ontologies being matched strongly impacts the per-
formance, i.e., effectiveness and efficiency of any ontology
matching system. The main reasons are: (i) large ontolo-
gies usually lead to a high conceptual heterogeneity and
(ii) The complexity of matching is usually proportional to
the size of the input ontologies. Furthermore, discovery
mappings in a huge space is very time consuming espe-
cially if multiple matchers need to be evaluated and com-
bined. Thus, the efficiency of the matching system will be
degraded.

To deal with large-scale ontology matching, several tech-
niques have been proposed. The most promising approaches
are: filtering-based methods, partitioning methods and
background-based ones. The main idea behind these tech-
niques of filtering methods is to reduce the search space
by heuristically eliminating less promising candidate map-
pings. For example, in Eff2Match [8], the heuristic to
select candidate mappings for each entity in the source
ontology is taken by performing the top-K entities algo-
rithm in the target ontology according to their context
(Virtual Document) similarity. More sophisticated heuris-
tics strategies based on different extracted features such
as label, hierarchy, neighbors, etc. are applied in each it-
eration to select the promising mappings [16], ServOMap
[14].

While in partitioning-based methods, two large ontolo-
gies are firstly divided into sub-ontologies according to
their structural information. Then the alignment process
is performed between entities of pairs of sub-ontologies. In
order to avoid exhaustive pair-wise comparisons, only the
high relevant pairs of sub-ontologies will be passed to the
matching process. These methods can be found in Falcon-
AO [33] and COMA++ [2].

A sub-class of this category is known as anchor-based
partitioning methods. These methods are a modified ver-
sion of the algorithms above, which partition to-be-matched
ontologies are done according to the set of anchors. In

2http://oaei.ontologymatching.org/

short, an anchor is a pair of entities mapping determined
by a similarity measure. A fragment or sub-ontology is
constructed by collecting neighbors entities of the chosen
anchors. Then, the alignment process will be performed
for each pair of related sub-ontologies. These methods can
be found in Anchor-Prompt [70], AnchorFlood [31], Lily
[84], TaxoMap [30].

The underlying idea of our approach is that the annota-
tion, the structural and the contextual information of en-
tities are indexed in order to improve the whole matching
process both in terms of matching quality and time perfor-
mance. Unlike those of related work, our filtering methods
make use of the annotation-based indexes in order to ac-
celerate the filtering process. Furthermore, the structural
indexes are also exploited to check the coherence of the
resulting mappings. Indeed, in addition, verifying the se-
mantic coherence of the discovered alignment is known as a
challenging issue in large scale ontology matching because
almost all reasoning systems fail or cannot completely clas-
sify large ontologies. We have implemented a new inconsis-
tency removing algorithm based on Clarkson algorithm for
the weighted minimum vertex cover problem. The details
of this contribution can be found in [62]. In this paper,
we highlight the main contributions and techniques that
have been implemented in YAM++ and that have made
it one of the best of ontology matching tools. These con-
tributions are the following:

• Effective and efficient filtering methods to deal with large
scale ontology matching.

• A heuristic-based label similarity measure which inte-
grates a strict heuristic filter with the label similarity
measure, which is aimed at detecting of informative words.

• A machine learning-based method to combine termino-
logical similarity measures without the effort of manual
setting.

• An information retrieval-based similarity measure to im-
prove the matching quality and to deal with terminologi-
cal heterogeneity. This new similarity measure takes into
account not only syntactic similarity but also information
content of words. This measure constitutes an alterna-
tive to machine learning method when training data are
not available or in large scale setting.

• A bitmap encoding the structural information of an on-
tology that is exploited for accelerating the similarity
propagation. This method is stable and reliable because
it exploits and uses all the structural information of an
ontology for discovering mappings.

• A dynamic weighted sum method to combine the map-
pings resulting from the element matcher and structure
matcher. The benefit is that it automatically assigns
weights to each matcher for a given matching scenario.
Moreover, it also automatically determines the filter’s
threshold value to produce the final mappings.

• A fast semantic filtering method to detect the inconsis-
tent mappings when matching large ontologies.

• The experimental results demonstrate that YAM++ is
both effective in terms of quality of the alignments, and
efficient in terms of time performance and scalability.

YAM++ was one of the very best system in OAEI
competitions from 2011 to 2013. Particularly, thanks to

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

the contributions on dealing with terminological hetero-
geneity (i.e., machine learning, information retrieval meth-
ods), structural heterogeneity (i.e., propagation method),
YAM++ achieved the best results in the series of Systematic
Benchmark tracks in years 2012 and 2013; in the Conference
track in years 2011, 2011.5, 2012 and 2013; especially, in
the multilingual Multifarm tracks in years 2011.5, 2012
and 2013. Additionally, thanks to the fast semantic index-
ing and the inconsistency filtering method that has been
devoted to large scale ontologies matching, YAM++ was
one of the best systems on the Anatomy track, Library
track and Large Biomedical Ontologies tracks in years
2012 and 2013.

The rest of the paper is organized as follows:
Section 2 provides the basic notions and definitions used
in this paper as well as the evolution and the architecture
of YAM++. In Section 3, we present our method for ex-
tracting and indexing the annotation, the structural and
the contextual information of entities within an ontology
in order to improve the whole matching process.Then, we
present our approach for candidates filtering in Section 4.
Section 5 describes our approach to deal with the problem
of terminological heterogeneity. While Section 6 is devoted
to structural heterogeneity. In Section 7, we will present
our method to combine the mapping results obtained from
the element level with the ones obtained from the struc-
ture level. Section 8 provides an overview of our approach
for semantic coherence verification. The experiments and
results over OAEI2012 datasets are described in Section
9. Next, Section 10 contains an overview of related work.
Finally, the conclusion and future work are discussed in
Section 11.

2. Overview of our approach

2.1. Background

Firstly, we present the ontology matching problem and
the main related notions used in this paper.

Ontology matching is the process of discovering cor-
respondences (mappings) between entities belonging to dif-
ferent ontologies. Whereas, a correspondence or a map-
ping m is defined as a four-tuple of the form: m =
〈es, et, r, k〉 where: es and et are entities in source Os

and target Ot ontologies respectively, r is a relation (e.g.,
equivalent, subsume) and k ∈ [0, 1] represents the degree
of confidence of this relation[24].

An alignment is a set of correspondences between two
or more (in case of multiple matching) ontologies.

A matcher is a matching algorithm, which is aimed
to discover correspondences between ontologies.

An ontological entity can be a class, a property or
a data instance. It is identified by an Internationalized
Resource Identifiers(IRI) and may be annotated by some
human reading labels. In YAM++, the suffix identifier
and annotated labels are commonly called entity’s labels.
Additionally, YAM++ is an ontology matching tool on
schema level, therefore, it only focuses on discovering cor-
respondences between classes or between properties.

Figure 1: General Architecture of YAM++

2.2. YAM++ architecture

The evolution of YAM++ can be seen through its pub-
lications since its first time participation to the OAEI 2011
campaign. However, the previous publications either de-
scribe a specific technique (e.g., machine learning approach
in [69], information retrieval method in [66], structural
method in [68]) or simply focus on experimental evalua-
tion in OAEI competition (e.g., [65, 60, 61]). This paper
is compiling previous contributions, as well as some exten-
sions in detail to provide a whole picture of YAM++ and
the techniques that have been implemented. YAM++ was
one of the very best system in OAEI competitions from
2011 to 2013.

Those contributions are reflected through the main com-
ponents of YAM++ as shown in Figure 1. The input to
YAM++ is source and target ontologies, which are en-
coded in RDFS3 or OWL4 languages. Optionally, back-
ground knowledge such as the lexical resource Word-
Net5 or training data for the future use in machine learning
method can be provided by the user.

Having two ontologies as the input, YAM++ works
as follows. First, the input ontologies are loaded into
the main memory within the loading & pre-processing
component. For each input ontology, the annotation and
structure information of all the entities are extracted. In
addition, if the annotations are not in English, a multi-
lingual translator (Microsoft Bing Translator API6) is
used to translate the annotation into English. Next, the
candidate filtering module aims to reduce the search
space. In particular, it applies some heuristic filter to se-
lect the most potential candidate mappings (see Section
sec:Filtering). The similarity of candidate mappings is
computed at the two consecutive levels, i.e., element and
structure. The aim of the element level module is to
discover as many as possible high accuracy mappings by
analyzing elements in isolation and ignoring (at this stage)
their relations with others. This module consists of two
sub-modules: terminological matcher and extensional

3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/TR/owl2-syntax/
5http://WordNet.princeton.edu/
6http://www.bing.com/translator

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Figure 2: Motivating example

matcher. The Terminological matcher exploits the anno-
tation information of entities to compute similarity scores,
whereas, the Extensional matcher exploits the informa-
tion from the data instances accompanying the ontologies.
The mappings discovered by the element level matcher
are passed to the structure level matcher in order to
discover new mappings by analyzing the position of the
entities in the taxonomy of ontologies. The main intu-
ition of this part is that if two entities are similar, their
neighbors (in the same relations) might also be somehow
similar. In our current system, we have implemented a
popular graph-based technique to deal with ontologies -
similarity propagation in the structure level matcher
module (see Section 6 for more details). Next, the out-
puts of the element level and structure level matchers are
passed to the mapping selection module, which will be
described in Section 7. Then, the discovered mappings are
passed to the semantic verification in order to detect
and remove the inconsistent ones.

For the purpose of illustration, we propose a simple
example of matching scenario which involves two faculty
ontologies shown in Figure 2. Here, the classes in the
two ontologies are represented by ovals in different colors.
The properties and relationships of classes are showed as
labeled arrows. Non-equivalent relations (e.g., subsump-
tion) can be derived from the discovered equivalent rela-
tions through description logic reasoners with external re-
sources, such as WordNet, domain ontologies or text cor-
pora. It is another challenge in ontology matching task
thus requires different techniques using in equivalent rela-
tions discovery [32, 26, 81]. In the scope of our research,
YAM++ focuses in discovering only equivalent mappings
between entities (i.e., classes and properties).

In order to cope with large scale ontology matching,
further adaptations have been applied. Particularly, in-
side the loading & pre-processing component, YAM++
indexes ontological information of concepts such as anno-
tation, structure and context for fast and efficiently ac-
cess the needed information. In order to save the work-
ing memory (RAM) for large scale ontology matching,
all three indexing folders, i.e., Annotation Indexing,
Structure Indexing and Context Indexing are stored
in disk and located in operating file system. The indexes

will be loaded from disk to main memory when they are
needed for some steps in the algorithm and they will be
released from main memory as they have done their jobs.
Thus, we call the current YAM++ version a disk-based
ontology matching system. Additionally, due to high com-
putational cost in detection of inconsistency in the dis-
covered alignment between large scale ontologies, in the
semantic verification, instead of using powerful onto-
logical reasoner, YAM++ has been adopted a a greedy
heuristic strategy accompanied with a bank of conflict pat-
terns to refine the resulted alignment. Finally, it is worthy
to noticeable that YAM++ is able to work in small and
large scale ontology according to the size of the input on-
tologies. Indeed, If the size is higher than 1000, it switches
to large scale regime.

3. Indexing Ontologies

In this section, we present the way that the annotation,
the structural and the contextual information of entities
within an ontology will be extracted and indexed in order
to improve the whole matching process. Here, the anno-
tation information reflects the textual description of an
individual entity for human reading. While the structural
information shows the semantic relationships between an
entity and the other entities in the ontology. Finally, the
contextual information reflects the textual context that is
closely related to the entity’s terms.

3.1. Annotation Indexing

The aim of annotation indexing is to filter candidate
mappings by alike labels of entities and to compute simi-
larity scores between them. In our approach, the first aim
can be quickly achieved by label and sub-label indexing;
whereas, the second one, which requires the weight value of
each term appearing in the labels [67], can be done by term
indexing. Let us illustrate the indexing procedure through
the following example “http://human.owl#NCI C32696”
as shown in Fig. 3.

Figure 3: Example of annotation indexing

This concept has a label “Gray Matter of Spinal Cord”.
At the step 1, the normalization of a label consists in to-
kenizing it into tokens, removing stop-words, stemming
words and sorting them in alphabet order. It guarantees
that there is a unique normalization of a given label. As
shown in Fig. 3, the normalization produces 4 terms such
as “cord”, “gray”, “matter” and “spinal”. At the step 2,

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

those terms are stored in a table with their number of oc-
currences. Each time a term appears, its counter increases
by 1. Once all entities have been indexed, the informa-
tion content of a word t appearing in a concept label of an
ontology is computed in the following manner.

IC(t) = log
|T |
|N |

, (1)

where, |T | is the total number of concepts in a given on-
tology and |N | is the number of labels containing the word
t. On this basis, a word is assigned a weight as follows:

weight(t) =
IC(t)

maxi=1..|T |{IC(ti)}
. (2)

Next, the term’s weight will replace its counter value in
the index table. It will be used in the similarity calcu-
lation between two labels of entities. At the step 3, we
use an inverted map to index labels and its sub-labels of
all the entities. Here, the key column includes unique la-
bels and sub-labels returned by the normalization process.
The value column is the ID of entities. In our approach,
a sub-label is generated by removing one word from the
normalized label. As it is shown in Fig. 3, a normalized
label and 4 sub-labels have been indexed for the concept
with ID “NCI C32696”.

3.2. Structure Indexing

In order to quickly access to the semantic information
of a given concept in the ontology, indexing ontological
structure is necessary. Each concept is assigned a topolog-
ical order and is encoded by a bitmap containing all infor-
mation of its ancestors and descendants. Let’s illustrate
the indexing process through a small ontology fragment
as shown in Fig. 4. This indexing structure is used in
two places: (i) in similarty propagation process and (ii) in
semantic verification.

Figure 4: Example of a bitmap encoding the structural information

Firstly, a topological sort is performed over all classes
of the given ontology. The topological order is {A, B,
D, C, E, F, G } shown in the first column of the matrix
in Fig. 4. For example, because the topological order
of class C is 4 we first set value 1 to the 4th bit of a
bitmap length 7. Next, by performing an upward transi-
tion through SuperClass relation and downward transi-
tion through SubClass relation for all concepts we obtain

the full matrix as shown in Fig. 4. Here, for a given class,
its ancestors are marked by bits 1 on the left side, whereas,
its descendants are bits 1 on the right side of its indexing
position.

It is noticeable that the bitmaps assigned to classes use
large storage space thus downgrade computational perfor-
mance. Moreover, they are very sparse due to the ances-
tors and descendants of a class constitutes only a small
subset of the whole classes in the ontology. Therefore, a
compressed bitmap is needed for saving space and improv-
ing computational performance. In YAM++, we have ap-
plied a compression technique based on the Word Aligned
Hybrid bitmap compression algorithm, which is the cur-
rently recognized as the most efficient one, mainly from
a computational perspective [85]. The detail of this tech-
nique is described in [10].

Thanks to the bitmap encoding table, the structural
relations of classes can be easily and quickly accessed. For
example, finding the lowest common ancestor (LCA) of
any two classes can be done by running logical AND op-
erator over their ancestors that will return the class whose
topological order corresponds to the index of the last bit
1 in the result. In this example above, ancestors(C) =
1001000 and ancestors(D) = 1110000.
Because 1001000 & 1110000 = 1000000 has the right
most bit 1 at the first position, thus, the lowest common
ancestor of classes C and D is class A.

On the other hand, the disjoint relation of any two
classes can be easily checked as follows:

disjoint(X,Y)← ∃(A,B) | A ∈ ancestors(X) ∨
B ∈ ancestors(Y) ∨ disjoint(A,B)

Similarly, to list all pairs of disjoint classes in an ontology,
the following rule can be applied:

disjoint(X,Y)→ disjoint(A,B) |
∀A ∈ descendants(X), ∀B ∈ descendant(Y)

In our approach, disjoint classes of a given class are also
encoded in a bitmap, in which positions of bit 1 indi-
cate their topological order. All the bitmap encoding sub-
class, superclass and disjoint information are stored in a
structure index folder. Based on the structure-based in-
dex strucInd of a given ontology, the following supporting
functions have been defined: GetAncestors(c, strucInd),
GetDescendants(c, strucInd), GetDisjoints(c, strucInd)
returns all ancestors, descendants (including c) and con-
cepts that are disjoint with the concept c respectively.

3.3. Context Indexing

The aim of the context indexing is to provide a fast and
reliable search method to discover similar concepts among
various ontologies by exploiting the concepts’ description.
Our heuristic is that “The vocabularies describing the con-
text of alike concepts in the same domain are highly sim-
ilar”. In our approach, for each ontology, a context index
is built as a vector space model (VSP), which is an alge-
braic model for representing text documents as vectors of
index terms. Here, contextual information of a concept is
represented through 3 documents such as:

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

• Individual document is a string consisting of anno-
tations (i.e., labels, synonyms, comments of a given
concept).

• Ancestor document is a string consisting of all indi-
vidual documents of the concept’s ancestor.

• Descendant document is a string consisting of all in-
dividual documents of the concept’s descendants.

Therefore, in our vector space model, each concept’ ID
is mapped to 3 fields corresponding to its 3 types of contex-
tual documents. Inside the vector space model, terms are
tokenized from documents, then indexed and assigned with
a real value determined by the TF-IDF weighting scheme.
Consequently, each document is transformed into a vector
of real values, thus enables to calculate similarity scores
between concepts.

4. Candidates filtering

The candidate filtering method is a very important
step for scalability. It contributes to reduce the search
space and consequently to decrease computational time
by eliminating the potential candidate mappings having
a low similarity score. In general, the filtering method
simply lists all candidates mapping, in which both of ele-
ments belong to the same ontological type such as concept
vs. concept, object property vs. object property, data
property vs. data property and data individual vs data
individual.

In large scale matching task, YAM++ filters only can-
didate mapping whose elements have highly similar labels.
Instead of implementing any string similarity measure,
YAM++ makes use of Hash function, which is a built-
in function of hashmap and hashset data structure. The
principle is, the same strings will return the same hash
values. Therefore, we can easily determine the overlapped
key set from the two label indexes of the source and target
input ontologies. From the common key set, we can fil-
ter out a collection of potential candidate mappings. The
output of this process is a filtering candidate two-column
table, in each of its row, the first column contains the ID
of a concept of the source ontology; whereas, the second
column contains a list of tuples consisting of the ID of a
concept of the target ontology and a score value indicating
how much the source and target concepts are similar. Let
us illustrate the filtering candidates for mouse, i.e., source
ontology and human, i.e., target ontology in Fig. 5.

Here, both the source and target label index have a
common key such as “cord matter spinal”, thus each pair
of concepts’ ID (i.e., MA 0000002 and NCI C32696) cor-
responding to those keys produces a candidate mapping.
Additionally, we assign a score value to each candidate
mapping as follows.

score = LabelSim(labels, labelt)×w(labels)×w(labelt)
(3)

where labels and labelt are labels of the source and tar-
get concepts respectively; function LabelSim is the label-
based similarity measure described in Section 5.2; the weight

Figure 5: An example of filtering by labels and sublabels

function w of a labeli among N labels described in concept
C is determined such as:

w(labeli) = ctype ×
|norm(labeli)|

|∪j=1:Nnorm(labelj)|
(4)

Here, |S| represents the size of S; norm(label) returns a
set of unique terms in the label after its normalization (i.e.,
tokenizing, stop-word removing and stemming) by norm
function. The ∪ function is a set union operator. The
coefficient ctype value is defined according to the position
of a label described in the concept as follows.

ctype =

{
1.0 when type is ID label

0.9 when type is synonym

The idea of assigning a weight to each label is important
due to the fact that the more different labels a concept has,
the more ambiguous each of its labels is. Consequently,
they have a lower weight. If a concept has only one label,
this label’s weight will be equal to 1.0. Moreover, we dis-
tinguish the meaning level of different types of labels by
assigning different coefficient ctype. Our heuristic is that
the similarity of two concepts’ labels is more potential than
similarity of their synonym labels. In the example above,
both concepts MA 0000002 and NCI C32696 have only one
label, the weight values of the both labels are 1.0. The sim-
ilarity value calculated by the two labels of those concepts
is equal to 1.0 (see example in Section 5.2). Therefore, the
final score assigned to this candidate mapping is 1.0.

5. Dealing with terminological heterogeneity at
element level

In this section, we present two approaches dealing with
terminological heterogeneity to discover entities having sim-
ilar labels. Firstly, in YAM++ version 2011, a machine
learning method is designed upon available training data
to combine different similarity measures. However, its per-
formance strongly depends on the training data, i.e., if the
training data are not available or not suitable, the match-
ing quality is poor. Therefore, a new information content-
based similarity measure was proposed to replace the ML
method in YAM++ version 2012 and later.

5.1. Combining terminological similarity measures
The high heterogeneity of ontologies leads to differ-

ent types of mismatches between their entities [80] there-
fore no single similarity measure can be efficient in all the

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

cases. For instance, a synonym measure using WordNet
dictionary can discover that two concepts Manager and
Director are a match. But it cannot work with con-
cepts Researcher and Reseacheur due to a typo in Re-
searcheur. In that case, a string-edit based similarity
measure is more useful because the labels have many char-
acters in common.

Intuitively, in order to deal with high terminological
heterogeneity, several terminological similarity measures
must be smartly combined in order to enhance the match-
ing quality. Therefore, we propose a machine learning-
based method to learn an intelligent combination from
different terminological similarity measures. Hence, dis-
covery of label matching can be transformed into a binary
classification task [63, 64]. The main benefit of this ap-
proach is that it is flexible and self-configuring during the
training process.

In order to demonstrate this idea, let’s see the following
example of using a decision tree learning model. For sim-
plicity, we choose only 3 similarity measures : Levenshtein
- a typical measure in string edit-based group; QGrams
representing a token-based similarity measure group; and
HybLinISUB [64]- a hybrid method combining token-based,
edit-based and dictionary-based similarity measures. Those
similarity measures are described in detail at [9, 47]. Of
course, in YAM++, many more similarity measures be-
longing to those groups can be selected.

Figure 6 shows a decision tree after learning. In this
example, a decision tree is a tree whose non-leaf nodes are
similarity measures and whose leaf nodes are represented
by a rounded rectangle shape with a value inside. This
value is either 1.0 or 0.0 indicating if there is a match or
not. At a non-leaf node, a similarity value of the to-be-
matched entities is computed by the similarity measure
stored in this node. The returned value is compared with
the condition values on outgoing edges from the current
node in order to decide which child node will be reached.
Here, all the condition values are determined automati-
cally by the algorithm of building the decision tree with
the given training data. The classification process will
start at the root node and iterates until a leaf node is
reached. Edges with the condition values are indexed by
numbers in pre-order traversal of the tree.

Instances Hyb. Lev. QGs CLS

Researcher|Reseacheur 0.00 0.91 0.80 ?

Teacher|Lecturer 0.77 0.37 0.21 ?

Manager|Director 1.00 0.13 0.10 ?

teach|teaching 1.00 0.63 0.59 ?
Table 1: A set of the unclassified data

Now, let us demonstrate how we use this decision tree
classification in our system by several examples in Table 1.
Here, we use Hyb., Lev., QGs and CLS as abbreviation of
HybLinISUB, Levenshtein, QGrams and CLASS attributes
respectively.

Let us see the feature values of the first instance, which
corresponds to the pair of entities Researcher and
Reseacheur from the source and target ontologies. From
the root of the decision tree, the similarity score for this

Figure 6: The trained decision tree classification

pair of entities returned by the HybLinISUB measure is
0.00, which is smaller than 0.891794. Here, 0.891794
is the condition value determined by the training process
at the root node. Therefore, the decision goes through
the first edge (HybLinISUB <= 0.891794). In the next
node, QGrams returns the similarity score of 0.80, which is
higher than the condition value 0.258065. Therefore, the
decision goes through the edge number 03. Similarly, this
score is higher than the condition value 0.645161 in the
next node, hence, the decision goes through the edge num-
ber 05. The next node is HybLinISUB, which returns the
similarity score lower than the condition value 0.576275.
Then, the decision goes through the edge number 06 to
the next node QGrams. Here, because the similarity score
is higher than the condition value 0.7, the decision goes
through the edge number 08 to the Levenshtein node.
The similarity score returned by Levenshtein measure is
0.91 therefore higher than the condition value 0.888889.
Then, the decision reaches the leaf with label 1.0 on the
edge number 10. It means that the entities Researcher

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

and Reseacheur are matched. To sum up, the edges on
the path of the decision for those two entities is: 01 → 03
→ 05 → 06 → 08 → 10 → leaf(1.0).

Similarly, we can apply the decision rules for the rest
of unclassified data as follows. The decision path for the
second instance in Table 1 is: 01 → 02 → leaf(0.0). It
means the two entities Teacher and Lecturer are not a
match. The decision paths for the third and fourth in-
stances on Table 1 are the same as: 12 → 13 → 15 → 16
→ leaf(1.0). These results mean that Manager matches
to Director and teach matches to teaching.

Source Target Score

Employee Employee 1.0
Manager Director 1.0
Researcher Researcheur 1.0
Subjects Topic 1.0
hasTitle title 1.0
teach teaching 1.0

Table 2: Mappings discovered at the element level

The full results obtained by using this decision tree are
shown in Table 2. It covers various matching results as
we expected from using different terminological matchers.
Broadly speaking, if we can provide an appropriate train-
ing data, the learned decision tree model, which is com-
bining different terminological matchers, can produce a
better matching results than the individual matchers [68].
However, in [66], we also showed that there exist other
non-trivial types of terminological heterogeneity that can-
not be resolved by terminological matchers. For example,
two properties hasID and identity were not found, but
we implicitly understand that they are matched because
ID is supposed to be an abbreviation of identity. We
will solve this issue by using structural similarity method
in Section 6 and Section 7.

5.2. Information retrieval-based method

Let us see an example within a collection of ontolo-
gies describing the domain of organizing conferences [21];
people attending to the conference can be conceptualized
with different names such as Conference Participant
and Attendee7. Those labels are highly syntactically dif-
ferent but they are semantically similar in the domain of
conference organization. In this example, to the best of
our knowledge, all terminological similarity measures will
produce low similarity values for those labels. It is be-
cause these measures are mainly based only on syntactic
comparison. In order to deal with this problem, we have
proposed an information content-based similarity measure.
In this section, we will present our approach to deal with
this kind of terminological heterogeneity.

In YAM++, we have designed an information retrieval
based similarity measure that uses information content of
each token to compute the similarity of compound labels
[75]. This idea lies on the following heuristic: if two en-
tities are the same, the shared tokens in their labels are

7(in ekaw.owl and edas.owl)

usually keywords and have higher information than the
others have. Our proposed measure was inspired by doc-
ument similarity widely used in the information retrieval
field. Basically, “stop words”, i.e., articles and preposi-
tions, are firstly removed from documents. The remaining
words are considered as informative words which convey
to the content of documents. Next, a weight is assigned
to each remaining word. Here, the weight value of a word
represents its relative importance in the document. Fi-
nally, a computation method (e.g., cosine similarity mea-
sure) is applied to calculate a similarity score between the
two given documents.

The main difference between labels comparison in the
ontology matching task and the generic document com-
parison in information retrieval is that the former is a
comparison of short strings, whereas, the latter is a com-
parison of long or even very long texts. Therefore, the
techniques used in comparison of documents cannot be
applied directly, but have to be adapted to the label com-
parison task. In particular, the weight assignment and
the similarity computation methods should be adapted to
the ontology matching context. There are many weight as-
signment approaches proposed in the information retrieval
literature, such as, among other, term frequency (TF), in-
verse document frequency (IDF), the combined TFIDF,
signal weighting [42]. A similar similarity method, which
is based on the matching of the specification components
of each entity class over synonym sets, semantic neighbor-
hood and features like functions and attributes has been
proposed in [75]. They are mainly based on statistical cal-
culation of the frequency of occurrence of each word in a
document and in a large corpus. Whereas, we consider
that the weight of a word depends on the ontology that
contains that word because the words used in one ontology
may be different from the words used in the other. Indeed,
because of their high heterogeneity, ontologies may slightly
overlap or may be totally disjoint with respect to terminol-
ogy. In our approach, a weight value is computed for each
word appearing in a given ontology. Particularly, we ap-
ply the Shannon’s information theory [78] to our weighting
method. Here, a normalization of the information content
of each word is considered as its weight. In this theory, the
information content of an object is inversely proportional
to the probability of occurrence of that object. The more
times an object occurs, the less information it conveys.
The information content of a word t is computed during
the annotation indexing step (section 3.1).

Let s1 and s2 be two labels and let Norm be the
function, which normalizes a string by tokenizing and re-
turns the set of composing terms of a label. Further, let
TokenSim be a similarity measure for two terms and let
Share(s1, s2) = {t′ ∈ Norm(s1) | ∃t′′ ∈ Norm(s2) ∧
TokenSim(t′, t′′) ≥ θ}. By following Tversky’s rule [83],
we give the following definition of the similarity of two
labels:

LabelSim(s1, s2) =
Commons1,s2 + Commons2,s1

Totals1 + Totals2
, (5)

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

where, for i, j ∈ {1, 2} and i 6= j, we have

Commonsi,sj =∑
t′∈Share(si,sj)

(
weight(t′)× max

t′′∈Norm(sj)
TokenSim(t′, t′′)

)
,

T otalsi =
∑

t∈Norm(si)

weight(t)

Let us illustrate it by an example:

s1 = ”Spinal cord grey matter”,

s2 = ”Gray matter of the Spinal Cord”,

→ Norm(s1) = {cord grey matter spinal},
→ Norm(s2) = {cord gray matter spinal},

T okenSim(grey, gray)
synonym

= 1.0,

→ Share(s1, s2) = {cord grey matter spinal} = Norm(s1),

→ Commons1,s2 = Totals1 ,

→ Share(s2, s1) = {cord gray matter spinal} = Norm(s2),

→ Commons2,s1 = Totals2 ,

⇒ LabelSim(s1, s2) = 1.0.

Our experiments showed that this measure outperforms
all existing similarity measures when dealing with real-case
ontology matching [66]. This method can be used alone or
combined with other terminological similarity measures.

5.3. Contextual profile similarity

In addition to string-based similarity measures that are
applied for labels comparison, we have implemented a con-
textual profile similarity measure to calculate similarity of
entities through their contextual profiles. Basically, a vec-
tor space model is built from those contextual profiles, in
which, each profile is represented by a vector of numerical
values having the same dimension. The similarity of the
two contextual profiles is determined by cosinus similarity
between their corresponding vectors [64].

In YAM++, the contextual profile similarity measure
has been applied at both schema level and data level. At
the schema level, a context of a concept includes concept
itself and a collection of concepts around such as its an-
cestors and descendants [64]. Then, its contextual profile
is a concatenation of labels appearing in the annotation
descriptions of those concepts. Our heuristic is that two
concepts are similar if their contextual profiles are highly
similar.

The main idea of the context-based similarity measure
is described in Algorithm 1. Our approach is aimed at dis-
covering the most similar concepts of a given one through
its contextual information, such as the annotation descrip-
tion of the concept itself, its ancestors and descendants.

Let us present the main steps of Algorithm 1, which is
dealing with context similarity measure. The input con-
sists of two vector space models (i.e., Vs, Vt) obtained from
the context indexing of the source Os and target Ot on-
tologies; a given concept s of the source ontology and a
parameter K being a number of the most similar concepts

Algorithm 1: Context-based Similarity Calculation

input : Os, Ot: source and target ontologies
Vs, Vt: Context Indexing of Os and Ot

s : a concept in the Os

K : number of selections
output: {〈tj , vj〉}Kj=1 : K best matches from Ot

1 fields← {i : individual, a : ancestor, d :
descendant};

2 for f ∈ fields do
// translate contextual documents to

queries
3 document← GetDocument(Vs, s, f);
4 query ← BuiltQuery(Vt, document);

// get K best ranking scores

5 Mf = {
〈
tj , r

f
j

〉
}Kj=1 ← perform(query, Vt, f,K);

6 end

// get Top-K highest weighted sum

7 {〈tj , vj〉}Kj=1 ← TopK(WSum(Mi, wi,Ma, wa,Md, wd));

8 return {〈tj , vj〉}Kj=1;

tj of the target ontology Ot. The output is those K con-
cepts, whose ranking is determined by the order of scoring
value vj returned by queries.

As we have explained in Section 3.3, each entry in
the vector space model has 3 fields namely individual,
ancestor and descendant. At line 3− 4, we convert the
documents corresponding to those fields of concept s into 3
multi-terms queries with respect to the vector space model
of the target ontology. More precisely, each query con-
tains seeking information of 3 fields (ancestor, itself and
descendant) Each entry in the Vector space model also
contains 3 fields as above. So performing a such query
means comparing the content of each field in the query to
the corresponding entry in the vector space model. This
comparison produces scoring values reflecting how much
the query entries and those of the vector space model are
similar. More details about the scoring function can be
found in [48]. After executing these queries, the resulting
concepts having top-K highest ranking score values will
be selected. That means we obtained a map Mi (Ma, Md)
containing K concepts tj of the target ontology, whose in-
dividual (ancestor, descendant) document is highly similar
to the individual (ancestor, descendant) document of the
given concept s of the source ontology (line 5).

In order to produce the final score, weighted sum (WSum
at line 7) is applied. Assume that concept tj appears in all
3 maps Mi, Ma and Md. Then the final score is calculated
by WSum function as follows:

vj = rij × wi + rdj × wd + rdj × wd (6)

If concept tj is absent in any of the 3 maps above, the
corresponding weight wi or wa or wd will be set to equal
0. On the other hand, those weights are tunable and their
sum is equal to 1.0.

At the data level, a contextual profile of an instance is
a concatenation of its properties’ textual values [60]. Let’s

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

see an example in Figure 7. The two instances refer to the
same object but their identification and their descriptive
properties are different. However, the concatenation of the
properties’ values of the two instances are closely similar,
thus we can assume that the two instances are matched.

Figure 7: An example of using the extensional matcher

Once the matched instances have been detected from
the two input ontologies, in YAM++, we have applied the
two following heuristics: (i) Two attributes having similar
values, are similar; and (ii) if two classes have highly over-
lapping instances, they are similar. For example, in Fig-
ure 7, we can infer that the property workAddress matches
to the property office; study matches to research; and
teamMember matches to memberOf.

6. Dealing with structural heterogeneity

In order to consolidate the confidence of similarity val-
ues calculated from element level, YAM++ uses struc-
tural information in a propagation process. Particularly,
a derived of the Similarity Flooding (SF) algorithm [55]
has been implemented in small scale ontology matching,
whereas, a simple confidence propagation is used in large
scale tasks.

6.1. Similarity Propagation

In small scale ontology matching, similarity propaga-
tion is used at structural level matcher. It takes the results
of the element level matcher as its input and produces new
similarity scores for the candidate mappings.

In this section, we present our similarity propagation
(SP) method which exploits the structural information of
ontologies to discover mappings. This method is inspired
by the Similarity Flooding (SF) algorithm [55], which was
implemented in Rondo schema matching tool [56].

The principle of SP is presented in Algorithm 2. First,
input ontologies are transformed into directed labeled graphs,
wherein each edge has the following format:

〈sourceNode, edgeLabel, targetNode〉

Here, sourceNode and targetNode are ontological en-
tities (i.e., concepts, properties or primitive datatypes);
edgeLabel represents the semantic relation between enti-
ties, which is categorized into the following types: subClass

(rdfs:subclassOf), equivalent (owl:equivalentClass),
subProperty (rdfs:subPropertyOf), inverse (owl:inverseOf),
domain (rdfs:domain), range (rdfs:range) and onProperty
(owl:onProperty). For example, Figure 8 shows a fragment
of an ontology graph around the concept of Teacher in the
first faculty ontology depicted in Figure 2.

Figure 8: Fragment of an ontology graph

A pairwise connectivity graph (PCG) is then created
by merging edges having the same labels. For example, if
G1 and G2 are two graphs obtained from the transforma-
tion step, then:

((x, y), p, (x′, y′)) ∈ PCG⇔ (x, p, x′) ∈ G1 & (y, p, y′) ∈ G2

The intuition behind the propagation idea is that nodes of
two graphs are similar when their adjacent nodes are simi-
lar. More precisely, a part of the similarity of two nodes is
propagated to their neighbors which are connected by the
same semantic relations. Here, the amount of similarity
score to be propagated is defined by the current similar-
ity score hold in PCG’s nodes and by the weight values
on the edges. Therefore, at the beginning, the edges in
the PCG are assigned with weight values by the Weighted
function and the nodes in PCG are assigned with similarity
values taken from the initial mappings M0 obtained from
the element-level matcher (see section 5). After initializing
the values, the PCG becomes an induced propagation graph
IPG. During the Propagation on IPG, only the similarity
score of the nodes is changed, whereas, the edges’ weights
are not. At the end of each iteration in Propagation, all
the similarity values are normalized by Normalized to fall
in range [0,1]. When the Propagation meets a stop con-
dition, a Filter is used to produce the mapping results.

Algorithm 2: Similarity Propagation Algorithm

input : Os , Ot : ontologies to be matched
M0 = {(es, et,≡, w0)} : initial mappings

output: M = {(es, et,≡, w)} : result mappings

1 Gs ← Transform(Os);
2 Gt ← Transform(Ot);
3 PCG← Merge(Gs, Gt);
4 IPG← Initiate(PCG, Weighted,M0);
5 Propagation(IPG, Normalized);
6 M ← Filter(IPG, θs);

In YAM++, the Weighted function on edge p head-
ing from a source vertex Vs to a target vertex Vti in the

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

pairwise connectivity graph PCG is defined as follows:

w(Vs, p, Vti)) =
1

‖VT ‖
(7)

where VT = {Vti} is a collection of target vertices pointed
by the same edge p from the same vertex Vs. The fix-point
computation used to update similarity value of vertices in
the PCG in each iteration is formulated as follows:

σi+1(x, y) = σ0(x, y) + σi(x, y)

+
∑

(as,p,x)∈G1,(bs,p,y)∈G2

σi(as, bs)× w((as, bs), p, (x, y))

+
∑

(x,q,at)∈G1,(y,q,bt)∈G2

σi(at, bt)× w((x, y), p, (at, bt))

(8)

Here, σi(x, y) is a similarity value of x and y at iteration
i; σ0(x, y) is taken from initial mappings M0.

After running the similarity propagation process at the
structure level on the motivating example, we obtain the
following mappings as shown in Table 3.

Source Target Score

Courses LearningModule 0.6460724
Manager Director 0.2716023
Researcher Researcheur 0.2770916
Subjects Topic 0.80278397
Staff Employee 0.428497
Educator AcademicStaff 0.04201378
Teacher Lecturer 0.49652436
hasTitle title 0.54690593
teach teaching 0.84298825
hasID identity 1.0

Table 3: Mappings discovered at the structure level

After running the similarity propagation process with
initial mappings produced by the element level matcher
(i.e., decision tree model in Section 5.1 on the motivat-
ing example, we obtain the mapping result shown in Table
3. Interestingly, it reveals new mappings as we expected
to see from the semantic structure of the input ontolo-
gies. For example, it discovers 〈hasID, identity,≡, 1.0〉,
which is reasonable because the both properties are used
to describe attributes of many matching concepts, i.e.,
Staff vs. Employee, Manager vs. Director, Teacher
vs. Lecturer and Researcher vs. Researcheur. During
the similarity propagation process, those mappings contin-
uously feed their impact (i.e., a portion of their similarity
score) to the pair hasID vs. identity. Therefore, albeit
the two properties were not detected as matched by the el-
ement level matcher, they still have the highest similarity
score after the propagation process.

6.2. Confidence Propagation

In large scale ontology matching, the repetitive process
of similarity propagation described in the above algorithm
requires not only a huge amount of operative memory for
maintaining computational results at each iteration but is

also highly time consuming. The intuition behind the con-
fidence propagation is simply that if two concepts of two
ontologies representing similar domains are matched then
their relatives are more or less similar respectively. More
precisely, the similarity of the two matched concepts will
contribute in some degree of confidence to the similarity of
their relatives along the same path of semantic relations.

Algorithm 3: Confidence Propagation

input : srcStrucInd, tarStrucInd: source and
target structure indexes
M = {〈s, t, v〉} : candidate mapping table

output: M = {〈s, t, vpropagated〉}
1 S ← GetSourceConcepts(M);
2 T ← GetTargetConcepts(M);
// copy of current candidate mapping table

3 M ′ ← Clone(M);
4 for 〈sc, tc, vc〉 ∈M ′ do
5 for sa ∈ GetAncestors(s, srcStrucInd) ∩ S do
6 for ta ∈ GetAncestors(t, tarStrucInd) ∩ T

do
7 if ∃ 〈sa, ta, va〉 ∈M ′ then
8 Update(M, 〈sa, ta, va + vc〉);
9 Update(M, 〈sc, tc, va + vc〉);

10 end
11 end
12 end
13 end
14 return M

The confidence propagation is applied to promote the
reliability of similarity of candidate mappings, which is
described in Algorithm 3. The input consists of a can-
didate mapping table M and two structure indexes, i.e.,
srcStrucInd and tarStrucInd of the source and target on-
tologies respectively. Here, the structure index allows us
to access quickly to all the ancestors of a given concept
in a given ontology. Firstly, at the lines 1 − 2, the sets
S and T pick up all source and target concepts from the
candidate mappings table M . They are used to reduce the
number of iterations in loops at lines 5 − 6. Table M ′ is
a copy of M in order to store the current similarity values
for the current candidate mappings (line 3). The iteration
of the similarity propagation is shown in lines 4 − 12. In
particular, for each candidate mapping 〈sc, tc, vc〉, if there
exists another candidate mapping 〈sa, ta, va〉 in the candi-
date mappings table M , where sc and tc are descendants
of sa and ta respectively, then the similarity values of the
both candidate mappings will be updated (lines 8− 9).

7. Mapping selection

In this section we will present our method to combine
the mapping results obtained at the element level with the
ones resulting from the structure level. We assume that
the results obtained by these levels complement each other
since the element level matcher relies only on terminology
(i.e., labels, annotation, etc.) while the structure level

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

matcher relies only on semantic relations. Let us present
our algorithm dealing with this combination and mapping
selection. Indeed, Algorithm 4, takes as input Melement a
set of candidate mappings discovered by the element level
matcher. Note that, the similarity score ce = 1.0 (e.g.,
see Table 2). Mstructure is the set of candidate mappings
gained after running the similarity propagation algorithm
at the structure level. The similarity score cs varies from
0.0 to 1.0 (e.g., see Table 3).

Algorithm 4: Producing final mappings

input : Melement = {(ei,ej ,≡,1.0)}
Mstructure = {(ep,eq,≡,cs), cs ∈ (θs..1]}

output: Mfinal = {(e1,e2,≡,c), c ∈ [0..1]}
1 θ ← min(m.cs) |m ∈Moverlap;
2 M ← WeightedSum(Melement, θ,Mstructure, (1− θ));
3 threshold← θ;
4 Mfinal ← GreedySelection(M, threshold);

5 return Mfinal

To take the contribution of each level into account, we
use a weighted sum method to combine them. Remind-
ing the output of the element level matcher is passed as
input to the structure matcher. In order to avoid manual
setting, we propose a dynamic method to automatically
set weights to the mappings returned by the element and
structure matchers and select a threshold to filter map-
pings (lines 1,2 and 3 in Algorithm 4). Let us explain our
method along with an example as illustrated in Figure 9
where the candidate mappings belonging to Melement and
Mstructure are indicated by labels with “em” and “sm” pre-
fixes respectively. Additionally, we define an overlap as a
mapping m that its source and target entities, i.e., 〈es, et〉
can be found in both Melement and Mstructure. Those
mappings Moverlap are labeled with “se” prefix.

Figure 9: Resulting candidate mappings

In Figure 9, obviously, the mappings belonging to
Moverlap = {se1,se2,se3} have the best potential to be
matched because their entities seem to have both similar
name/labels and similar semantic description. Next, the
mappings belonging to Mstructure = {sm1,sm2,sm3} are a
sort of synonym because their entities seem to have differ-
ent labels but have similar semantic descriptions. Whereas,
each mapping belonging to Melement = {em1,em2,em3} is a
sort of polysemy because their entities seem to have sim-
ilar name/ labels but different semantic descriptions. In-
tuitively, the explicit meaning of an entity (through the

semantic relations with other entities) is more important
than its intended meaning (through name, labels). There-
fore, the order of confidence to be selected as correct map-
ping is: Melement < Mstructure < Moverlap. In our ap-
proach, we assume that all the mappings in Moverlap are
correct.

Next, two issues arise: (i) should all the mappings in
Melement be ignored? ; and (ii) should all the mappings
in Mstructure be accepted? For the first question, due to
the high heterogeneity of ontologies, it is possible that en-
tities referring to the same thing may have a different se-
mantic description or only a small overlap between them.
Therefore, we cannot definitely reject all these candidate
mappings. Instead, we should assign to them a confidence
value for the later selection. For the second question, we
cannot accept all of them because may be their similar-
ity scores obtained by the structure level are very small.
Therefore, we need a threshold θ to filter the probably in-
correct mappings. It means that if two entities have cs ≥ θ
then they are probably matched.

Let us see Algorithm 4 to understand how we calcu-
late θ value for filtering mappings from Melement and fil-
ter threshold for mappings in Mstructure. Firstly, we seek
the minimum value of the structural similarity score in
Moverlap (line 1). We assume that all the mappings hav-
ing a structural similarity score, which is higher than this
value will be considered as correct. Therefore, we assign
this value to the filter threshold θ. According to our in-
tuition discussed above, the probability of correctness of
the mappings in Melement is smaller than the priority of
mappings in Mstructure, we will set the confidence to the
mappings in Melement to θ. This rule guarantees that the
similarity scores of correct mappings in Mstructure are al-
ways higher than the similarity scores of correct mappings
in Melement. Thus, when we perform a selection method
(line 3,4), the mappings in Mstructure have higher confi-
dence than mappings in Melement. Finally, in the Moverlap,
to normalize the similarity score value, we set weights to
the similarity values obtained by the element and struc-
ture levels to θ and 1 − θ respectively. Then we compute
their similarity by the weighted sum function (line 2).

For the illustration of this idea, we continue with the
motivating example. The structural matcher is based on
the Similarity propagation method described in Section 6.
And its input are taken from the mappings resulting from
the terminological matcher.

Let us see the mapping results in Table 2 and Table
3. There, the pair of entities (Employee, Employee) has
the minimum value (cs = 0.2716023) found in the overlap
between the results of the element level and the struc-
ture level matchers. Then, we set θ = 0.2716023. Let us
now illustrate our combination method along with three
different candidate mappings. The first one is (Manager,
Director), which is found in Melement with a score of 1.0
and in Mstructure with a score of 0.2716023. Therefore,
according to line 2 of Algorithm 4 the updated similarity
score of this candidate mapping is computed as follows:
1.0∗θ+0.2716023∗(1−θ) = 0.4694368. The second candi-
date mapping is (Course, LearningModule), which is only

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Source Target Score

Courses LearningModule 0.6460724
Manager Director 0.4694368
Researcher Researcheur 0.47343516
Subjects Topic 0.8563483
Staff Employee 0.428497
Educator AcademicStaff 0.04201378
Employee Employee 0.2716023
Teacher Lecturer 0.49652436
hasTitle title 0.6699673
teach teaching 0.885633
hasID identity 1.0

Table 4: Combination results of the element and structure matchers

Source Target Score

Courses LearningModule 0.6460724
Manager Director 0.4694368
Researcher Researcheur 0.47343516
Subjects Topic 0.8563483
Staff Employee 0.428497
Teacher Lecturer 0.49652436
hasTitle title 0.6699673
teach teaching 0.885633
hasID identity 1.0
Table 5: Result after greedy selection with θ = 0.2716023

found in Mstructure. Therefore, its similarity score is still
be the same. The third candidate mapping is (Employee,
Employee), which is only found in Melement with a score
of 1.0; its update similarity score is: 1.0 ∗ θ = 0.2716023.
Table 4 shows the results obtained by combining the el-
ement level candidate mappings with the ones resulting
from structure level matcher. Then, a Greedy Filtering
with threshold θ = 0.2716023 is applied on these map-
pings to obtain the final result as shown in Table 5. It is
remarkable to see that our method discards the candidate
mapping (Employee, Employee), which got a score of 1.0
in element level.

8. Dealing with alignment incoherence

In this section, we present our approach to eliminate
the unsatisfiability from the discovered mappings. In term
of small ontology matching, YAM++ has integrated AL-
COMO [53] tool, which uses Pellet8 (or Hermit9) reasoning
to completely diagnose and remove unsatisfiable mapping
candidates. However, those reasoners cannot work with
large scale ontologies with a small memory size (e.g., be-
low 4GB RAM) or run quite slow while performing conflict
detection, thus, we propose a new method called fast se-
mantic filtering in YAM++.
Our approach is aimed to effectively detect and remove
conflicting pairs of mappings by exploiting the semantic
information of entities in the input ontologies. In partic-
ular, three patterns including disjointedness (i.e., subclass

8http://clarkparsia.com/pellet
9http://www.hermit-reasoner.com/

over disjoint and disjoint over subclass) conflicts [53], criss-
cross conflict [36] have been reused. For example, assume
that candidate mapping 〈Employee, Employee〉 was not
filtered after the mapping selection process, then it will
cause a disjointness conflict with 〈Manager,Director〉.
Indeed, in the target ontology, the concept Director is
a subclass of the Employee, consequently, in the source
ontology, the concept Manager becomes a subclass of the
concept Employee, but the concept Manager is a subclass
of the concept Staff, which is disjoint to the concept
Employee, thus causing an inconsistency.

On the other hand, for large scale ontology matching, a
new relative disjoint conflict [60] has been proposed. The
definition of a relative disjoint conflict pattern is that if
two mappings m1 = 〈es1 , et1〉 and m2 = 〈es2 , et2〉 have
es1 ≡ es2 in Os and SemSim(et1 , et2) ≤ θ in Ot (or vice
versa) then they are detected as in relative conflict. Here,
SemSim is a similarity measure that computes the seman-
tic similarity value of two entities in the same ontology [62].
This pattern is inspired from learning disjointness axioms
[54, 77] in case where the input ontologies do not explicitly
declare any disjointness axiom.

In order to quickly detect conflict patterns from the
candidate mappings, we have proposed an efficient method
to index the structure of an ontology. Indeed, in our ap-
proach, each concept is assigned with a topological order
and is encoded by an efficient compressed bitmap [85, 10]
containing all the information of its ancestors, descendants
and disjointness [62]. Thanks to the bitmap encoding ta-
ble, the structural relations of classes can be easily and
quickly accessed.

Algorithm 5: Fast semantic filtering method

input : Os, Ot : input ontologies,
A : initial alignment

output: Ac : coherent alignment

1 DescendingSortByConfidenceValues(A);
2 Ac ← ∅
3 while ‖A‖ > 0 do
4 m← extractFirstMapping(A);
5 if isNotConflict(m,Ac, Os, Ot) then
6 Ac ← Ac ∪ {m}
7 end
8 end

After all conflict mappings have been detected, in OAEI
2012, YAM++ used a greedy algorithm to break those con-
flicts. Indeed, it iteratively found and removed a candidate
mapping that conflicts with other candidates and has the
smallest confidence value. The main steps of the process
to eliminate the inconsistent candidate mappings is shown
in Algorithm 5. Firstly, it sorts all the mappings in the
initial alignment A by confidence value in descending or-
der. Then, for each iteration, it picks up the mapping
with the highest confidence value from the initial align-
ment A. At line 5, if the examined mapping m does not
cause any conflict to the already extracted alignment Ac,
it will be saved in Ac. In the example above, mapping

13

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

〈Employee, Employee〉 is chosen to be removed. After-
ward, there is no more conflict in the discovered mappings.

In OAEI 2013, YAM++ improved its performance by
applying a modification of Clarksons algorithm in finding
a minimum weighted vertex cover from the collection of
conflicts [58]. In this approach, it not only relies on the
similarity score of the candidate mappings (i.e., weighted
nodes in the conflict graph), but also how strong (i.e., de-
gree of nodes in the graph) each mapping conflicts to the
others. The detail of the algorithm can be found in [62].

9. Experiments over OAEI datasets

In this section we present the evaluation results of
YAM++ in various OAEI tracks and in different years.

9.1. Filtering Evaluation

Firstly, we present the important role of the filtering
in reducing the computational space. Let’s demonstrate
its effectiveness through an example where the size of the
used fragments of ontologies are shown in Table 6. If we
do not run any filtering method, we need to compute simi-
larity values for 89676425 candidate mappings in Library
track, 5270462036 candidate mappings in FMA-NCI track,
9673308896 candidate mappings for FMA-SNOMED track and
8171287936 candidate mappings for SNOMED-NCI track.
Note that each concept in these ontologies may have some
labels. The average number of labels per concept are
shown in Table 6. Thus, for example, in task FMA-NCI,
we need to perform the computation of more than 31 bil-
lions similarity values. Running similarity computation
with a simplest edit-based string metric (e.g., Levenstein)
in a PC i5core 3.20GHz, we observe that it can compute in
average 100000 pairs of labels in 01 second. Thus, to com-
pute similarity for 31 billions pairs of labels, we need at
least 87 continuous hours. Moreover, if we use dictionary-
based (e.g., Wordnet) similarity metric to compute simi-
larity value of two labels, the running time is much more
longer. The huge number of computations requires a huge
main memory for saving temporary similarity values as
well as a very long time to complete this computation.
That is the one reason that not many ontology match-
ing tools can pass the large biomedical ontology matching
track.

STW TheSoz NCI FMA SNOMED

Size 6575 13639 66724 78989 122464

Avr.Labels 5 3 3 2 1
Table 6: Size of ontologies and number of labels per concept

In order to reduce the computation space, we have ap-
plied a filtering step before computing similarity values
between concepts. Note that, in the filtering method de-
scribed in Section 4, one label can produce several sub-
lables by removing its non-stop words. Here, a stop-word
is an article or a preposition like a, an, in, on, etc. In
our approach, we have applied the following heuristic in
the filtering step: “If two labels of two concepts differ by
less than two non-stop words then the two concepts are
considered similar”. Therefore, from an original label of

a concept we produce its sub-labels by removing only 01
non-stop word.

Task Pr. Re. Fm.

Library 0.00954 0.97691 0.0189

FMA-NCI 0.00712 0.96588 0.01413

FMA-SNOMED 0.01269 0.79409 0.02498

SNOMED-NCI 0.01031 0.81717 0.02036
Table 7: Precision, Recall and F-measure after filtering

Table 7 shows the evaluation results after performing
filtering on the Library, FMA-NCI, FMA-SNOMED, SNOMED-NCI
tasks. In this step, we focus more on recall than on pre-
cision. It is because the recall value indicates the number
of correct mappings that the matching tool can discover.
The precision value indicates the accuracy of the dis-
covered mappings, which will be improved afterward by
step-by-step. The experimental results are quite impres-
sive. For the Library and FMA-NCI tasks, we obtained
very high recall, i.e., 0.97691 and 0.96588 respectively,
whereas, for the FMA-SNOEMD and SNOMED-NCI the recall
values are lower but still high, i.e., 0.79409 and 0.81717
respectively.

Task #TP #FP #FN #All pairs

Library 3088 320507 73 89676425

FMA-NCI 2831 395003 100 5270462036

FMA-SNOMED 7100 552454 1841 9673308896

SNOMED-NCI 15098 1449216 3378 8171287936
Table 8: Number of True Positive, False Positive and False Negative
after filtering

Next, Table 8 shows the number of candidate mappings
obtained from the filtering step. For the Library task, the
total number of candidate mappings is 323595 including
3088 correct mappings and 320507 incorrect mappings.
In comparison with all possible mappings (shown in the
last column - 89676425), the filtering reduces 8967425

323959 ≈
28 times of computation. Similarly, the filtering reduces
nearly 13248, 17288, 5580 times of computation for FMA-NCI,
FMA-SNOMED, SNOMED-NCI tasks respectively. Obviously,
these reductions significantly decrease the computational
time to calculate similarity values for candidate mappings.
For example, in case of FMA-NCI task, if we use a simple
edit-based similarity metric like Leveinstein, we only need
03 seconds.

Library FMA-NCI FMA-SNOMED SNOMED-NCI

64347 ms 260597 ms 320139 ms 359085 ms
Table 9: Preparation time including indexing and filtering steps

On the other hand, Table 9 shows the total time start-
ing from indexing ontologies to producing candidate map-
pings in the filtering step. The Library task needs only 65
seconds, whereas, the SNOMED-NCI requires nearly 01
minute to complete the filtering task. Indeed, the prepa-
ration time is much smaller than the total time needed
to compute similarity values for all possible mappings (for
example 87 hours in case of FMA-NCI).

By considering all the benefits including high recall val-
ues, significantly reduced computational space and small
preparation time, we can firmly conclude that our pro-

14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Figure 10: Results of YAM++ version using machine learning in
Conference track at OAEI 2011

posed filtering method is compulsory and extremely im-
portant in dealing with large scale ontology matching.

9.2. Conference track: testing the heterogeneity

Conference track contains 16 real ontologies describ-
ing the same domain about conference organization. This
track is open+blind due to only 21 referent alignments
corresponding to the complete alignment between 7 on-
tologies (Cmt, ConfTool, Edas, Ekaw, Iasted, Sigkdd, Sof-
sem). Those ontologies are highly heterogeneous in terms
of both terminology and structure. They are very good
examples for testing techniques dealing with terminologi-
cal and structural heterogeneity. Figure 10 shows the re-
sults of YAM++ on Conference track in OAEI 2011, where
YAM++ used machine learning method to combine termi-
nological similarity measures.

In OAEI 2011, YAM++ used machine learning ap-
proach to combine different string-based similarity mea-
sures to deal terminological heterogeneity. We have used
the dataset taken from I3CON10 as the training data to
build a decision tree. YAM++ got in average 0.78 for
Precision, 0.56 for Recall and 0.65 for Fmeasure.

Despite the fact that YAM++ obtained a high Preci-
sion and outperforms the other participants in terms of
the best Fmeasure11 its Recall value is only above aver-
age. On the other hand, the quality of the classification
model strongly depends on the training data, which is not
widely available. Therefore, in OAEI 2012, we decided to
experiment a new approach by using our new IR-based
method described in Section 5.2 to deal with terminolog-
ical heterogeneity. More discussion and comparison be-
tween the two proposed approaches, can be found in [68].
Figure 11 shows the results of YAM++ version 2012 on
the same track without using machine learning. It is no-
ticeable that in this track YAM++ achieved significantly
higher Fmeasure 0.75 value than the previous one and the
other participants. Moreover, this version also achieved
the best Precision 0.78 as well as the Recall 0.65. We

10http://www.atl.external.lmco.com/projects/ontology/i3con.html
11http://oaei.ontologymatching.org/2011/results/conference/

Figure 11: Results of YAM++ version without using machine learn-
ing in Conference track at OAEI 2012

made the choice to show OAEI 2011 result in Conference
track because it illustrates the use of machine learning as a
combination method. This method is no more used in the
further versions of YAM++ in OAEI. Moreover, YAM++
got the same F-measure value in OAEI 2013 for this track
than in OAEI 2012 due to the absence of new updates in
terminological matcher.

9.3. Multifarm track

More interestingly, the effectiveness of the terminolog-
ical matcher and propagation method can be viewed in
the Multifarm track. Indeed, the original Multifarm data
set is composed of a set of 7 ontologies of the Conference
domain (Cmt, Conference, ConfOf, Edas, Ekaw, Iasted,
Sigkdd), translated into 8 languages (+English) – Chinese
(cn), Czech (cz), Dutch (nl), French (fr), German (de),
Portuguese (pt), Russian (ru), Spanish (es) – and the cor-
responding cross-lingual alignments between them.

Figure 12: Comparison of YAM++ with other participants in Mul-
tifarm track OAEI2013

Within the Multifarm dataset, we can distinguish two
types of matching tasks: (i) those test cases where two
different ontologies have been translated in different lan-
guages (cmt–confOf, for instance); and (ii) those test cases
where the same ontology has been translated in differ-
ent languages (cmt–cmt, for instance). On the both type

15

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Figure 13: Comparison of YAM++ with other participants in Scal-
ability track OAEI 2012

of matching task, since the first competition,i.e., OAEI
2011.5 to OAEI 2013 YAM++ achieved the best results.
Figure 12 shows how much YAM++ outperformed the
other competitors in this track.

9.4. Scalability track

The test of scalability was not provided in OAEI 2013.
Therefore, we report here the result of the one of OAEI
2012. Benchmark or Scalability track 2012 includes 5
datasets with increasing size: biblio (97 entities), hidden
benchmark 2 (247 entities), hidden benchmark 3 (354 en-
tities), hidden benchmark 4 (472 entities), finance (633 en-
tities). This track was aimed at evaluating the strengths
and weaknesses of ontology matchers through a set of sys-
tematically generated tests.

In fact, for each dataset, the test ontologies are gener-
ated from a reference ontology by altering labels, annota-
tion and structure of its entities. Most of the altered labels
are random sequence of characters, which is not convenient
for human reading. However, the data of those ontologies
are not changed much, thus our extensional matcher can be
very useful. Indeed, Figure 13 shows the overall evaluation
results of YAM++ and the other participants. YAM++
got the best F-measure results in 4/5 datasets, partic-
ularly, benchmark2 (0.89), benchmark3 track (0.85),
benchmark4 (0.83), finance (0.90), and was the second
in biblio (0.83) In average, YAM++ achieved the first po-
sition with 0.86 F-measure. This result confirms the stabil-
ity and the scalability of our tool over years thanks to the
effectiveness of our matching techniques namely the effec-
tiveness of the filtering methods and the proposed similar-
ity measures for dealing with terminological and structural
heterogeneity.

9.5. Benchmark track

The Benchmark track in OAEI 2013, includes only one
test set suite which is generated from the usual bibliogra-
phy ontology. The test case of Benchmark was not avail-
able to participants. In fact, the test ontologies are gener-
ated from a reference ontology by altering the labels, an-
notation and structure of its entities. Figure 14 shows the

Figure 14: Comparison of YAM++ with other participants in Bench-
mark track OAEI 2013

overall evaluation results of YAM++ and of the other par-
ticipants. In average, YAM++ got the first position with
0.89 Fmeasure. Moreover, as mentioned by the OAEI or-
ganizers, YAM++ was the fastest in this track. it still per-
forms in less than 12 minutes for 94 matching operations.
This result confirms the robustness and the improvement
of our tool over years thanks to the effectiveness of our
matching techniques namely the IR-based measure, the
extensionnal and the propagation methods. The gap be-
tween YAM++ and its competing systems, namely: Ser-
vOMap, AML and LogMap is quite impressive in terms of
matching quality. Indeed, AML got only 0.57 Fmeasure.
It seems that the reason is that AML does not handle in-
stances and the matching techniques used at element level
are not so effective. LogMap got 0.53 and ServOMap 0.33
in Fmeasure.

9.6. Library track

The library track is a real-word task to match the
STW and the TheSoz social science thesauri in SKOS.
The goal of this track is to find whether the matchers
can handle these lightweight ontologies including a huge
amount of concepts and additional descriptions. In OAEI
2013, YAM++ got the second position behind ODGOMS
in terms of F-measure (0.745 against 0.758). This year,
ODGOMS and YAM++ outperformed all baselines; fur-
ther these matchers outperformed all baselines even Matcher-
Pref12. While ServOMap and AML are behind them.
However, our tool outperforms ODGOMS in terms of run-
ning time with a great margin (around 12 min against
more than 7 h). ODGOMS combines different matching
techniques (e.g., LCS, TFIDF based, Stoilos, etc.). This
system got good results in small sized ontology matching
scenario but this combination seems to not be scalable in
large scale scenario. Indeed, it did not pass even the small
large bio medical task since its execution time exceeded
the maximum limit of 18 hours. Furthermore, YAM++
has improved its performance in this track both in terms

12http://web.informatik.uni-mannheim.de/oaei-
library/results/2013

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

of Recall (from 0.758 in OAEI 2012 to 0.808 in OAEI 2013)
and in Precision, which also increased from 0.680 to 0.692.
This behavior can be explained by the annotation features
associated with concepts in the ontologies. Indeed, each
concept in the Library ontologies has several labels. STW
contains 6575 concepts with in average 5 labels per con-
cept. While TheSoz has 13639 concepts with in average
3 labels per concept. The rich annotation will provide a
high contextual similarity score for the similar concepts.
Therefore, the good results of YAM++ are due to the ef-
fectiveness of our contextual and IR-based similarity mea-
sures.

9.7. Anatomy track

The Anatomy track consists of finding an alignment
between the Adult Mouse Anatomy (2744 classes) and a
part of the NCI Thesaurus (3304 classes) describing the
human anatomy. Figure 15 shows the evaluation result of
YAM++ in this track.

Figure 15: Results of YAM++ and of the other participants to
Anatomy track at OAEI 2013

As we can see in Figure 15, two top ranked systems
AML-bk and GOMMA-bk outperform YAM++ in this
track. The main reason is the following: both AML-bk
and GOMMA-bk use mapping composition techniques and
the reuse of mappings between UMLS, Uberon and FMA.
Notice that UMLS and Uberon contains a lot of mappings
between Mouse anatomy and Human anatomy, which can-
not be solely discovered by using common string similarity
measures. Nevertheless, YAM++ got the third position
(with 0.905 Fmeasure) in this track thanks to the effec-
tiveness of our filtering method and the IR-based similarity
measure, which have been applied to the labels and sub-
labels of the entities of the Anatomy ontologies. Indeed,
this measure was designed to efficiently handle compound
labels and it is very effective thanks to its particular weight
assignment method. While the competing systems are be-
hind YAM++. Indeed, AML [19] got 0.886, LogMap 0.881
and ServOMap got 0.752. we notice that these systems
make use of Background Knowledge. For example, AML
employs three sources of background knowledge: Uberon,
UMLS and WordNet.

9.8. Large biomedical track

This track consists of finding alignments between the
Foundational Model of Anatomy (FMA), SNOMED CT,
and the National Cancer Institute Thesaurus (NCI). There
are 6 tasks with different size of input ontologies, i.e., small
fragment, large fragment and the whole ontologies.

Figure 16: Accuracy performance in large biomedical track

Figures 16 and 17 shows the evaluation results and the
time performance of YAM++ in large biomedical track
in OAEI 2013. YAM++ achieved the first position with
0.817 Fmeasure. Our system outperformed its compet-
ing systems, which were designed to large scale biomedi-
cal matching, namely: ServOMap, AML and LogMap in
terms of matching quality. YAM++ used indexing and
filtering techniques in many places (in filtering candidate
mappings, semantic coherence checking, etc.) as the com-
peting proposals did. The success of YAM++ is due to
the combination of several contributions like our effective
IR-based measure and our dynamic method for mapping
selection, which generates dynamically a threshold accord-
ing to the matching scenario. While, for example, in Ser-
vOMap the threshold is not dynamically generated. And
regarding the run time, YAM++ outperforms ServOMap:
2, 066 for YAM++ against 15, 300s for ServOMap.

Figure 17: Run time performance in large biomedical track

Furthermore, YAM++ was among the three systems:
AML with (R)epair configuration and LogMap that have
shown mapping repair facilities. Finally, we can notice
a great improvement of YAM++ namely regarding the

17

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

time performance. Indeed, our systems spent 67, 817 for
executing the large biomedical track in OAEI 2012 while it
took only 2, 066 in OAEI 2013. The improvement was done
without lost of matching quality in terms of F-measure
since YAM++ got 0.782 in OAEI 2012 against 0.817 in
OAEI 2013. This is mostly the benefit gained by indexing
and filtering techniques.

10. Related work

The aim of this section is to provide a brief survey of
related work that are close to ours. We will try to com-
pare the benefit of our solutions to other competing works.
Therefore, we will focus only on the following issues: (i)
workflow strategies, (ii) efficiency and scalability and (iii)
Matcher combination, (iv) Mapping Selection and (v) Ex-
ternal Background Knowledge

10.1. Workflow strategies

Many basic matching techniques have been proposed
so far, but none of them can fulfill the user requirement
in order to obtain a full picture of alignments between
ontologies. Commonly, each of them only provides par-
tial mappings according to the specific exploited feature.
Therefore, strategies to combine several basic techniques
(or basic/individual matcher) are needed. According to
[24], there are three basic types of workflow strategies such
as sequential, parallel and interactive composition. Most of
the currently matching system have implemented at least
one of those strategies to improve the efficiency and the
matching quality. In this section, we present those ba-
sic strategies and see how they were used in the matching
tools.

Sequential workflow. It is the most natural way of
composing basic matchers. The idea is that the output of
one basic matcher is passed as input to the next matcher.
This type of combination can be found in many systems.
For example, most of the structural or semantic matcher
require predefined mappings. To do that, an element level
matcher first produces initial mappings and then passes
them to the structural matcher. This type of strategy
can be found in CUPID [49], Falcon AO [33], Rondo [56],
where a terminological measure is the first matcher and
produces initial mappings to the second matcher (struc-
tural matcher); or in CODI [35], PRIOR++ [52] the first
matcher aims to find the all possible candidate mappings,
then in the next phase, a semantic matcher refines them
by eliminating the inconsistent mappings. In ServOMap
[14], at element level, a weighted sum of the three following
measures is applied : ISub, Q-Gram and Levenshtein and
then the obtained mappings are passed to Contextual Simi-
larity module. This module is machine learning-based and
makes use of descendant, ancestor and sibling relationships
to discover new mappings. AgreementMakerLight (AML)
[19] is a light version of AgreementMaker ontology match-
ing system [20], which is dedicated as to deal with large
ontology matching problem namely in live sciences do-
main. Its main underlying matching techniques are based
on element level matching with a Lexical Matcher and the

use of three background knowledge: Uberon, UMLS and
WordNet. In YAM++, as we show in Figure 1, the se-
quential workflow starts from element level, then structure
level and finally semantic verification. In 2011 version of
YAM++, we applied a machine learning method to select
and to combine the most appropriate similarity measure
at element level. In the current version, YAM++ used
our IR-based similarity measure at element level and the
propagation method at structure level.

Parallel workflow. In this strategy, the individual
matchers are executed independently, typically on the whole
cross product of source and target entities. Similarity ma-
trices obtained by individual matchers are combined by
some aggregation operators to produce a final result. The
most common operators are weighted sum or weighted av-
erage. In that way, the systems may be implemented with
manual assignment weights (COMA [2], ASCO [45]) or
with adaptive weights (the first phase in PRIOR++ [52],
AgreementMaker [20]) or fuzzy assignment weights (OWA
[37]). Besides, aggregation operators can be seen as a
decision functions which decide whether two entities are
matched or not. In that way, the individual matchers are
combined by machine learning models, in which the object
is a pair of to-be-matched entities and attributes are sim-
ilarity values obtained from individual matchers over the
given entities. The systems of this type of combination can
be found in [72, 57]. Similarly, the belief theory Dempster-
Shafer framework DDSim [59] and evolutionary methods
MapPSO-MapEVO [5] are also used as aggregation oper-
ators. In YAM++, parallel workflow can be found in the
machine learning part, which is used to combine different
terminological similarity measures.

Iterative workflow. The idea of this strategy is that
the matching process runs repeatedly several times until
it meets the stop condition. The matching process can be
performed by one basic matcher or by a combination of
several basic matchers. This type of strategy can be used
in a part of the system or in the whole system. A typical
example of using iterative method in a part of the system
can be found in the similarity propagation method. The
principle of the algorithm is that the similarity between
two nodes must depend on the similarity between their
adjacent nodes. Therefore, at each step of the running al-
gorithm, the similarity value of each pair of entities is re-
computed according to the current values of itself and its
neighbors. We can find this strategy in the second phase of
emphRondo schema matching tool [56], OLA [22], Falcon-
AO [33], Lily [84], RiMOM [46], AgreementMaker [20].
Similarly, the iterative strategy is also used in constraint-
based method. In that way, for each step, the constraint-
based method re-calculates the confidence values for every
candidate mapping or removes the inconsistent mappings.
This process will be stopped when the optimization con-
dition is reached. The iterative constraint-based methods
can be found in the second phase of GLUE [15], CODI
[35], LogMap [38]. In Rondo schema matching tool [56]
[55], the interative workflow can be found at the structure
level, i.e., similarity propagation part.

Typical examples of using iterative workflow in the

18

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

whole system can be found in ASMOV [36], QOM [16].
In those systems, the matching process consists of sev-
eral basic matching techniques. For example, in the first
phase of ASMOV, they use parallel composition of termi-
nological, structural and extensional measures, then pass
the discovered mappings to the second phase to run the
semantic verification process. Those two phases are re-
peated several times until there is no change found in the
discovered mappings.

10.2. Efficiency and scalability techniques

High matching quality is the prime importance that
needs to be considered in the development of any ontology
matching tool. Besides, efficiency in terms of performance
time is also very important, especially, when the input
ontologies are very large whereas the main memory size
is limited. To deal with large-scale ontology matching,
several techniques have been proposed and categorized as
follows.

Filtering methods. The main idea behind these tech-
niques is to reduce the search space by heuristically elimi-
nating less promising matching entity pairs. For example,
in Eff2Match [8], the heuristic to select candidate map-
pings for each entity in the source ontology is done by
performing the top-K entities algorithm in the target on-
tology according to their context (Virtual Document) sim-
ilarity. In QOM [16], more sophisticated strategies, which
are based on different extracted features such as label, hi-
erarchy, neighbors, etc., are used in each iteration to se-
lect the promising mappings. An inverted lexical index is
used in LogMap 2 [40] to store concept labels and URIs of
each input ontology. This allows to filter an initial set of
mappings. The followed strategy for computing candidate
mappings at this stage by Log Map 2 is to maximize re-
call. More recently, in ServOMap [14], the input ontologies
(modeled as virtual documents) are indexed and then the
search component of ServO is used to perform an exact
search respectively for I1 using O2 as search component
and for I2 using O1. Then, an intersection of the two re-
sulting sets is done to keep all pairs found from the two
way search. From the intersected results, only the Best-k
results (k chosen empirically) are selected and then passed
as input to the lexical matcher.

In YAM++, we have implemented various techniques
based on search engine and some heuristics of filtering (by
label, context profile, etc.) to reduce the computational
space.

Partitioning methods. In this section, we discuss
the main features of a partition-based method dealing with
large scale ontology matching. The algorithm used in this
method is similar to the divide and conquer algorithm.
Here, the task of matching large ontologies is broken down
into smaller problems (i.e., matching on sub-ontologies).
In this method, two main sequential phases work as fol-
lows. Firstly, the input ontologies are partitioned into
sub-ontologies. It can be done by applying a clustering
algorithm overall entities of ontologies. For example, in
[1, 34], two Agglomerative Hierarchical Clustering algo-
rithms namely ROCK and SCAN have been implemented.

At the end of this phase, entities within the same clus-
ter are strongly related to each other, whereas, entities
of different clusters are weakly related. Thus, we can as-
sume that sub-ontologies built on those clusters are repre-
senting different and independent sub-domains of knowl-
edge. Next, in order to reduce the run-time, a block (i.e.,
sub-ontology) filter selects candidate blocks, which will be
compared to find mappings between their entities. It can
be done by using some similarity measure at block level.
The intuition is that if two blocks describe the same or
close topic, they may share a high number of concepts and
vocabulary used to represent entities on that topic. This
intuition leads to two methods for computing similarity
between blocks. The underlying idea of the first method is
that the more anchors can be found between two blocks,
the more similar the two blocks are. Here, an anchor is
defined as a pair of entities, which have a high similarity
value. For example, this method is implemented in [34].
The underlying idea of the second method lies in the sim-
ilarity of block documents that contain the name, label of
all entities of blocks. For example, this method is imple-
mented in [1]. The computation of the similarity values be-
tween two block documents is similar to the computation
of the similarity between two virtual document in Section
5.3. The advantages of this method is that it can be used
as an upper layer of existing matching methods which can
produce a high matching quality but it is time consuming
(e.g., graph matching method). In that case, an existing
matching tool can be used to discover mappings between
selected pairs of blocks of the input ontologies. If the size
of two blocks is small enough, the matching process can
run fast and does not require extra memory. Nevertheless,
this method suffers from several weaknesses. Firstly, the
marginal entities within a block may loss semantic infor-
mation. It is because when the method breaks down the
input ontology, some relations will be cut off. Therefore,
it may cause inaccuracy in the computation of similarity.
Next, the semantic coherence in each block and its size
strongly depend on the cut-off criteria of the clustering al-
gorithm. There is no guarantee about the maximum size
of blocks. It may produce unbalanced blocks, where some
of them have a very big size and the others have small
size. In that case, a big size block should be broken down
again. However, the more breaking down operations are,
the more information will be lost. Finally, the complex-
ity of the clustering algorithm is high. For example, the
complexity of the ROCK algorithm is O(n2log(n)); the
complexity of SCAN algorithm in a worst case is O(n2),
where n is the size of the ontology to be partitioned.

A sub-class of this category is known as anchor-based
partitioning methods. These methods are a modification
of the methods above, where the partitioning of to-be-
matched ontologies is done according to a set of anchors.
This method is also known as a dynamic selection of can-
didates. It does not break input ontologies into smaller
partitions like previous method. Instead, it iteratively up-
dates the set of candidate mappings, i.e., generate new
candidates by exploiting structural information of entities
and remove probable mismatched ones by judging their

19

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

similarity values. This method can be found in QOM [16],
Anchor-PROMPT [70] systems, and more recently in the
Anchor-Flood [31]. Basically, the main steps of this the
dynamic segmentation method work as follows. Firstly, at
least one of initial anchors between the input ontologies
is discovered by running a fast similarity measure (e.g.,
an equality string-based measure). In each iteration, an
aligned pair is selected to be explored. Note that the first
aligned pair comes from the initial anchor. For each con-
cept in the selected pair, the Anchor-Flood algorithm will
update the ontology segment, which this concept belongs
to, by adding its neighboring concepts such as super con-
cepts, siblings and sub-concepts of certain depth. The idea
is that the neighbors of similar concepts might also be
similar. Then, the alignment process (i.e., similarity com-
putation and mapping selection) produces aligned pairs
from the collected neighbors. The new aligned pairs are
then used as anchors for the next iteration. The process
is repeated until “either all the collected concepts are ex-
plored, or no new aligned pair is found”. It outputs a
set of aligned pairs within two segments across the input
ontologies. The main advantage of this method is time
efficiency and memory efficiency. It does not compute
similarity values for all pairs of entities in the input on-
tologies, but only within two “segments” build around the
selected anchor. The complexity analysis of this method
shows that it performs O(Nlog(N)) number of compari-
son in average, where N is the size of input ontologies.
Because this method run iteratively, so in each iteration,
the memory usage is small. However, this method may
suffer from some drawbacks when the size of two input on-
tologies is very large and the position of aligned pairs are
highly distributed. For example, the Foundational Model
of Anatomy ontology (FMA.owl - 78,989 classes) and the
National Cancer Institute Thesaurus ontology (NCI.owl -
66,724 classes) have in common only 2898 aligned pairs
[39], which is much smaller than the size of the both on-
tologies. In that case, in the two segments built around a
selected aligned pair, the number of aligned pairs is usu-
ally much smaller than the number of unaligned pairs.
Therefore, in the alignment process, the structural simi-
larity value computed for each pair of concepts between
two segments is small; consequently, it may not discover
new aligned pairs for the next iteration. This problem
causes the loss of many candidates. That is maybe a rea-
son why Anchor-Flood obtained a not high Recall (0.682)
in the OAEI 2008 Anatomy track.

10.3. Matcher combination

In [24], many combination methods have been pro-
posed to aggregate similarity values of different individual
matchers. For example, the Max/Min methods returns
the maximal/minimal similarity value of individual match-
ers. The Weighted method computes a weighted sum
of similarity values of individual matchers. The Average
method is one special case of the Weighted method and re-
turns where weights assigned to all individual matchers are
equal. The SIGMOID method combines multiple results
using a sigmoid function, which is essentially a smoothed

threshold function. Generally, Weighted and SIGMOID
methods need to manually set aggregation weights based
on experience for different individual matchers or tenta-
tively factor in the sigmoid function. This way of setting
parameters is not able to adapt to different matching tasks
because it might work well in a specific matching scenario
but not in the others. Moreover, manual setting is not
flexible and nor scalable namely when the selected match-
ers change or when their number increases. To the best
of our knowledge, there are two automatic weighted sum
methods that have been implemented and proved their
success. The first method is Harmonic Adaptive Weighted
Sum, which has been introduced in the PRIOR+ system.
According to the comparison analysis in [52], this method
outperforms all the methods mentioned above. The second
method is called Local Confidence Weighted Sum, which is
the core method for combining individual matchers in the
AgreementMaker system [11]. Finally, the selection of the
final candidates from the set of candidates is performed by
a greedy selection strategy to select the best candidates
based on their scores. Most of the ontology matching sys-
tems use a manual setting threshold. For example, SEr-
vOMap used a manual threshold assignment [14]. Our first
contribution presented in this paper is a machine learning-
based method, which is used to combine terminological
similarity measures (Section 5.1). The benefit of using
machine learning methods is that they can be flexible and
self-configuring during the training process. The second
contribution is a Dynamic Weighted Sum method, which
is used to combine terminological and structural matchers
(Section 7). For a given matching scenario, this method
evaluates the degree of reliability of these matchers, and
assigns appropriate weight values to them. In addition, it
automatically determines a threshold value to select the
final mappings result.

10.4. Mapping selection

Mapping selection is used at the end of the matching
process in order to produce a final alignment result. The
aim of this phase is to eliminate the suspicious incorrect
mappings and the inconsistent ones. Basically, three crite-
ria, namely, similarity values, matching cardinality and se-
mantic consistency, are widely used in mapping selection.
They lead to the corresponding three types of filtering
methods such as Threshold Filter, Cardinality Filter and
Semantic Filter. Many ontology matching systems have
integrated a semantic verification component to remove
inconsistency from the alignment but only few can really
work with large scale ontology matching. In S-Match [26],
this task is translated into a satisfaction problem where
all ontological axioms are transformed into Conjunctive
Normal Form (CNF). It then makes use of the SAT solver
(Sat4J13 library) to find the optimal solution for a consis-
tent alignment. Similarly, in CODI [35], the authors for-
mulate ontological axioms into a set of first order formula
with weights. Then, a Markov logic framework is applied
to solve the optimal consistency solution. The strategy

13http://www.sat4j.org/

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

followed by GOMMA [27] and by ASMOV [36] consists to
discover conflicts among mappings iteratively and then to
reject suspicious mappings having low similarity score at
the end of each running step. More recently, justification-
based mapping repair techniques have been proposed and
implemented in some systems such as Alcomo [53] and
LogMap [39]. They consider the integration of the two
ontologies and the set of mappings between them as a
single ontology and they assume that both of the ontolo-
gies are themselves logically consistent. Alcomo computes
all justifications for all unsatisfiable classes while LogMap
only computes one for each unsatisfiable class in each it-
eration until the whole set of mappings is cleaned. In
AML, The repair process consists in removing incoherence-
causing mappings from the input alignment. For scalabil-
ity sake, their algorithm computes core fragments from the
input ontologies; then detects all disjointness-based inco-
herences. Finally, it removes the set of mappings mappings
according to a set of predetermined set of criteria (e.g.,
filtering the conflicting sets that have a lowest-confidence
mapping) [76]. LogMap-BK [39] removes the inconsistency
by using existing specialized background knowledge such
as based on the UMLS lexicon 14. In YAM++ version
2012, we have implemented a greedy-based algorithm sim-
ilar to the Alcomo efficient algorithm, to perform incon-
sistency removing step. Whereas, in the current version,
we have implemented a new inconsistency removing algo-
rithm based on Clarkson algorithm for the weighted mini-
mum vertex cover problem. More precisely, we proposed a
semantic-based similarity measure to calculate a similarity
value of two concepts in the same ontology. It allows to
discover disjointness relationships in case where they are
not explicitly declared in the ontology. Finally, a method
that can detect and remove inconsistent mappings was im-
plemented in YAM++. As shown in [62], our approach is
especially efficient in large scale ontology matching.

10.5. External Background Knowledge

The main matching techniques that are used in GOMMA-
BK [27] to deal with large ontology matching are block-
ing, parallel matching and mapping composition. Paral-
lel ontology matching is performed on multiple computing
nodes and CPU cores. The blocking technique allows to
reduce search space by restricting matching to the over-
lapping ontology parts. Furthermore, GOMMA-BK al-
lows the improvement of matching quality by using domain
knowledge and mapping composition via domain-specific
hub ontologies namely UMLS [6], Uberon [17] and FMA15.
Notice that UMLS and Uberon contain an important set of
mappings between Mouse anatomy and Human anatomy,
which are difficult to be discovered by using common string
similarity measures. Furthermore, GOMMA-BK makes
use of multi-language translation services for improving
the synonyms discovery. AgreementMakerLight (AML)
[19] is a new and light version of AgreementMaker on-
tology matching system [18], which is dedicated to dealing

14http://www.nlm.nih.gov/research/umls/
15http://sig.biostr.washington.edu/projects/fm/AboutFM.html

with large ontology matching problem. The most impor-
tant structure for matching is the Lexicon, a table of class
names and synonyms in an ontology, which uses a ranking
system to weight them and score their matches. Its main
underlying matching techniques are based on element-level
matching and the use of three external resources as back-
ground knowledge: Uberon, UMLS and WordNet. The
main difference of YAM++ is that it is not using special-
ized background knowledge.

11. Conclusion

In this paper, we present our approach called YAM++
to enhance ontology matching, by using techniques com-
ing from different fields such as Machine Learning, In-
formation Retrieval and Graph Matching. The novelty
lies at individual matchers as well as at their combina-
tion level. For example, to deal with the terminological
heterogeneity, we have designed a new similarity measure
based on Information Retrieval techniques and a similarity
propagation method to deal with structural heterogene-
ity. Then, a dynamic weighted sum is applied to combine
and select the final mappings resulting from the element
and structure matchers. Obviously, the current version
of YAM++ passed all scalability and large scale ontology
matching tests and obtained high matching results over
OAEI datasets. The success of YAM++ is due to the com-
bination of several contributions like our effective IR-based
measure and our dynamic method for mapping selection,
which generates dynamically a threshold according to the
matching scenario.That is also the benefit of extensively
using index structure in many places and candidate filter-
ing techniques.

Finally, YAM++ is publicly available 16. In the very
near future, we will make available a multitask platform
including an online version of YAM++. Furthermore, a
GUI for the offline version for YAM++ is under develop-
ment.

We are currently working on the use of Background in
YAM++.

References

[1] Alsayed Algergawy, Sabine Massmann, and Erhard Rahm. A
clustering-based approach for large-scale ontology matching. In
ADBIS, 2011.

[2] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard
Rahm. Schema and ontology matching with COMA++. In
SIGMOD, pages 906–908, 2005.

[3] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data
- the story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22,
2009.

[4] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero.
Representation of context-dependant knowledge in ontologies:
A model and an application. Expert Syst. Appl., pages 1899–
1908, 2008.

[5] Jürgen Bock, Carsten Dänschel, and Matthias Stumpp.
MapPSO and MapEVO results for OAEI 2011. In OM, 2011.

[6] Olivier Bodenreider. The unified medical language system
(UMLS): integrating biomedical terminology. Nucleic Acids Re-
search, 32(Database-Issue):267–270, 2004.

16http://www.lirmm.fr/yam-plus-plus

21

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

[7] Abdelghani Chibani, Karim Djouani, and Yacine Amirat. Se-
mantic middleware for context services composition in ubiqui-
tous computing. In MOBILWARE, page 9, 2008.

[8] Watson Wei Khong Chua and Jung-Jae Kim. Eff2Match results
for OAEI 2010. In OM, 2010.

[9] William W. Cohen, Pradeep D. Ravikumar, and Stephen E.
Fienberg. A comparison of string distance metrics for name-
matching tasks. In IIWeb, pages 73–78, 2003.

[10] Alessandro Colantonio and Roberto Di Pietro. Concise: Com-
pressed ’n’ composable integer set. Information Processing Let-
ters, pages 644–650, 2010.

[11] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Ef-
ficient selection of mappings and automatic quality-driven com-
bination of matching methods. In OM, 2009.

[12] Isabel F. Cruz and Huiyong Xiao. Using a layered approach for
interoperability on the semantic web. In WISE, pages 221–231,
2003.

[13] Ricardo de Almeida Falbo, Fabiano Borges Ruy, and Ro-
drigo Dal Moro. Using ontologies to add semantics to a software
engineering environment. In SEKE, pages 151–156, 2005.

[14] Gayo Diallo. An effective method of large scale ontology match-
ing. J. Biomedical Semantics, 5:44, 2014.

[15] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y.
Halevy. Ontology matching: A machine learning approach. In
Handbook on Ontologies, pages 385–404. Springer-Verlag, 2004.

[16] Marc Ehrig and Steffen Staab. QOM – quick ontology mapping.
In ISWC, pages 683–697. Springer, 2004.

[17] C. J. Mungall et al. Uberon, an integrative multi-species
anatomy ontology. In Genome Biology, volume 13, 2012.

[18] Cruz Isabel F. et al. Using agreementmaker to align ontologies
for oaei 2010. In OM, 2010.

[19] Daniel Faria et al. AgreementMakerLight results for OAEI 2013.
In OM, 2013.

[20] Isabel F. Cruz et al. Using AgreementMaker to align ontologies
for OAEI 2010. In OM, 2010.

[21] Svab et al. OntoFarm: Towards an experimental collection of
parallel ontologies. In Poster Session at ISWC, 2005.

[22] Jérôme Euzenat, David Loup, Mohamed Touzani, and Petko
Valtchev. Ontology alignment with OLA. In Proceedings of the
3rd EON Workshop, 3rd International Semantic Web Confer-
ence, pages 59–68, 2004.

[23] Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt,
Pavel Shvaiko, and Cássia Trojahn dos Santos. Ontology align-
ment evaluation initiative: Six years of experience. J. Data
Semantics, pages 158–192, 2011.

[24] Jérôme Euzenat and Pavel Shvaiko. Ontology matching.
Springer-Verlag, Heidelberg (DE), 2007.

[25] Avigdor Gal and Pavel Shvaiko. Advances in ontology match-
ing. In Advances in Web Semantics I, pages 176–198. Springer-
Verlag, Berlin, Heidelberg, 2009.

[26] Fausto Giunchiglia and Pavel Shvaiko et al. S-Match: an algo-
rithm and an implementation of semantic matching. In ESWS,
pages 61–75, 2004.

[27] Anika Gross, Michael Hartung, Toralf Kirsten, and Erhard
Rahm. GOMMA results for OAEI 2012. In OM, 2012.

[28] Ramanathan V. Guha, Rob McCool, and Eric Miller. Semantic
search. In WWW, pages 700–709, 2003.

[29] Alon Y. Halevy. Why your data won’t mix: Semantic hetero-
geneity. ACM Queue, pages 50–58, 2005.

[30] Fayçal Hamdi, Brigitte Safar, Nobal B. Niraula, and Chantal
Reynaud. TaxoMap alignment and refinement modules: results
for OAEI 2010. In OM, 2010.

[31] Md. Seddiqui Hanif and Masaki Aono. Anchor-Flood: Results
for OAEI 2009. In OM, 2009.

[32] Marti A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In Proceedings of the 14th Conference on Com-
putational Linguistics - Volume 2, pages 539–545. Association
for Computational Linguistics, 1992.

[33] Wei Hu, Jianfeng Chen, Gong Cheng, and Yuzhong Qu. Ob-
jectCoref & Falcon-AO: results for OAEI 2010. In OM, 2010.

[34] Wei Hu, Yuzhong Qu, and Gong Cheng. Matching large ontolo-
gies: A divide-and-conquer approach. Data Knowl. Eng., pages
140–160, 2008.

[35] Jakob Huber, Timo Sztyler, Jan Nößner, and Christian Meil-
icke. CODI: Combinatorial optimization for data integration:

results for OAEI 2011. In OM, 2011.
[36] Yves R. Jean-Mary and Mansur R. Kabuka. ASMOV: Results

for OAEI 2008. In OM, 2008.
[37] Qiu Ji, Peter Haase, and Guilin Qi. Combination of similarity

measures in ontology matching using the OWA operator. In
Recent Developments in the Ordered Weighted Averaging Op-
erators, : Theory and Practice, Studies in Fuzziness and Soft
Computing, pages 281–295. Springer-Verlag, 2011.

[38] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. LogMap:
Logic-based and scalable ontology matching. In ISWC, pages
273–288, 2011.

[39] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Yujiao
Zhou. LogMap 2.0: Towards logic-based, scalable and inter-
active ontology matching. In International Workshop on Se-
mantic Web Applications and Tools for the Life Sciences, pages
45–46, 2012.

[40] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau Yujiao Zhou, and
Ian Horrocks. Large scale interactive ontology matching: Algo-
rithms and implementation. In ECAI, 2012.

[41] M. Klein. Combining and relating ontologies: an analysis of
problems and solutions. In IJCAI’01, 2001.

[42] Gerald Kowalski. Information Retrieval Systems: Theory and
Implementation. Kluwer Academic Publishers, Norwell, MA,
USA, 1st edition, 1997.

[43] Andreas Langegger, Wolfram Wöß, and Martin Blöchl. A se-
mantic web middleware for virtual data integration on the web.
In ESWC, pages 493–507, 2008.

[44] Holger Lausen, Ying Ding, Michael Stollberg, Dieter Fensel,
Rubén Lara Hernandez, and Sung-Kook Han. Semantic web
portals: state-of-the-art survey. J. Knowledge Management,
9(5):40–49, 2005.

[45] Bach Thanh Le, Rose Dieng-Kuntz, and Fabien Gandon. On on-
tology matching problems. In ICEIS (4), pages 236–243, 2004.

[46] Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. RiMOM: A dynamic
multistrategy ontology alignment framework. IEEE Trans.
Knowl. Data Eng., pages 1218–1232, 2009.

[47] Feiyu Lin and Kurt Sandkuhl. A survey of exploiting WordNet
in ontology matching. In IFIP AI, pages 341–350, 2008.

[48] McCandless M, Hatcher E, and Gospodnetic O. Lucene in Ac-
tion, Second Edition: Covers Apache Lucene 3.0. Manning
Publications Co, Greenwich, CT, USA, 2010.

[49] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm.
Generic schema matching with Cupid. In VLDB, pages 49–58,
2001.

[50] Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi
Studer, and York Sure. SEmantic portAL: The SEAL approach.
In Spinning the Semantic Web, pages 317–359, 2003.

[51] Christoph Mangold. A survey and classification of semantic
search approaches. Int. J. Metadata Semant. Ontologies, pages
23–34, 2007.

[52] Ming Mao, Yefei Peng, and Michael Spring. An adaptive on-
tology mapping approach with neural network based constraint
satisfaction. J. Web Sem., 8(1):14–25, 2010.

[53] Christian Meilicke. Alignment incoherence in ontology match-
ing. In Thesis, 2011.

[54] Christian Meilicke, Johanna Völker, and Heiner Stucken-
schmidt. Learning disjointness for debugging mappings between
lightweight ontologies. In Knowledge Engineering EKAW, pages
93–108, 2008.

[55] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Sim-
ilarity flooding: A versatile graph matching algorithm and its
application to schema matching. In ICDE, pages 117–128, 2002.

[56] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein.
RONDO: A programming platform for generic model manage-
ment. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, 2003, pages
193–204, 2003.

[57] Prasenjit Mitra, Natasha F. Noy, and Anuj Rattan Jaiswal.
OMEN: a probabilistic ontology mapping tool. In ISWC, 2005.

[58] Rajeev Motwani. Lecture notes on approximation algorithms:
Volume i. Technical report, 1993.

[59] Miklos Nagy, Maria Vargas-Vera, and Piotr Stolarski. DSSim
results for OAEI 2009. In OM, 2009.

[60] DuyHoa Ngo and Zohra Bellahsene. YAM++ results for OAEI
2012. In OM, 2012.

22

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

[61] DuyHoa Ngo and Zohra Bellahsene. Yam++ results for oaei
2013. In OM, 2013.

[62] DuyHoa Ngo and Zohra Bellahsene. Efficient semantic verifica-
tion of ontology alignment. In ACM IEEE WI, pages 141–148,
2015.

[63] DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta. A flexi-
ble system for ontology matching. In CAiSE Forum (Selected
Papers), pages 79–94, 2011.

[64] DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta. A generic
approach for combining linguistic and context profile metrics in
ontology matching. In OTM Conferences (2), pages 800–807,
2011.

[65] DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta. YAM++
results for OAEI 2011. In OM, 2011.

[66] DuyHoa Ngo, Zohra Bellahsene, and Konstantin Todorov. Ex-
tended tversky similarity for resolving terminological hetero-
geneities across ontologies. In ODBASE, pages 711–718, 2013.

[67] DuyHoa Ngo, Zohra Bellahsene, and Konstantin Todorov. Ex-
tended tversky similarity for resolving terminological hetero-
geneities across ontologies. In OTM Conferences, pages 711–
718, 2013.

[68] DuyHoa Ngo, Zohra Bellahsene, and Konstantin Todorov.
Opening the black box of ontology matching. In ESWC, pages
16–30, 2013.

[69] DuyHoa Ngo, Zohra Bellasene, and Remi Coletta. A generic
approach for combining linguistic and context profile metrics in
ontology matching. In ODBASE Conference, 2011.

[70] Natalya F. Noy and Mark A. Musen. Anchor-PROMPT: Using
non-local context for semantic matching. In IJCAI, pages 63–
70, 2001.

[71] Natalya Fridman Noy. Semantic integration: A survey of
ontology-based approaches. SIGMOD Record, 33(4):65–70,
2004.

[72] Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng. A bayesian
network approach to ontology mapping. In ISWC, pages 563–
577, 2005.

[73] Shvaiko Pavel and Jerome Euzenat. Ontology matching: State

of the art and future challenges. IEEE Transactions on Knowl-
edge and Data Engineering, 99, 2013.

[74] Velma L. Payne and Douglas P. Metzler. Hospital care watch
(hcw): An ontology and rule-based intelligent patient manage-
ment assistant. In CBMS, pages 479–484, 2005.

[75] M. Andrea Rodriguez and Max J. Egenhofer. Determining se-
mantic similarity among entity classes from different ontolo-
gies. IEEE Transactions on Knowledge and Data Engineering,
15:442–456, 2003.

[76] Emanuel Santos, Daniel Faria, Catia Pesquita, and Francisco M.
Couto. Ontology alignment repair through modularization and
confidence-based heuristics. PLoS ONE, 10:e0144807, 12 2015.

[77] Stefan Schlobach. Debugging and semantic clarification by pin-
pointing. In The Semantic Web: Research and Applications,
pages 27–44. Springer, 2005.

[78] C. E. Shannon. Prediction and entropy of printed english. Bell
Systems Technical Journal, pages 50–64, 1951.

[79] Pavel Shvaiko and Jérôme Euzenat. Ten challenges for ontology
matching. In OTM Conferences (2), pages 1164–1182, 2008.

[80] Paul R. Smart and Paula C. Engelbrecht. An analysis of the
origin of ontology mismatches on the semantic web. In EKAW,
pages 120–135, 2008.

[81] Vassilis Spiliopoulos, George A. Vouros, and Vangelis Karkalet-
sis. On the discovery of subsumption relations for the alignment
of ontologies. Web Semant., pages 69–88, 2010.

[82] Steffen Staab, Jürgen Angele, Stefan Decker, Michael Erdmann,
Andreas Hotho, Alexander Maedche, Hans-Peter Schnurr, Rudi
Studer, and York Sure. Semantic community web portals. Com-
puter Networks, 33(1-6):473–491, 2000.

[83] Amos Tversky. Features of similarity. Psychological Review,
84:327–352, 1977.

[84] Peng Wang. Lily results on SEALS platform for OAEI 2011. In
OM, 2011.

[85] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimiz-
ing bitmap indices with efficient compression. ACM Trans.
Database Syst., pages 1–38, 2006.

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3199270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

