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Extended Abstract

The chromatic number χ(D) of a digraph D is the chromatic number of its underlying graph.
The chromatic number of a class of digraphs D, denoted by χ(D), is the smallest k such that
χ(D) ≤ k for all D ∈ D, or +∞ if no such k exists. If χ(D) 6= +∞, we say that D has
bounded chromatic number.

We are interested in the following question : which are the digraph classes D such that
every digraph with sufficiently large chromatic number contains an element of D ? Let us
denote by Forb(H) (resp. Forb(H)) the class of digraphs that do not contain H (resp. any
element of H) as a subdigraph. The above question can be restated as follows :

Problem 1. Which are the classes of digraphs D such that χ(Forb(D)) < +∞ ?

An oriented graph is an orientation of a (simple) graph. An oriented path (resp., an
oriented cycle) is said directed if all vertices have in-degree and out-degree at most 1.

Observe that if D is an orientation of a graph G and Forb(D) has bounded chromatic
number, then Forb(G) has also bounded chromatic number. A classical result by Erdős
implies that G must be a tree. Burr proved that every (k − 1)2-chromatic digraph contains
every oriented tree of order k and conjectured Burr [3] that it could be further improved to
(2k − 2)-chromatic digraphs.

For special oriented trees T , better bounds on the chromatic number of Forb(T ) are
known. The most famous one, known as Gallai-Hasse-Roy-Vitaver Theorem [6] states that
χ(Forb(P+(k))) = k, where P+(k) is the directed path of length k (a directed path is an
oriented path in which all arcs are in the same direction).

The chromatic number of the class of digraphs not containing a prescribed oriented path
P on n vertices with two blocks (blocks are maximal directed subpaths) has been determined
by Addario-Berry et al. [1] :

Theorem 2 (Addario-Berry et al. [1]). Let P be an oriented path with two blocks on n ≥ 4
vertices, then χ(Forb(P )) = n− 1.

In this paper, we are interested in the chromatic number of Forb(H) when H is an infinite
family of oriented cycles. Let us denote by S-Forb(D) (resp. S-Forb(D)) the class of digraphs
that contain no subdivision ofD (resp. any element ofD) as a subdigraph. We are particularly
interested in the chromatic number of S-Forb(C), where C is a family of oriented cycles.

Let us denote by ~Ck the directed cycle of length k. For all k, χ(S-Forb(~Ck)) = +∞
because transitive tournaments have no directed cycle. Let us denote by C(k, `) the oriented
cycle with two blocks, one of length k and the other of length `. Observe that the oriented
cycles with two blocks are the subdivisions of C(1, 1). As pointed by Gyárfás and Thomassen
(see [1]), there are acyclic oriented graphs with arbitrarily large chromatic number and no
oriented cycles with two blocks. Therefore χ(S-Forb(C(k, `))) = +∞. We first generalise this
result to every oriented cycle.

Theorem 3. For any oriented cycle C, χ(S-Forb(C)) = +∞.

In fact, we show the following stronger theorem.

Theorem 4. For any positive integers b, c, there exists an acyclic digraph Dc with χ(Dc) ≥ c
in which all oriented cycles have more than b blocks.



We need a construction due to Erdős and Lovász [5] of hypergraphs with high girth and
large chromatic number.

Theorem 5. [5, Theorem 1’] For k, g, c ∈ N, there exists a k-uniform hypergraph with girth
larger than g and weak chromatic number larger than c.

We assume g is being fixed, the following construction allow us to find Dc+1 from Dc.
Let p be the number of proper c-colourings of Dc, and let those colourings be denoted by
col1c , ..., col

p
c . By Theorem 5 there exists a c× p-uniform hypergraph H with weak chromatic

number > p and girth > g/2. Let X = {x1, . . . , xn} be the ground set of H.
We construct Dc+1 from n disjoint copies D1

c , ..., D
n
c of Dc as follows. For each hyperedge

S ∈ H, we do the following :

• We partition S into p sets S1, . . . , Sp of cardinality c.
• For each set Si = {xk1

, . . . , xkc
}, we choose vertices vk1

∈ Dk1
c , . . . , vkc

∈ Dkc
c such

that colic(vk1
) = 1, . . . , colic(vkc

) = c, and add a new vertex wS,i with vk1
, . . . , vkc

as
in-neighbours.

On the other hand, considering strongly connected (strong for short) digraphs may lead to
dramatically different result. An example is provided by the following celebrated result due
to Bondy [2], which can be rephrased as follows when denoting the class of strong digraphs
by S.

Theorem 6 (Bondy [2]). χ(S-Forb(~Ck) ∩ S) = k − 1.

Inspired by this theorem, Addario-Berry et al. [1] posed the following problem.

Problem 7. Let k and ` be two positive integers then χ(S-Forb(C(k, `) ∩ S)) < k + l.

We give evidence for this problem by showing the following weaker statement.

Theorem 8. Let k and ` be two positive integers such that k ≥ max{`, 3}, and let D be a
digraph in S-Forb(C(k, `)) ∩ S. Then, χ(D) ≤ (k + `− 2)(k + `− 3)(2`+ 2)(k + `+ 1).

We need the following lemma.
The union of two digraphsD1 andD2 is the digraphD1∪D2 with vertex set V (D1)∪V (D2)

and arc set A(D1) ∪A(D2).

Lemma 9. Let D1 and D2 be two digraphs. χ(D1 ∪D2) ≤ χ(D1)× χ(D2).

A consequence of the previous lemma is that, if we partition the arc set of D into set A1

· · · Ak, then bounding the chromatic number of all digraphs induced by the Ai implies that
D has bounded chromatic number.

Proof. Let D be a strong digraph without any copy of C(k, `), we exhibit a colouring of D
using a bounded number of colours. The proof heavily relies on the technique of levelling.
Let u be a vertex of D. The level of a vertex x, noted lvl(x) is the length of the shortest
dipath from u to x. L(i) is the set of vertices at level i.

Since D is strongly connected, it has an out-generator u. Let T be a BFS-tree with root
u. We define the following sets of arcs.

A0 = {xy ∈ A(D) | lvl(x) = lvl(y)};
A1 = {xy ∈ A(D) | 0 < | lvl(x)− lvl(y)| < k + `− 3;

A′ = {xy ∈ A(D) | lvl(x)− lvl(y) ≥ k + `− 3}.

Since k + ` − 3 > 0 and there is no arc xy with lvl(y) > lvl(x) + 1, (A0, A1, A
′) is a

partition of A(D). Observe moreover that A(T ) ⊆ A1. We further partition A′ into two sets
A2 and A3, where A2 = {xy ∈ A′ | y is an ancestor of x in T} and A3 = A′ \ A2. Then
(A0, A1, A2, A3) is a partition of A(D). Let Dj = (V (D), Aj) for all j ∈ {0, 1, 2, 3}.



Claim 10. χ(D0) ≤ k + `− 2.

Proof. Observe that D0 is the disjoint union of the D[Li] where Li = {v | distD(u, v) = i}.
Therefore it suffices to prove that χ(D[Li]) ≤ k + `− 2 for all non-negative integer i.

L0 = {u} so the result holds trivially for i = 0.
Assume now i ≥ 1. Suppose for a contradiction χ(D[Li]) ≥ k + ` − 1. Since k ≥ 3, by

Theorem 2, D[Li] contains a copy Q of P+(k−1, `−1), the path on two blocks of length k−1
and `−1 with one vertex of indegree 2. Let v1 and v2 be the initial and terminal vertices of Q,
and let x be the least common ancestor of v1 and v2. By definition, for j ∈ {1, 2}, there exists
a dipath Pj from x to vj in T . By definition of least common ancestor, V (P1)∩V (P2) = {x},
V (Pj) ∩ Li = {vj}, j = 1, 2, and both P1 and P2 have length at least 1. Consequently,
P1 ∪ P2 ∪Q is a subdivision of C(k, `), a contradiction.

Claim 11. χ(D1) ≤ k + `− 3.

Proof. Let φ1 be the colouring of D1 defined by φ1(x) = lvl(x) (mod k+ `−3). By definition
of D1, this is clearly a proper colouring of D1.

The following two claims are more complicated, we refer the reader to [4] for the complete
proofs.

Claim 12. χ(D2) ≤ 2`+ 2.

Claim 13. χ(D3) ≤ k + `+ 1.

Claims 10, 11, 12, and 13, together with Lemma 9 yield the result.

More generally, one may wonder what happens for other oriented cycles. Our next result
generalises Theorem 8 for Ĉ4 the cycle with 4 blocks.

Theorem 14. Let D be a digraph in S-Forb(Ĉ4). If D admits an out-generator, then χ(D) ≤
24.

Proof. The general idea is the same as in the proof of Theorem 8.
Suppose that D admits an out-generator u and let T be an BFS-tree with root u. We

partition A(D) into three sets according to the levels of u.

A0 = {(x, y) ∈ A(D) | lvl(x) = lvl(y)};
A1 = {(x, y) ∈ A(D) | | lvl(x)− lvl(y)| = 1};
A2 = {(x, y) ∈ A(D) | lvl(y) ≤ lvl(x)− 2}.

For i = 0, 1, 2, let Di = (V (D), Ai).

Claim 15. χ(D0) ≤ 3.

Proof. Suppose for a contradiction that χ(D) ≥ 4. By Theorem 2, it contains a P−(1, 1)
(y1, y, y2), that is (y, y1) and (y, y2) are in A(D0). Let x be the least common ancestor of
y1 and y2 in T . The union of T [x, y1], (y, y1), (y, y2), and T [x, y2] is a subdivision of Ĉ4, a
contradiction.

Claim 16. χ(D1) ≤ 2.

Proof. Since the arc are between consecutive levels, then the colouring φ1 defined by φ1(x) =
lvl(x) mod 2 is a proper 2-colouring of D1.

Let y ∈ Vi we denote by N ′(y) the out-degree of y in
⋃

0≤j≤i−1 Vj . Let D
′ = (V,A′) with

A′ = ∪x∈V {(x, y), y ∈ N ′(x)} and Dx = (V,Ax) where Ax is the set of arc inside the level
and from Vi to Vi+1 for all i. Note that A = A′ ∪Ax and



Claim 17. χ(D2) ≤ 4.

Proof. We refer to [4] for the proof of this statement.

Claims 15, 16, 17, and Lemma 9 implies χ(D) ≤ 24.
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