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Extended Abstract

The chromatic number χ(D) of a digraph D is the chromatic number of its underlying graph.

The chromatic number of a class of digraphs D, denoted by χ(D), is the smallest k such that χ(D) ≤ k for all D ∈ D, or +∞ if no such k exists. If χ(D) = +∞, we say that D has bounded chromatic number.

We are interested in the following question : which are the digraph classes D such that every digraph with sufficiently large chromatic number contains an element of D ? Let us denote by Forb(H) (resp. Forb(H)) the class of digraphs that do not contain H (resp. any element of H) as a subdigraph. The above question can be restated as follows :

Problem 1. Which are the classes of digraphs D such that χ(Forb(D)) < +∞ ?

An oriented graph is an orientation of a (simple) graph. An oriented path (resp., an oriented cycle) is said directed if all vertices have in-degree and out-degree at most 1.

Observe that if D is an orientation of a graph G and Forb(D) has bounded chromatic number, then Forb(G) has also bounded chromatic number. A classical result by Erdős implies that G must be a tree. Burr proved that every (k -1) 2 -chromatic digraph contains every oriented tree of order k and conjectured Burr [3] that it could be further improved to (2k -2)-chromatic digraphs.

For special oriented trees T , better bounds on the chromatic number of Forb(T ) are known. The most famous one, known as Gallai-Hasse-Roy-Vitaver Theorem [START_REF] Gallai | On directed paths and circuits[END_REF] states that χ(Forb(P + (k))) = k, where P + (k) is the directed path of length k (a directed path is an oriented path in which all arcs are in the same direction).

The chromatic number of the class of digraphs not containing a prescribed oriented path P on n vertices with two blocks (blocks are maximal directed subpaths) has been determined by Addario-Berry et al. [START_REF] Addario-Berry | Paths with two blocks in n-chromatic digraphs[END_REF] : Theorem 2 (Addario-Berry et al. [START_REF] Addario-Berry | Paths with two blocks in n-chromatic digraphs[END_REF]). Let P be an oriented path with two blocks on n ≥ 4 vertices, then χ(Forb(P )) = n -1.

In this paper, we are interested in the chromatic number of Forb(H) when H is an infinite family of oriented cycles. Let us denote by S-Forb(D) (resp. S-Forb(D)) the class of digraphs that contain no subdivision of D (resp. any element of D) as a subdigraph. We are particularly interested in the chromatic number of S-Forb(C), where C is a family of oriented cycles.

Let us denote by C k the directed cycle of length k. For all k, χ(S-Forb( C k )) = +∞ because transitive tournaments have no directed cycle. Let us denote by C(k, ) the oriented cycle with two blocks, one of length k and the other of length . Observe that the oriented cycles with two blocks are the subdivisions of C(1, 1). As pointed by Gyárfás and Thomassen (see [START_REF] Addario-Berry | Paths with two blocks in n-chromatic digraphs[END_REF]), there are acyclic oriented graphs with arbitrarily large chromatic number and no oriented cycles with two blocks. Therefore χ(S-Forb(C(k, ))) = +∞. We first generalise this result to every oriented cycle. Theorem 3. For any oriented cycle C, χ(S-Forb(C)) = +∞.

In fact, we show the following stronger theorem. We need a construction due to Erdős and Lovász [START_REF] Erdős | Problems and results on 3-chromatic hypergraphs and some related questions[END_REF] of hypergraphs with high girth and large chromatic number. Theorem 5. [5, Theorem 1'] For k, g, c ∈ N, there exists a k-uniform hypergraph with girth larger than g and weak chromatic number larger than c.

We assume g is being fixed, the following construction allow us to find D c+1 from D c . Let p be the number of proper c-colourings of D c , and let those colourings be denoted by col 1 c , ..., col p c . By Theorem 5 there exists a c × p-uniform hypergraph H with weak chromatic number > p and girth > g/2. Let X = {x 1 , . . . , x n } be the ground set of H.

We construct D c+1 from n disjoint copies D 1 c , ..., D n c of D c as follows. For each hyperedge S ∈ H, we do the following :

• We partition S into p sets S 1 , . . . , S p of cardinality c.

• For each set S i = {x k1 , . . . , x kc }, we choose vertices v k1 ∈ D k1 c , . . . , v kc ∈ D kc c such that col i c (v k1 ) = 1, . . . , col i c (v kc ) = c
, and add a new vertex w S,i with v k1 , . . . , v kc as in-neighbours.

On the other hand, considering strongly connected (strong for short) digraphs may lead to dramatically different result. An example is provided by the following celebrated result due to Bondy [START_REF] Bondy | Disconnected orientations and a conjecture of Las Vergnas[END_REF], which can be rephrased as follows when denoting the class of strong digraphs by S.

Theorem 6 (Bondy [START_REF] Bondy | Disconnected orientations and a conjecture of Las Vergnas[END_REF]).

χ(S-Forb( C k ) ∩ S) = k -1.
Inspired by this theorem, Addario-Berry et al. [START_REF] Addario-Berry | Paths with two blocks in n-chromatic digraphs[END_REF] posed the following problem. A consequence of the previous lemma is that, if we partition the arc set of D into set A 1 • • • A k , then bounding the chromatic number of all digraphs induced by the A i implies that D has bounded chromatic number.

Proof. Let D be a strong digraph without any copy of C(k, ), we exhibit a colouring of D using a bounded number of colours. The proof heavily relies on the technique of levelling. Let u be a vertex of D. The level of a vertex x, noted lvl(x) is the length of the shortest dipath from u to x. L(i) is the set of vertices at level i.

Since D is strongly connected, it has an out-generator u. Let T be a BFS-tree with root u. We define the following sets of arcs.

A 0 = {xy ∈ A(D) | lvl(x) = lvl(y)}; A 1 = {xy ∈ A(D) | 0 < | lvl(x) -lvl(y)| < k + -3; A = {xy ∈ A(D) | lvl(x) -lvl(y) ≥ k + -3}.
Since k + -3 > 0 and there is no arc xy with lvl(y) > lvl(x) + 1, (A 0 , A 1 , A ) is a partition of A(D). Observe moreover that A(T ) ⊆ A 1 . We further partition A into two sets A 2 and A 3 , where A 2 = {xy ∈ A | y is an ancestor of x in T } and

A 3 = A \ A 2 . Then (A 0 , A 1 , A 2 , A 3 ) is a partition of A(D). Let D j = (V (D), A j ) for all j ∈ {0, 1, 2, 3}. Claim 10. χ(D 0 ) ≤ k + -2. Proof. Observe that D 0 is the disjoint union of the D[L i ] where L i = {v | dist D (u, v) = i}.
Therefore it suffices to prove that χ(D[L i ]) ≤ k + -2 for all non-negative integer i.

L 0 = {u} so the result holds trivially for i = 0.

Assume now i ≥ 1. Suppose for a contradiction χ(D[L i ]) ≥ k + -1. Since k ≥ 3, by Theorem 2, D[L i ] contains a copy Q of P + (k -1, - 1 
), the path on two blocks of length k -1 and -1 with one vertex of indegree 2. Let v 1 and v 2 be the initial and terminal vertices of Q, and let x be the least common ancestor of v 1 and v 2 . By definition, for j ∈ {1, 2}, there exists a dipath P j from x to v j in T . By definition of least common ancestor, V (P 1 ) ∩ V (P 2 ) = {x}, V (P j ) ∩ L i = {v j }, j = 1, 2, and both P 1 and P 2 have length at least 1. Consequently,

P 1 ∪ P 2 ∪ Q is a subdivision of C(k, ), a contradiction. Claim 11. χ(D 1 ) ≤ k + -3.
Proof. Let φ 1 be the colouring of D 1 defined by φ 1 (x) = lvl(x) (mod k + -3). By definition of D 1 , this is clearly a proper colouring of D 1 .

The following two claims are more complicated, we refer the reader to [START_REF] Cohen | Subdivisions of oriented cycles in digraphs with large chromatic number[END_REF] for the complete proofs. Proof. The general idea is the same as in the proof of Theorem 8.

Suppose that D admits an out-generator u and let T be an BFS-tree with root u. We partition A(D) into three sets according to the levels of u.

A 0 = {(x, y) ∈ A(D) | lvl(x) = lvl(y)}; A 1 = {(x, y) ∈ A(D) | | lvl(x) -lvl(y)| = 1}; A 2 = {(x, y) ∈ A(D) | lvl(y) ≤ lvl(x) -2}. For i = 0, 1, 2, let D i = (V (D), A i ).
Claim 15. χ(D 0 ) ≤ 3.

Proof. Suppose for a contradiction that χ(D) ≥ 4. By Theorem 2, it contains a P -(1, 1) (y 1 , y, y 2 ), that is (y, y 1 ) and (y, y 2 ) are in A(D 0 ). Let x be the least common ancestor of y 1 and y 2 in T . The union of T [x, y 1 ], (y, y 1 ), (y, y 2 ), and T [x, y 2 ] is a subdivision of Ĉ4 , a contradiction.

Claim 16. χ(D 1 ) ≤ 2.

Proof. Since the arc are between consecutive levels, then the colouring φ 1 defined by φ 1 (x) = lvl(x) mod 2 is a proper 2-colouring of D 1 .

Let y ∈ V i we denote by N (y) the out-degree of y in 0≤j≤i-1 V j . Let D = (V, A ) with A = ∪ x∈V {(x, y), y ∈ N (x)} and D x = (V, A x ) where A x is the set of arc inside the level and from V i to V i+1 for all i. Note that A = A ∪ A x and

Theorem 4 .

 4 For any positive integers b, c, there exists an acyclic digraph D c with χ(D c ) ≥ c in which all oriented cycles have more than b blocks.

Problem 7 .

 7 Let k and be two positive integers then χ(S-Forb(C(k, ) ∩ S)) < k + l.We give evidence for this problem by showing the following weaker statement. Theorem 8. Let k and be two positive integers such that k ≥ max{ , 3}, and let D be a digraph in S-Forb(C(k, )) ∩ S. Then, χ(D) ≤ (k + -2)(k + -3)(2 + 2)(k + + 1). We need the following lemma. The union of two digraphs D 1 and D 2 is the digraph D 1 ∪D 2 with vertex set V (D 1 )∪V (D 2 ) and arc set A(D 1 ) ∪ A(D 2 ). Lemma 9. Let D 1 and D 2 be two digraphs. χ(D 1 ∪ D 2 ) ≤ χ(D 1 ) × χ(D 2 ).

  Claim 12. χ(D 2 ) ≤ 2 + 2. Claim 13. χ(D 3 ) ≤ k + + 1. Claims 10, 11, 12, and 13, together with Lemma 9 yield the result. More generally, one may wonder what happens for other oriented cycles. Our next result generalises Theorem 8 for Ĉ4 the cycle with 4 blocks. Theorem 14. Let D be a digraph in S-Forb( Ĉ4 ). If D admits an out-generator, then χ(D) ≤ 24.

Claim 17. χ(D 2 ) ≤ 4.

Proof. We refer to [4] for the proof of this statement.

Claims 15, 16, 17, and Lemma 9 implies χ(D) ≤ 24.