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Extended Abstract

Let G be a graph G. The neighborhood of a vertex v in G, denoted by N(v), is the set of
vertices adjacent to v i G. It closed neighborhood is the set N [v] = N(v) ∪ {v}.

A set C ⊆ V (G) is an identifying code in G if

(i) for all v ∈ V (G), N [v] ∩ C 6= ∅, and

(ii) for all u, v ∈ V (G), N [u] ∩ C 6= N [v] ∩ C.

The identifier of v by C, denoted by C[v], is the set N [v] ∩ C. Hence a identifying code is a
set such that the vertices have non-empty distinct identifiers.

Let G be a (finite or infinite) graph with bounded maximum degree. For any non-negative
integer r and vertex v, we denote by Br(v) the ball of radius r in G, that is Br(v) = {x |
dist(v, x) ≤ r}. For any set of vertices C ⊆ V (G), the density of C in G, denoted by d(C,G),
is defined by

d(C,G) = lim sup
r→+∞

|C ∩Br(v0)|
|Br(v0)|

,

where v0 is an arbitrary vertex in G. The infimum of the density of an identifying code in G
is denoted by d∗(G). Observe that if G is finite, then d∗(G) = |C∗|/|V (G)|, where C∗ is a
minimum-size identifying code in G.

The problem of finding low-density identifying codes was introduced in [9] in relation to
fault diagnosis in arrays of processors. Here the vertices of an identifying code correspond
to controlling processors able to check themselves and their neighbors. Thus the identifying
property guarantees location of a faulty processor from the set of “complaining” controllers.
Identifying codes are also used in [10] to model a location detection problem with sensor
networks.

Particular interest was dedicated to grids as many processor networks have a grid topology.
There are three regular infinite grids in the plane, namely the hexagonal grid, the square grid
and the triangular grid.

Regarding the infinite hexagonal grid GH , the best upper bound on d∗(GH) is 3/7 and
comes from two identifying codes constructed by Cohen et al. [4]; these authors also proved
a lower bound of 16/39. This lower bound was improved to 12/29 by Cranston and Yu [6].
Cukierman and Yu [7] further improved it to 5/12.

The infinite square grid GS is the infinite graph with vertices in Z×Z such that N((x, y)) =
{(x, y±1), (x±1, y)}. Given an integer k ≥ 2, let [k] = {1, . . . , k} and let Sk be the subgraph
of GS induced by the vertex set {(x, y) ∈ Z × [k]}. In [3], Cohen et al. gave a periodic
identifying code of GS with density 7/20. This density was later proved to be optimal by
Ben-Haim and Litsyn [1]. Daniel, Gravier, and Moncel [8] showed that d∗(S1) = 1

2 and

d∗(S2) =
3
7 . They also showed that for every k ≥ 3,
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.

These bounds were recently improved by Bouznif et al. [2] who established
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They also proved d∗(S3) =
3
7 .



The infinite triangular grid GT is the infinite graph with vertices in Z × Z such that
N((x, y)) = {(x, y ± 1), (x ± 1, y), (x − 1, y + 1), (x + 1, y − 1)}. Given an integer k ≥ 2, let
[k] = {1, . . . , k} and let Tk be the subgraph of GT induced by the vertex set {(x, y) ∈ Z× [k]}.
Karpovsky et al. [9] showed that d∗(GT ) = 1/4. Trivially, T1 = S1. Hence d∗(T1) = 1

2 In
this paper, we prove the following results regarding the density of an identifying code of Tk,
k > 1.

Theorem 1 • d∗(Tk) =
1
4 + 1

4k for every odd k.

• d∗(T2) =
1
2 and d∗(T4) = d∗(T6) =

1
3 .

• 1
4 + 1

4k ≤ d∗(Tk) ≤ 1
4 + 1

2k for every even k.

The upper bounds are obtained by showing periodic identifying codes with the desired
density. Consider the sets (see Figure 1)

C2 = {(x, 1) | x ≡ 1, 3 mod 5} ∪ {(x, 2) | x ≡ 1, 2, 4 mod 5};
C2k−1 = {(x, y) | x | x, y odd and 1 ≤ x, y ≤ 2k − 1};

C4 = {(x, 2) | x ≡ 0, 3 mod 3} ∪ {(x, 3) | x ≡ 0, 1 mod 3};
C2k = {(x, y), (x, y) | x, y odd , 1 ≤ x ≤ 2k and 1 ≤ y ≤ 2k − 3} ∪ {(x, 2k − 1) | x ∈ Z}.

It is easy to check that the above defined sets C2 is an identifying codes of T2 with density
1/2, C3 is identifying codes of T3 with density 1/3, C4 is an identifying code of T4 with density
3/10. and C2k−1 is an identifying code of T2k−1 with density 1

4 +
1
4k and C2k is an identifying

code of T2k with density 1
4 + 1

2k .

Our lower bounds are obtained via the Discharging Method. The general idea is the
following. We consider any identifying code C of Tk. The vertices in C receive a certain
value qk > 0 of charge and the vertices not in C receive charge 0. Then we apply some local
discharging rules. Here local means that there is no charge transfer from a vertex to a vertex
at distance more than dk for some fixed constant dk, and that the total charge sent by a
vertex is bounded by some fixed value mk. Finally, we prove that after the discharging, every
vertex v has final charge chrg∗(v) at least pk for some fixed pk > 0. We claim that it implies
d(C,G) ≥ pk

qk
. Since a vertex sends charge at most mk to vertices at distance at most dk, a

charge of at most mk · |Br+s(v0) \Br(v0)| ≤ 2dk · k ·mk enters Br(v0) during the discharging
phase. Thus

|C ∩Br(v0)| =
1

qk

∑
v∈Br(v0)

chrg0(v) ≥ 1

qk

 ∑
v∈Br(v0)

chrg∗(v)−mk · |Br+s(v0) \Br(v0)|


≥ pk|Br(v0)| − 2dk · k ·mk

qk
.

But |Br(v0)| ≥ 2(k + 1)r − k2, thus d(C,Sk) ≥ lim sup
r→+∞

(
pk
qk
− 1

qk
· 2dk · k ·mk

2(k + 1)r − k2

)
=

pk
qk

.

This proves our claim. As the claim holds for any identifying code, we have d∗(Tk) ≥ pk/qk.
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Figure 1: Optimal identifying codes of T2, T3, T4, T5 and T6
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