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CNRS, I3S, France
Email: mosser@i3s.unice.fr

Philippe Collet
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Abstract—Smart buildings and smart cities rely on intercon-
nected sensor networks that collect data about their environment
to support various applications. Developing and deploying the
data collection architectures of these systems is a challeng-
ing problem. The specificities of the sensor platforms compel
software engineers to work at a low level. This makes this
activity tedious, producing code that badly exploits the network
architecture, and hampering reuse of data collection policies.
Moreover, several data collection programs cannot be guaranteed
to be deployable on a shared infrastructure. In this paper, we
present an automated approach that supports (i) the definition
of data collection policies at a higher level of abstraction, (ii) the
representation of the diverse platforms and the network topology,
and (iii) the automatic composition and deployment of the
policies on top of heterogeneous sensing infrastructures following
different strategies. The approach is tooled and has been assessed
on both realistic and simulated deployments.

Index Terms—sensor network; automated deployment; infras-
tructure reuse;

I. INTRODUCTION

Physical objects interconnected through the Internet form
the Internet of Things (IoT) [11]. According to the Gartner
group, by 2020, up to 26 billions of these things could be
available, producing huge information flows from diverse and
large-scale sensing infrastructures. Smart buildings and smart
cities are typical contexts in which many new applications
have to be developed by relying on these infrastructures to
collect data about their environment [26], [1]. In this context,
pieces of software that manage and consume such data are
extremely specific and dedicated to very different and evolving
purposes, e.g., transportation regulations, road traffic analysis,
autonomic buildings. These application domains require their
stakeholders (e.g., domain experts) to define requirements
that will be implemented by software engineers. The main
challenge here is the gap that naturally exists between what a
software engineer knows about the sensing infrastructures and
how the relevant data can be collected [16].

For now, a sensor network needs to be configured at the
hardware level and programmed at a low level according to the
expressed needs. This activity is extremely tedious for software
engineers as they need to understand the diverse architectures
of sensor networks and deal with low-level programming
languages (e.g., C, nesC [18]) to find a common ground.
Moreover, sensor network platforms evolve quickly, and it is
out of the scope of a given application domain to follow such
evolution. Finally, as sensor networks are designed for specific

domains, it is not immediate to reuse a given network and
adapt it for another purpose. As a consequence, sharing already
deployed infrastructure is tedious, and software evolution
on top of it is almost impossible when combined with the
heterogeneous nature of the devices.

Developing and deploying the data collection architectures
of these systems is a challenging problem. The current state of
practice and the specificities of the sensor platforms compel
software engineers and sensor network experts to work jointly
at a very low level of abstraction to perform these tasks.
Programming abstractions hopefully exist, but are linked to
specific sensor operating systems of dedicated platforms [9],
[18]. However these abstractions do not remove the need
for code to embed network specific concerns, which are
heterogeneous by nature.

Toolchains for the IoT have also been proposed, but they
either focus on the user-centric applications [21] or the man-
agement of the underlying platforms [19]. Consequently they
are not capable of supporting the composition and deployment
of several policies on a shared infrastructures.

On the contrary some other approaches really focus on
modeling data collection policies. However some of them
do not abstract enough the low-level elements to provide an
appropriate support for software engineers interacting with
domain experts [20]. Others abstract too much with activity
diagrams and low-level specific code must be written with
no support for reuse and no handling of the diversity of
sensing infrastructures [10]. Finally, when the concerns of
the different stakeholders are well separated, the expression
of data collection policies is not well supported and reuse is
impossible [28]. With the increasing number of scenarios to
be implemented over various infrastructures, the development
and deployment activities then become more tedious and time-
consuming.

To tackle these problems, we present in this paper a tooled
approach that supports (i) the definition of data collection
policies at a higher level of abstraction (for software engi-
neers), (ii) the representation of the diverse platforms and the
network topology (for sensor network experts), and (iii) the
automatic composition and deployment of the policies on top
of heterogeneous sensing infrastructures, following different
strategies.

To achieve this envisioned approach in an operational tool-
chain, we identified the four following requirements (Ri)



expected by the different stakeholders.
R1. A software engineer handles only business concerns.

For now, the sensor network needs to be configured at
the hardware level. Thus, software engineers need to
understand the underlying infrastructure and use low-
level programming languages. It is the responsibility of
sensor network experts to abstract the complexity of
such infrastructures. Such an abstraction also enables a
software engineer to reuse her policy across different
sensing infrastructures as her code is no more coupled
with a specific sensor network.

R2. A data collection policy must be automatically
adapted to the different platforms specificities. The
large number of available platforms has led to a large
software and hardware diversity making each deployment
specific to a single infrastructure. The state of the art
already provides some abstractions but they need to be
supported by the different platforms and remain depen-
dent on the underlying infrastructure. To assist software
engineers in the exploitation of a sensing infrastructure,
a data collection policy should be automatically adapted
to the specificities of the platforms.

R3. A data collection policy must be automatically pro-
jected over a sensing infrastructure. With regard to the
separation of concerns principles [13], a data collection
policy must not be coupled with a sensing infrastruc-
ture. Large scale sensing infrastructures make available
a multitude of platforms distributed in complex network
topologies. A software engineer should not have to deal
with this complexity, every concept of the data collec-
tion policy should be directly assigned to a sub-set of
platforms. Every concept would then, according to a
deployment strategy defined by a sensor network expert,
be projected and instantiated on a single platform.

R4. An infrastructure must be automatically shared be-
tween different applications. Considering the important
investment required by the installation of a sensor net-
work1, reusing the infrastructure for multiple applications
is necessary. At the time of the deployment of a new
policy, several other policies can be already executed
on the sensing infrastructure. Because of the separation
of the software and network points of view, a software
engineer cannot know a priori the other policies she needs
to compose. Thus, automated deployment mechanisms
should also provide automated composition capabilities.

II. WALKTHROUGH

To demonstrate the need of an automated approach, we
introduce here a running example2 inspired from a realistic
deployment [6]. We consider a software engineer who is in
charge of programming an existing sensing infrastructure to
implement several policies gathered from domain experts. The
example focuses on a first policy that aims at monitoring

1e.g., 15 Me have been invested for the Smart Parking infrastructure in
the city of Nice, France (http://enstotoday.com/parking-worth-paying-for/).

2More details can be found on a companion web page:
https://github.com/ace-design/DEPOSIT/blob/master/publications/apsec16.md

energy losses in an office, i.e., receiving an alert each time
both the door and the window of an office are opened while
the air conditioning is powered on. This scenario will be
deployed on a sensing infrastructure that is currently executed
on an academic campus where offices are equipped with door
and window opening sensors, and air conditioning sensors. To
simplify the exploitation of sensing infrastructure by software
engineer, we advocate that the definition and the deployment
of a data collection policy should respect the principles of
separation of concerns, i.e., a software engineer only focuses
on the application logic while a sensor network expert provide
the network logic (cf. requirement R1). In this section, we
propose to discuss each step of what would be an appropriate
automated toolchain for programming sensing infrastructures
while meeting the other three requirements identified in the
introduction.

A. Toolchain Overview
As inputs, the toolchain consumes a data collection policy

(provided by the software engineer) and a description of the
network (provided by the sensor network expert). As output,
it provides ready-to-flash code for each platform involved in
the realization of the data collection policy.

The data gathering on a sensor network is configured using
data collection policies, i.e., sets of operations performed
on data to convert them into knowledge [12]. As discussed
in the introduction, sensing infrastructures are configured at
the hardware level using low-level programming languages.
This activity is tedious for software engineers as they need
to understand the architecture of the network and deal with
low-level programming languages [9], [18]. Other proposed
abstractions are also not meeting all identified requirements
at the same time [21], [28]. Besides the paradigm of wireless
sensor network virtualization seems promising to abstract the
complexity of the architecture but the state of the art does not
provide a software engineer-oriented language [16].

To meet R1, we propose that the software engineer relies
on a Domain-Specific Language (DSL) to express her data
collection policies over a sensing infrastructure. The software
engineer expresses (i) properties of the data collection policy
(e.g., name, data-type), (ii) business operations and (iii) data
flows between business operations. A graphical representation
of this data collection policy for a given office (office 443 in
the example) is presented on the left of FIG. 1.

Traditional deployment of such data collection policies is
performed by considering (i) the facilities of each platform,
(ii) the network topology and (iii) a deployment strategy.

Description of platform facilities. Any platform in a sensor
network is built around five main components [15]: Controller,
Memory, Sensors, Communication and Power supply. A data
collection policy must be implemented according to these
components. Because of the large number of manufacturers
available on the market, each of those components can differ
from a platform to an other, introducing a multiple variability
problem.

The Software Product Line (SPL) paradigm allows one
to manage this variability [23], especially by describing the
elements of a family of systems in terms of features [4], [3].
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Several works have notably been conducted in the definition
of SPLs for other aspects of the Internet of Things [2],
[22]. We thus capture the variability of the platforms through
variability models, using the support of feature models [14]
and associated automated analysis on these descriptions [5].
Figure 2 illustrates the individual configuration from a feature
model of each component of a platform.

Network topology. The data collection policy must now
be deployed over the sensing infrastructure. To automate this
task, the toolchain relies on a model describing the network
topology. The network topology is assimilated to a graph
where vertices represent platforms and edges represent a
connectivity between two platforms [27]. In our approach,
we reuse the concept of directed graphs to model the sensing
infrastructure.

Deployment strategy. A sensor network expert can tune
the deployment strategy to optimize the data collection policy

distribution over the underlying infrastructure. In the toolchain,
we define two kinds of deployment strategies: (i) static strate-
gies (S) and (ii) dynamic strategies (D). We define a static
strategy as a strategy placing the concepts according to a
static representation of the network (e.g., Closest to the sensors
strategy). Dynamic strategies deploy the data collection policy
according to the current state of the sensing infrastructure (e.g.,
use in priority free platforms strategy). While the toolchain
provides the building blocks to encode different kinds of
strategies, we have highlighted several deployment strategies
corresponding to some relevant operating scenarios:

• Closest to sensors (S). Data collection policy’s concepts
are distributed as close as possible to sensors. This
strategy allows one to maximize the use of computational
resources offered by the sensing infrastructure.

• Use in priority mains power supplied platforms (S).



The energy-consumption in sensing infrastructure is a
major concern for sensor network expert [30], [25]. This
strategy maximizes the use of mains power supplied
platforms in a network composed by both battery and
mains powered elements.

• Use in priority free platforms (D). This strategy focuses
on the deployment on platforms that have not been
already involved in a previous deployment.

As an example, figure FIG. 1 illustrates the deployment of
a data collection policy using the closest to sensors strategy.

B. Handling Multiple Applications

When reusing a sensing infrastructure, a software engineer
may not have the knowledge of previously deployed applica-
tions as they might have been defined and deployed by others.
A classical way to tackle this issue is to rely on isolation
where nodes can execute at same time different applications,
as it is achieved in the virtual machine isolation requirement
for cloud computing.

Despite the need for infrastructures handling multiple ap-
plications simultaneously [16], nodes deployed in sensing in-
frastructures are most of the time resource-constrained devices
and do not support multi-threading operations. To tame the
complexity of sharing a sensing infrastructure (requirement
R4), the toolchain is able to compose new policies with
previously deployed ones in a transparent manner for the
software engineers. In our toolchain, a third-party service in
charge of deploying policies on top of a given infrastructure,
providing a composition mechanism (cf. SEC. III for more
details).

III. TOOLCHAIN INTERNALS

A. Separation of Concerns

The toolchain leverages the separation of concerns principle
by regrouping software engineers’s concerns in a data collec-
tion policy and the sensor network experts’s concerns in an
infrastructure model.

a) Data collection policy: As stated in SEC. II, the DSL
must only focus on business concerns. In order to meet R1,
we advocate that workflows are a suitable abstraction as they
provide a convenient way to define ”a sequence of activities
performed in a business that produces a result of observable
value to an individual actor of the business” [17]. A policy is
then expressed by the software engineer by refining activities
as her own concepts, and dependencies as a data flow between
these concepts.

A data collection policy d relies on concepts c ∈ C =
concepts(d), clustered as sensors (e.g., an electronic device
transforming a physical quantity into a measurement, s ∈
S = sensors(d)), collectors (e.g., remote Web service where
processed data are sent for storage, l ∈ L = collectors(d))
and operations (o ∈ O = operations(d)). Operations refer
to the domain expert’s business concerns. A special kind
of operation, Process, leverages the hierarchical workflow
mechanism and allows software engineer to encapsulate a data
collection policy into another, so to ease reuse. A data flow
f(ca, cb) ∈ F = flows(d) models the flows between a source

concept ca and a destination concept cb. We then define a data
collection policy as follows:

d = (name, concepts, flows) ∈ (Symbol × C? × F ?)

b) Infrastructure model: The infrastructure model needs
to describe the features available on each platform, the net-
work topology, and the heuristics to be used to implement
deployment strategies.

Platform features description model. We reuse the work
of Urli et al. [29] associated with its graphical user interface3

to capture complex configurations of platforms. The feature
description model FD allows a sensor network expert to
describe the specificities of a platform P and its connected
sensors S (e.g., FIG. 2) while providing a dynamic connection
between them. This allows for a more flexible description,
which also enables platforms to be changed more easily.

Network topology model. The network topology model I
allows a sensor network expert to describe the relationships
between platforms P ⊂ F . With this model is provided the
accessible operator that returns the subset of sensors S that
can be reached from a platform, i.e., accessible : P → S.
On FIG. 1, accessible(ConnectedFaculty) returns all the
sensors declared in the sensing infrastructure and the function
accessible(BRIDGE 1) returns all the sensors excepting
those connected to platform ARD 1 444.

Deployment strategy. A deployment strategy implements
a place operator that has been defined by the sensor network
expert or reused from the provided deployment strategy pre-
sented in SEC. II. This operator maps a concept c ∈ C to a
platform p ∈ P ′ ⊂ P described in a topology model I . It is
defined as follows:

place : C × P ′+ × I → P

B. Decomposition Operator
The decomposition operator (cf.Ê on FIG. 3) is responsible

for decomposing and deploying a data collection policy on
a sensing infrastructure. This operator relies on the Pre-
deployment process and the deploy operator, both presented
below.

1) Pre-deployment process:
a) Problem: Each concept involved in a data collection

policy relies on data that come from one or different sensors
and might only be deployed on a special kind of platform, e.g.,
a collector concept requires a platform that is connected to the
Internet. Therefore, before deploying the data collection policy
over a sensing infrastructure, there is a need to identify the
potential targets for each concept. This task can be assimilated
to workflow enactment on computational grids [7].

b) Contribution: We define several operators that operate
at the data collection policy level or at the infrastructure model
level.

We introduce the req operator working at the data collection
policy d level: for a concept c ∈ concepts(d), the req operator
returns the subset of sensors S′ ⊂ sensors(d) needed for the

3https://github.com/surli/tocsin – https://github.com/surli/spinefm
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realization of the concept. The isDeployable operator checks
if the placing constraint equation for the concept c is satisfied
on the platform p. The pre-deployment process is defined as
follows: for a given concept c, the pre-deployment automation
associates a property targets that lists all the platforms p ∈
platforms(i) that satisfy the following property: req(c) ⊂
accessible(p) ∧ isDeployable(c, p).

c) Example: On FIG. 1, the Filter operation requires
the AC 443 sensor and data coming from this sensor can be
obtained on ARD 2 443, BRIDGE 1 and ConnectedFaculty
platforms. This operation does not rely on hardware con-
straints, i.e., isDeployable(Filter, ) = T . The result of
the Pre-deployment process is a targets property containing
ARD 1 443, BRIDGE 1 and ConnectedFaculty.

2) Deployment operator:
a) Problem: The pre-deployment process has identified

several platforms for each concept. The sensor network ex-
pert needs to place concepts on candidates according to the
deployment strategy that has been defined for the sensing
infrastructure.

b) Contribution: The deploy operator associates each
concept with a platform and builds sub-policies for each
platform involved in the realization of the data collection
policy, such as deploy : D × I → D∗. The deploy operator
is defined as follows: given a pre-deployed data collection
policy dpre over an infrastructure described by the model i
and a deployment strategy s, the deploy operator associates
with each concept c ∈ concepts(dpre) a property target
that contains the result of the deployment strategy’s place
operator, i.e., c.target = s.place(c, c.targets, i). Then, for
each platform involved in the realization of the data collection
policy, i.e., Pinv =

⋃
∀c∈concepts(dpre)

c.target, a platform-
specific sub-data collection policy containing all the concepts
that are going to be deployed on the platform (with their
respective data-flow) is built. If the place operator returns ∅

the deployment is aborted and an alert is sent to the software
engineer that the concept c cannot be deployed with respect
to the strategy s.

c) Example: On FIG. 1, the data collection policy is
projected on the sensing infrastructure with a Closest to the
sensors strategy. The deployment operator calls the deploy-
ment strategy’s place operator to find the platform (among
the platforms identified as a result of the pre-deploy process)
that matches the strategy.

C. Sharing Service

To enable sharing sensing infrastructures, the toolchain
provides a composition operator linked to a proxy acting as
a sharing service (cf. Ë on FIG. 3). The sharing service
maintains for each platform of the sensing infrastructure a
set of sub-policies corresponding to those that are currently
running on the platform.

When a new sub-policy is going to be deployed on a
platform p, the sharing service maps each platform of the
sensing infrastructure to a set of policies currently running
on a platform. When a new platform-specific sub-policy need
to be deployed on a platform p, the sharing service handles the
composition of the new sub-policy with the previous deployed
ones producing a global sub-policy.

D. Code Generation

The generation process (cf.Ì on FIG. 3) calls code genera-
tors to transform each platform-specific global sub-policy into
executable code. One of the main issues to tackle here is to
handle the variability existing between the different elements
that compose a platform. The appropriate code generator γ
for a platform p is selected according to the Programming
language Platform Feature Description Model associated to
p. The code generator γ has the responsibility to determine
the order of generation of each concept and to use the right



libraries. To determine the order of generation, γ builds a list
Π of constraints between concepts:

∀f ∈ flows(d)⇒ f.source < f.destination = Π

The constraints Π are then solved by a third-party constraint
solver (in our case, CHOCO) giving the order of concepts
generation. The execution of generation produces executable
code for each concept and associate the adequate libraries to
sensors and communication functions according the features
described in the Platform Features Description Model. It must
to be noted that platforms not involved in the realization
of the data collection policy are flashed with a relay policy
forwarding data inside the sensing infrastructure.

IV. EXPERIMENTS

The toolchain prototype named DEPOSIT4 is available on
Github. To evaluate the performance of the toolchain, we
have designed and deployed several data collection policies
on a simulated sensing infrastructure. The experiments were
conducted on a mid-range laptop: 2.5 GHz Intel i7 (quad-core)
16 GB RAM. In the following, we consider 15 minutes as the
reference time required by a sensor network expert to write
in a low-level programming language the code implementing
the example data collection policy for a single office without
using any aspect of the toolchain.

We first validate the requirements presented in SEC. I by
deploying a data collection policy at the scale of a building.
Then, we scale up to a campus infrastructure.

A. Deploying a Smart Building Data Collection Policy

Defining a data collection policy: In this experiment,
a software engineer is aiming to define the data collection
policy presented in SEC. II. Each office is equipped with
two hall-effect sensors (used to monitor the door and window
positioning and two temperature sensors (used to monitor
the ambient temperature and the air conditioning status).
To simplify the definition of the data collection policy, the
software engineer writes a template data collection policy that
will be instantiated for each office. As a matter of practicality,
the DEPOSIT source codes are presented on the companion
web page. To validate our first requirement (R1) ”a software
engineer handles only business concerns”, we consider that
two constraints must be met: a policy can be designed by only
using business concepts (C1) and a policy can be deployed
without a priori knowledge (C2). As the software engineer
handles only high-level concepts to express her needs, C1

is obtained by design. The reuse of the infrastructure model
defined by a sensor network expert abstracts the underlying
infrastructure encapsulates the underlying complexity of the
sensing infrastructure. This separation of concerns validates
C2, and therefore requirement R1 is met.

Deploying the data collection policy: The software en-
gineer reuses the office template to deploy a comprehensive
data collection policy at the scale of 50 offices. As the
sensing infrastructure is heterogeneous and multi-staged, the

4Data collEction POlicies for Sensing InfrasTructures –
https://github.com/ace-design/DEPOSIT

data collection policy must adapt to the specificities of the
infrastructure (R2) before being automatically projected (R3).

To validate R2, we consider that we need to satisfy that
the code resulting from the generation should call the right
libraries (C3). Using SPL techniques, the code generation
of concepts uses the complex configuration of platforms
described in the infrastructure model and maps each feature to
a specific library. As an example, the generation of the code
reading and sending the temperature on the platform described
on FIG. 2 uses the Wiring code generator. The calls to the
temperature sensor use the GroveTemperature.h library.
Finally, the sending of the value is performed by using the
ZigBee library. This validates (C3) and thus R2.

To validate R3, we consider that each concept must be
projected automatically on the sensing infrastructure (C4) and
that the code generation process must provide ready-to-flash
code for each platform required by the data collection policy
(C5). The deployment strategies defined by the sensor network
expert determines the location of each concept. Then, code
generators produce the source code for each platform. At small
scale, we have deployed the source code generated from the
approach on real hardware to ensure their functional validity.
Then, we have scaled up to a larger deployment by simulating
a smart building of 50 offices. As shown in TAB. I, DEPOSIT
has generated a source code file for each platform involved in
the realization of the global policy satisfying both C4 and C5.
This finally validates our third requirement R3.

B. Deploying Smart Campus Scenarios on a Shared Sensing
Infrastructure

To validate our last requirement R4, we simulate a smart
campus infrastructure (based on a realistic sensor network
deployment described as a reference architecture [6]) on which
we deploy three data collection policies:
P1 Air conditioning warning. This data collection policy

raises an alert when door and window are opened while
the air conditioning is powered on (cf. SEC. II).

P2 Fahrenheit converter. The deployed temperature sensors
return values in degrees Celsius. This policy allows the
conversion to be done within the sensing infrastructure
and a remote application to collect values in degrees
Fahrenheit.

P3 Monitor parking spaces occupancy. This policy allows
a remote application to know which parking spaces are
available or occupied.

Our experimental setup is a blank sensing infrastructure
(i.e., no deployed data collections) deployed at the scale of
100 offices (each with 3 sensors) and 250 parking spaces
(each with 1 sensor). To ensure data routing within the sensing
infrastructure, we introduce 8 relay platforms and 1 border-
router (bridging the sensor network to the Internet). A sharing
service, as presented in SEC. III, handles the deployment of
the data collection policies.

As the network is blank, the deployment of P1 does not
trigger any composition with other policies. However, as
expected, the deployment of P2 triggers 101 compositions.
Indeed, as both P1 and P2 exploit the same platforms located



TABLE I
DEPLOYMENT OF THE RUNNING EXAMPLE (COMPREHENSIVE POLICY: 50 OFFICES)

DEPOSIT # Generated # Generated # Concepts (before # Concepts (after Deployment time
source files LoC expansion) expansion) (in s)

Template 19 N/A N/A N/A N/A N/A
Single office 19 3 267 5 8 2.5

Comprehensive policy
(without composition) 455 105 11685 250 400 50

Comprehensive policy
(with composition) 19 + 1 105 11685 250 400 52

in offices and the same border-router, the sharing service
needs to compose each sub-policy deployed on these platforms
with the new ones. Finally, the deployment of P3 triggers
only a single composition on the border-router, as this policy
only involves the parking sensors (that have not been yet
exploited), and the border-router (that hosts the product of the
composition of a sub-policy of P1 and a sub-policy of P2).

This experiment shows that the sharing service handles the
deployment of multiple applications successfully, validating
our last requirement R4.

C. Threats to Validity

Testing infrastructure: Our approach has been validated
both at small scale (∼ 10 platforms) on real hardware (Arduino
and Raspberry based platforms) and at large scale on a
simulated infrastructure allowing us to vary parameters such as
the number of sensors and platforms and the configuration of
each. In order to be closest to the existing infrastructures, we
have simulated the SmartCampus [6] infrastructure for office
platforms and the SmartSantander5 infrastructure for parking
platforms. As part of future work, we plan to exploit a real
large scale sensing infrastructure and study how the toolchain
satisfy the needs of software engineers.

Deployment of new policies: The proposed toolchain
handles the composition of data collection policies and code
generation. The software engineer and sensor network expert
obtain as a result a set of ready-to-flash source files. However,
we do not perform a dynamic deployment over all sensing
infrastructures as some platforms need to be re-flashed with a
new firmware.

Prototype: The toolchain implementation is only a pro-
totype, but it is publicly available and is verified by a large set
of unit and integration tests. Still the presented results could
have been disrupted by some bugs, but we believe they are
close enough from what was expected to consider remaining
bugs as not detrimental to results.

V. RELATED WORK

Related case studies: During the development of our
toolchain, we have studied recent European projects to reuse
their scenarios [26], [1]. All the described scenarios bring
a need for data collection policies to build new innovative
services on top of sensing infrastructures. However, the de-
ployed platforms are flashed with ad-hoc code making them

5http://www.libelium.com/smart santander smart parking/

domain-specific and tailored for a particular application [16].
Our toolchain addresses this issue by allowing the sharing
of the infrastructure between different applications and by
producing code resulting from the composition of the deployed
applications.

Modeling of data collection policies: In the process of
developing applications for wireless sensor networks, Tei et
al. [28] propose a ”stepwise software developement process
for average developers”. They identify two types of concerns:
network related concerns and data-processing concerns. In
order to assist software engineers, they provide a support to
reuse network related solutions designed by sensor network
experts. However, they do not provide a framework that allows
the reuse of an infrastructure as we do with our toolchain.

Low-level data collection support: Most of the time the
handling of the hardware heterogeneity in the IoT is performed
by using embedded operating systems such as Contiki [9]
or TinyOS [18]. They bring to the developer a hardware
abstraction that make a program reusable over different plat-
forms supporting the same OS. If the programming language
supported by these OSes encapsulates the specificities of
platforms into programming primitives, it remains oriented
for sensor network experts as the developer still needs to
manually address memory and energy concerns, as well as
network communications. This last point also presupposes a
deep knowledge of the network infrastructure.

Development toolchains for the IoT: The multi-stage
model-driven approach for IoT application development pro-
posed by Patel et al. [21] focuses on a clear identification
and separation of the different stakeholders involved in the
development process: domain experts, application designer,
application developer, network manager and device developer.
Each of them provides an input specification according to their
expertise field. Several operators then manipulate these inputs
to produce the application. Users in our approach are similar
as we can assimilate application designers and application
developers as software engineers and network managers and
device developers as sensor network experts. However, we
differ in the resulting application. They focus on building
user-centric application with sensors and actuators whereas
we only concentrate on the definition and the deployment
of data collection policies for third party applications. More
importantly, they do not support the sharing of the sensing
infrastructure between several applications.

Generating embedded software: Portocarrero et al [24]
introduce a process that manages wireless sensor networks in



an automatic way according to context changes, application
requirements and adaptation policies. Their approach is inter-
esting as they involve Software architects, Domain experts,
WSN experts and WSN developers in the process. They make
the assumption that software architects (...) often do not have
the knowledge about programming, especially on coding for
WSN platforms. To allow software architects to develop for
WSN platforms, they introduce model transformations to map
an “architecture instance into platform-specific code”. If the
approach seems similar to ours, they only focus on Contiki-
based platform while we provide a platform-independent
toolchain that exploits variability models for its code generator
to adapt to potentially any kind of platform currently available.

Automated toolchains: The approach proposed by Di
Cosmo et al. [8] relies on a toolchain enabling the development
of complex distributed applications with a high level of
abstraction. Their toolchain respects the separation of concerns
paradigm by taking several inputs: a high-level specification
of their application (similar as our data collection policies), a
description of the system (similar as our infrastructure model)
and a description of the current system. We differ on this last
point by providing a sharing service that abstracts the current
state of the sensing infrastructure for a software engineer. The
deployment phase of their toolchain assumes that all their
targeted VMs are empty. In our approach, we support addition
of new policies and we ensure that a new data collection policy
is composed with the previous deployed ones.

VI. CONCLUSION

In this paper, we have presented a toolchain that allows
software engineer to express and deploy data collection poli-
cies over heterogeneous shared sensing infrastructure. The
toolchain relies on the separation of concerns principle where
software engineers only deal with business concerns and
sensor network experts provide reusable infrastructure models.
Data collection policies expressed by the software engineers
are decomposed on the sensing infrastructures and composed
with the previous deployed ones. This supports the sharing of
infrastructures and enables reuse of data collection policies.
The code generation resulting from the decomposition is tai-
lored to the different platforms according to the infrastructure
model expressed by a sensor network expert, thus taming the
diversity and heterogeneity of sensing infrastructures.

We have successfully modeled and deployed data collection
policies on simulated but realistic sensing infrastructures and
showed that the sharing operations are performed automat-
ically. Future work will first aim at collaborating with an
industrial partner to assess the benefits of our approach on
large scale sensing infrastructures. We also plan to work with
software engineers in order to get feedback about the definition
of data collection policies. We finally plan to introduce a new
layer of abstraction that would allow domain experts to interact
directly with the toolchain.
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