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For the nonlinear Klein-Gordon equation in R 1+d , we prove the existence of multi-solitary waves made of any number N of decoupled bound states. This extends the work of Côte and Muñoz [12] (Forum Math. Sigma 2 (2014)) which was restricted to ground states, as were most previous similar results for other nonlinear dispersive and wave models.

Introduction

In this paper we extend previous constructions of multi-solitary wave solutions for the nonlinear Klein-Gordon equation (NLKG) in R 1+d , d 1,

∂ tt u -∆u + u -f (u) = 0, u(t, x) ∈ R, (t, x) ∈ R × R d .
(NLKG)

This equation arises in Quantum Field Physics as a model for a self-interacting, nonlinear scalar field, invariant under Lorentz transformations (see below). We focus on the particular case where

f (u) = |u| p-1 u for 1 < p < d + 2 d -2 (p > 1 for d = 1 or 2) (1) 
but the arguments can extended to more general situations. We set

F (u) = u 0 f (v)dv = |u| p+1 p + 1 .
As usual, we see the (NLKG) equation as a first order system of equations

∂ t u ∂ t u = ∂ t u ∆u -u + f (u) . (2) 
In this framework, we work with vector data U = (u, ∂ t u) ⊤ . We use upper-case letters to denote vector valued functions and lower-case letters for scalar functions.

Recall that the corresponding Cauchy problem for (NLKG) is locally well-posed in H s (R d ) × H s-1 (R d ), for any s 1: we refer to Ginibre-Velo [START_REF] Ginibre | The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF] and Nakamura-Ozawa [START_REF] Nakamura | The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces[END_REF] (when d = 2) for more details. Also under the above conditions, the Energy and Momentum (every integral is taken over R d )

E [u, u t ](t) = 1 2 |∂ t u(t, x)| 2 + |∇u(t, x)| 2 + |u(t, x)| 2 -2F (u(t, x)) dx, (3) 
Looking for stationary solutions u(t, x) = q(x) of (NLKG) in H 1 (R d ) we reduce to the elliptic PDE -∆q + q -f (q) = 0, q ∈ H 1 (R d ).

Let us recall well-known results for equation [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] from [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] (see also references therein).

We call the solutions of (7) bound states; the set of bound states is denoted by B B = {q : q is a nontrivial solution of (7)}.

Standard elliptic arguments (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] or Theorem 8.1.1 in [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]) show that if q ∈ B, then q is of class C 2 (R d ) and has exponential decay as |x| → +∞, as well as its first and second order derivatives. Let

W (u) = 1 2 (|∇u| 2 + |u| 2 -2F (u))dx.
We call ground states the solutions of [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] that minimize the functional W ; the set of ground states is denoted by G G = {q GS : q GS ∈ B and W (q GS ) W (q) for all q ∈ B}.

Ground states are now well-understood. In particular, it is well-known (Berestycki-Lions [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF], Gidas-Ni-Nirenberg [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], Kwong [START_REF] Kwong | Uniqueness of positive solutions of ∆u -u + u p = 0 in R n[END_REF], Serrin-Tang [START_REF] Serrin | Uniqueness of ground states for quasilinear elliptic equations[END_REF]) that there exists a radial positive function q 0 of class C 2 , exponentially decreasing, along with its first and second derivatives, such that

G = {q 0 (x -x 0 ) : x 0 ∈ R d }.
In dimension 1, it is well-known (by ODE arguments) that B = G . In contrast, for any d 2, it is known that G B: see Remark 8.1.16 in [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF], we also refer to Ding [START_REF] Derrick | Comments on Nonlinear Wave Equations as Models for Elementary Particles[END_REF], where it is proven that B (up to translation) is infinite. Functions q ∈ B\G are referred to as excited states. Few papers in the literature deal with excited states. Here are some references on the construction of such solutions. Berestycki-Lions [START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of infinitely many solutions[END_REF] showed the existence of infinitely many radial nodal (i.e sign changing) solutions (see also [START_REF] Hebey | Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth[END_REF] and the references therein). More recently, Del Pino, Musso, Pacard and Pistoia constructed in [START_REF] Del Pino | Large energy entire solutions for the Yamabe equation[END_REF] solutions to the massless version of equation [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] with a centered soliton crowned with negative spikes (rescaled solitons) at the vertices of a regular polygon of radius 1; in [START_REF] Del Pino | Torus action on S n and sign-changing solutions for conformally invariant equations[END_REF], they constructed sign changing, non radial solutions to [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] on the sphere S d (d 4) whose energy is concentrated along special submanifolds of S d . The main difficulty in dealing with excited states in the evolution equation (NLKG) is the lack of information on the linearized operator -∆z + z -f ′ (q)z. Whereas for ground states, it is known that the linearized operator has a unique simple negative eigenvalue, and a (non degenerate) kernel given by Span(∂ xj q; j = 1, . . . , d), the detailed spectral properties of the linearized operator around general bound states are not known. See Section 2 of this paper. Since (NLKG) is invariant under Lorentz boosts, given a bound state q, we can define its boosted counterpart, with relative velocity β = (β 1 , . . . , β d ) ∈ R d , where |β| < 1 (we denote by | • | the euclidian norm on R d ) as

q β (x) := q(Λ β (x)), Λ β (x) := x + (γ -1) β(β • x) |β| 2 , γ := 1 1 -|β| 2 . ( 8 
)
Note that the function q β satisfies

-(∆ -(β • ∇) 2 )q β + q β -f (q β ) = 0.
In particular,

R(t, x) = q β (x -βt) -β • ∇q β (x -βt)
is solution of the (first order system form of the) Klein-Gordon equation [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF]. It is well known (see e.g. Grillakis-Shatah-Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]) that the ground state (q 0 , 0) is unstable in the energy space (this result was known in the Physics literature as the Derrick's Theorem [START_REF] Derrick | Comments on Nonlinear Wave Equations as Models for Elementary Particles[END_REF]). For recent works on the instability properties of q 0 and on general solutions with energy slightly above E [(q 0 , 0)], we refer to Nakanishi-Schlag [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian evolution equations[END_REF][START_REF] Nakanishi | Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation[END_REF] and subsequent works. We also refer to Duyckaerts-Merle [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF], in the context of the energy critical nonlinear wave equation for related works. In this paper, we continue the study of the dynamics of large, quantized energy solutions. Specifically, we deal with solutions describing multi-bound states for (NLKG), i.e. solutions u to (NLKG) defined on a semi-infinite interval of time, such that

u(t, x) ∼ N n=1
q n,βn (x -β n t) as t → +∞, for given speeds β n (all distinct). Such solutions were constructed in the context of the nonlinear Schrödinger equations, the generalized Korteweg-de Vries equations, the Hartree equation, the energy critical wave equation and the water wave system, by Merle [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF], Martel [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], Martel-Merle [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF], Côte-Martel-Merle [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF], Combet [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF][START_REF] Combet | Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension[END_REF], Krieger-Martel-Raphaël [START_REF] Krieger | Two-soliton solutions to the three-dimensional gravitational Hartree equation[END_REF], Martel-Merle [START_REF] Martel | Construction of Multi-Solitons for the Energy-Critical Wave Equation in Dimension 5[END_REF] and Ming-Rousset-Tzvetkov [START_REF] Ming | Multi-solitons and Related Solutions for the Waterwaves System[END_REF], both in stable and unstable contexts (see also references in these works). For (NLKG), the same result was proved by Côte-Muñoz [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF]: there exist multi-solitary waves based on the ground state, for the whole range of parameters β 1 , . . . , β N ∈ R d (two by two distinct), with |β n | < 1. We point out that the above results all concern ground states q ∈ G , and rely on the complete description of the linearized operator around the ground state in these cases. To our knowledge, the only work related to excited states is by Côte-Le Coz [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF], for the nonlinear Schrödinger equation. In this work, the lack of information on the linearized operator is counterbalanced by assuming that solitary waves are well-separated (high-speed assumption). The main goal of this paper is to extend the construction of multi-solitary waves to bound state q ∈ B of the (NLKG) equation, without assumption on the speeds (besides their being distinct), thus completing Theorem 1 in [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF], and opening the way to treat such questions for other models.

Theorem 1. Let N ∈ N \ {0}, and β 1 , β 2 , . . . , β N ∈ R d be such that ∀n, |β n | < 1 and ∀n ′ = n, β n ′ = β n .
Let q 1 , q 2 , . . . , q N ∈ B be any bound state solution of equation [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF]. Then there exist T 0 > 0, ω > 0 and a solution U of (2) in the energy space, defined for t T 0 , satisfying

∀t T 0 , U (t) - N n=1 R n (t) e -ωt
where

R n (t, x) = q n,βn (x -β n t) -β n • ∇q n,βn (x -β n t)
.

Using the techniques of this paper, it is possible to extend the main result to more general H 1 subcritical nonlinearities. See e.g. [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF] for standard conditions on the nonlinearity.

Recall that for integrable models, like the (KdV) and (mKdV) equations, or the 1D cubic nonlinear Schrödinger equation, multi-solitons are explicitely derived from the inverse scattering method. Such solutions are quite special since they are global multi-solitons, both for t → ±∞ and describe elastic collisions of solitons. See e.g. the classical references [START_REF] Zabusky | Interaction of "solitons" in a collisionless plasma and recurrence of initial states[END_REF][START_REF] Miura | The Korteweg-de Vries equation, a survey of results[END_REF][START_REF] Zakharov | Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media[END_REF]. For nonintegrable equations, in general, the asymptotic behavior as t → -∞ of multi-bound states as constructed in Theorem 1 is not known.

Recall also that the importance of multi-solitons among all solutions is clearly established by the so-called soliton resolution conjecture, which says roughly speaking that any solution of a nonlinear dispersive equation should decomposes in large time as a the sum of certain number of solitons and a dispersive part. See e.g. [START_REF] Schuur | Asymptotic analysis of solitons problems[END_REF] for a proof in the case of the KdV equation. We refer to recent works of Duyckaerts, Kenig and Merle [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energy-critical wave equation[END_REF][START_REF] Duyckaerts | Soliton resolution along a sequence of times for the focusing energy critical wave equation[END_REF], and references therein for general soliton decomposition results in the nonintegrable situation of the energy critical wave equation. The scheme of the proof is the same as for previous related results, notably [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF][START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF]: Theorem 1 can be reduced to the existence of solutions to (NLKG) satisfying uniform estimates, that is the following proposition.

Proposition 2. There exist T 0 > 0 and ω 0 > 0 such that for any S 0 T 0 there exists U 0 such that the solution U (t) of (2) with data U (S 0 ) = U 0 is defined in the energy space on the time interval [T 0 , S 0 ] and satisfies

∀t ∈ [T 0 , S 0 ], U (t) - N n=1 R n (t) e -ω0t . (9) 
Indeed, let S m → +∞, and assuming that Proposition 2 holds, let U m be one solution to (NLKG) satisfying the uniform estimates (9) on the time interval [T 0 , S m ].

Using the compactness arguments of Section 4 of [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF], one observes that (U m (T 0 )) m∈N has a weak-H 1 × L 2 limit U * 0 . Then consider the solution U * to (NLKG) with data U * 0 at time T 0 : the key feature is that the flow of (NLKG) is continuous for the weak-H 1 × L 2 topology, and this allows to conclude that U * is the desired multi-soliton. We refer to [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF]Section 4] for further details. We are therefore left with solely the proof of Proposition 2, to which the remainder of this paper is devoted. To prove it for any bound state, we use two new points:

(1) a general coercivity argument with no a priori knowledge of the spectral properties of the linearized operator (see Section 2); (2) a simplification of the existence proof so as to deal with possibly multiple degenerate directions, not related to translation invariance (see Section 3).

Spectral theory for bound states

We consider a bound state q ∈ B, a velocity β ∈ R d , |β| < 1, and the corresponding Lorentz state q β defined by [START_REF] Combet | Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension[END_REF]. In this section we are interested in the linearized flow around the solution R(t, x) of ( 2)

R(t, x) = q β (x -βt) -β • ∇q β (x -βt)
.

Define the matrix operator

H = -∆ + 1 -f ′ (q β ) -β • ∇ β • ∇ 1 and J = 0 1 -1 0 .
The (NLKG) equation around R, i.e. for solutions of the form

U (t, x) = R(t, x) + V (t, x -βt)
where V is a small perturbation, rewrites as

∂ t V = JHV + N (V ), (10) 
where N (V ) denotes nonlinear terms in V .

2.1. Spectral analysis of JH. First, following [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF], we study the spectral properties of the operator JH appearing in equation ( 10)

JH = β • ∇ 1 ∆ -1 + f ′ (q β ) β • ∇
in terms of the spectral properties of the elliptic operator

L = -∆ + 1 -f ′ (q).
Lemma 1. (i) Spectral properties of L. The self-adjoint operator L has essential spectrum [1, +∞), a finite number k 1 of negative eigenvalues (counted with multiplicity) and its kernel is of finite dimension l d. Let (φ k ) k=1,..., k be an L 2orthogonal family of eigenfunctions of L with negative eigenvalues (-λ 2 k ) k=1,..., k, and (φ 0 ℓ ) ℓ=1,..., l be an L 2 -orthogonal basis of ker(L), i.e.

Lφ k = -λ 2 k φ k , λ k > 0, k = 1, . . . , k (11) 
Lφ 0 ℓ = 0, ℓ = 1, . . . , l. (12) 
Then, there exists c > 0 such that for any v ∈ H 1 satisfying (v, φ k ) = (v, φ ℓ 0 ) = 0 for all k = 1, . . . , k, ℓ = 1, . . . , l, the following holds

(Lv, v) c v 2 H 1 . (13) 
(ii) Spectral properties of JH. For k = 1, . . . , k and ℓ = 1, . . . , l and signum ±, let

Y ± k (x) = e ∓γλ k β•x φ k -γβ • ∇φ k ± γλ k φ k (Λ β (x)), (14) 
Φ 0 ℓ (x) = φ 0 ℓ -γβ • ∇φ 0 ℓ (Λ β (x)). (15) 
Then

(JH)Y ± k = ± λ k γ Y ± k , (16 
)

ker H = ker(JH) = Span(Φ 0 ℓ , ℓ = 1, . . . , l). (17) 
Moreover,

HY + k , Y + k ′ = HY - k , Y - k ′ = 0 for all k, k ′ = 1, . . . , k. (18) 
Finally, the family (Y ± k ) ±,k=1,..., k is linearly independent. As a consequence, the family (HY ± k ) ±,k=1,..., k is linearly independent. (iii) Exponential decay. There exist

C 0 > 0, ω 0 > 0, such that for all α ∈ N d , |α| 1, for all x ∈ R d , |∂ α q(x)| + |∂ α φ k (x)| + |∂ α Y ± k (x)| + |∂ α φ 0 ℓ (x)| C 0 e -ω0|x| . (19) 
Proof. We start by noticing that by rotation (with first vector β/|β| for β = 0), we can assume that the Lorentz boost is of the form (β, 0, . . . , 0), where (with slight abuse of notation) β ∈ (-1, 1). Observe that in this case

Λ β (x) = (γx 1 , x ′ ), where x = (x 1 , x ′ ), x ′ = (x 2 , . . . , x d ). (i)
The operator L is a compact perturbation of -∆ + 1, and so the two operators have the same essential spectrum [1, +∞). In particular, for any δ > 0, both operators have a finite number of eigenvalues (counting their multiplicities) on (-∞, 1 -δ]. We define (φ k ) k=1,..., k, (λ k ) k=1,..., k, and (φ 0 ℓ ) ℓ=1,..., l as in the statement of the lemma. From the spectral theorem, the following coercivity holds: there exists c ′ > 0 such that for any

v ∈ H 1 satisfying (v, φ k ) = (v, φ ℓ 0 ) = 0 for all k = 1, . . . , k, ℓ = 1, . . . , l, we have (Lv, v) c ′ v 2 L 2 . Since f ′ (q)
is bounded, a standard argument proves that the coercivity property (13) holds. Note that by direct computations (Lq, q) = (1 -p) |q| p+1 < 0 and thus k 1. Moreover, it is clear by differentiating [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] with respect to x j that ∂ j q ∈ ker L. Since the family (∂ j q) j=1,...,d is linearly independent, we obtain l d.

(ii) Looking for an eigenfunction Y = (ρ 1 , ρ 2 ) ⊤ of the operator JH, with eigenvalue λ, we are led to the system

β∂ 1 ρ 1 + ρ 2 = λρ 1 , (∆ -1 + f ′ (q β ))ρ 1 + β∂ 1 ρ 2 = λρ 2 .
The first equation gives ρ 2 = (λ -β∂ 1 )ρ 1 which we plug into the second equation:

(-∆ + 1 -f ′ (q β ))ρ 1 + (λ -β∂ 1 ) 2 ρ 1 = 0, which rewrites -(1 -β 2 )∂ 11 ρ 1 -∆ ′ ρ 1 -2λβ∂ 1 ρ 1 + ρ 1 -f ′ (q β )ρ 1 = -λ 2 ρ 1
where ∆ ′ is the Laplace operator with respect to the variable

x ′ = (x 2 , . . . , x d ). Write ρ 1 (x) = e -γ 2 λβx1 σ 1 (γx 1 , x ′ ) = e -γλβy1 σ 1 (y), y = (γx 1 , x ′ ).
Then the equation on ρ 1 rewrites as follows

e -γλβy1 -(1 -β 2 ) γ 2 ∂ 2 11 -2γ 2 λβγ∂ 1 + (γ 2 λβ) 2 -∆ ′ -2λβ(γ∂ 1 -γ 2 λβ) + (1 + λ 2 ) -f ′ (q) σ 1 (y) = 0,
which simplifies as

-∆σ 1 + σ 1 -f ′ (q)σ 1 = -γ 2 λ 2 σ 1 .
Therefore σ 1 has to be an eigenfunction of L with eigenvalue -γ 2 λ 2 0.

Reciprocally, if σ 1 = φ k and λ = λ k /γ, then e -γ 2 λβx1 φ k -γβ∂ 1 φ k + λγ 2 φ k (γx 1 , x ′ )
is an eigenfunction of JH with eigenvalue λ.

Let us check [START_REF] Duyckaerts | Soliton resolution along a sequence of times for the focusing energy critical wave equation[END_REF]:

λ k ′ γ HY + k , Y + k ′ = HY + k , JHY + k ′ = -JHY + k , HY + k ′ = - λ k γ Y + k , HY + k ′ = - λ k γ HY + k , Y + k ′ . Since λ k , λ k ′ > 0, this implies HY + k , Y + k ′ = 0. All these computations are similar for (Y - k ) k . Also observe that if λ k = λ k ′ , then HY + k , Y - k ′ = 0
with the same argument. Let us now prove that the (Y ± k ) ±,k=1,..., k are linearly independent. Assume that we have the dependence relation:

k k=1 (a + k Y + k + a - k Y - k ) = 0.
Fix k * ∈ {1, . . . , k}, and let I k * be the set of indices k ∈ {1, . . . , k} such that λ k = λ k * . As spectral spaces associated to different eigenvalues are in direct sum, we infer that

k∈I k * a + k Y + k = 0,
and
k∈I k * a - k Y - k = 0.
In the first equality, the first line writes

e -γλ k β•x k∈I k * a + k φ k (Λ β x) = 0.
As Λ β is one-to-one, this means that k∈I k * a + k φ k = 0 and by linear independence of the (φ k ) k=1,..., k, this relation is trivial: a + k = 0 for all k ∈ I K * , and in particular a + k * = 0. A similar argument on the second equality gives that a - k * = 0. Therefore, the dependence relation is trivial, and the (Y ± k ) ±,k=1,..., k are linearly independent. As they are eigenfunctions for JH with non zero eigenvalue, we infer that the family (JHY ± k ) ±,k=1,..., k is linearly independent. As J is one-to-one (it is an involution), the (HY ± k ) ±,k=1,..., k are linearly independent as well. (iii) The exponential decay of any bound state q and its derivates is well known, and follows from Agmon type estimates; we refer to [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. By standard elliptic arguments, we first note that there exist C > 0 such that for all α ∈ N d , |α| 2,

∀x ∈ R d , |∂ α φ k (x)| Ce -(1+λ 2 k ) 1 2 |x| , |∂ α φ 0 ℓ (x)| Ce -|x| . ( 20 
)
This, and the definition of Y ± k in ( 14) is enough to prove [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energy-critical wave equation[END_REF].

Spectral analysis of H.

The eigenfunctions Y ± k of JH are related to equation [START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF], as well as the eigenfunctions HY ± k of the adjoint operator HJ. In particular, it is straightforward to compute the main order time evolution of the projection of the perturbation V on such directions (see Lemma 8). However, in order to study stability properties of the flow using energy method (see next Section), the relevant operator turns out to be H. The operator H is self-adjoint for the •, • scalar product and we already know from Lemma 1 that ker

H = Span(Φ 0 ℓ , ℓ = 1, . . . , l), (21) 
where the vector-valued functions Φ 0 ℓ are defined in [START_REF] Del Pino | Large energy entire solutions for the Yamabe equation[END_REF]. However, unlike for JH, the eigenfunctions of H related to negative eigenvalues do not seem to be explicitly related to that of L. Nonetheless a key observation of this paper is that for any β ∈ R d , |β| < 1, the number of negative directions for the quadratic form H•, • is equal to the number k of negative eigenvalues of the operator L.

Lemma 2. The self-adjoint operator H has a finite number m 1 of negative eigenvalues (counted with multiplicity). Let (Υ m ) m=1,..., m be an L 2 -orthogonal family of eigenfunctions of H with negative eigenvalues, normalized so that

HΥ m = -µ 2 m Υ m , µ m > 0, m = 1, . . . , m (22) 
HΥ m , Υ m = -1, Υ m , Υ m ′ = 0 for m = m ′ . ( 23 
)
Then the following holds m = k.

Moreover, there exists c > 0 such that for all

V ∈ H 1 × L 2 , HV, V c V 2 - 1 c m m=1 V, Υ m 2 - 1 c l ℓ=1 V, Φ 0 ℓ 2 . ( 24 
)
Proof. As before we assume (without loss of generality) that the Lorentz boost is of the form (β, 0, . . . , 0) for some β ∈ (-1, 1). Note that

HV, V = ((-∆ + 1 -f ′ (q β ))v 1 , v 1 ) + 2β(∂ 1 v 1 , v 2 ) + v 2 2 L 2 = ( Lv 1 , v 1 ) + β∂ 1 v 1 + v 2 2 L 2 , where L := -(1 -β 2 )∂ 11 -∆ ′ + 1 -f ′ (q β )
Observe that L is self-adjoint and that it is a compact perturbation of the operator

-(1 -β 2 )∂ 2 11 -∆ ′ + 1 so it has essential spectrum [1, +∞).
From there we infer that H has only finitely many negative eigenvalues, whose eigenfunctions span a vector space of dimension m; as (Φ 0 ℓ ) ℓ=1,..., l span ker H, and this yields [START_REF] Ginibre | The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF]. Also notice that if we denote Ṽ (x) := V (Λ β (x)) then ( L Ṽ )(x) = (LV )(Λ β (x)). This means that a basis of the eigenfunctions of L with negative eigenvalues is given by the (φ k • Λ β ) k=1..., k; in particular they span a subspace of dimension k. Now, we prove that m = k. On the one hand, for k = 1, . . . , k, define

Φ k (x) = φ k -γβ∂ 1 φ k (Λ β (x)) so that HΦ k = -λ 2 k φ k 0 (Λ β (x)).
Then the (Φ k ) k are linearly independent as a consequence of the linear independence of the

(φ k ) k . Let W ∈ Span(Φ k , k = 1, . . . , k) non zero, W = k α k Φ k and by L 2 orthogonality of the φ k , HW, W = - k λ 2 k α 2 k < 0. Hence H•, • | Span(Φ k ,k=1,..., k) is definite negative on Span(Φ k , k = 1, . . . , k) which is of dimension k.
By Sylvester inertia theorem, we deduce that k m.

On the other hand, denote by

Υ m = (υ 1 m , υ 2 m ) ⊤ a family of L 2 -orthogonal eigen- functions of H with negative eigenvalues -µ 2 m (µ k > 0), i.e. HΥ m = -µ 2 m Υ m . Then (υ 1 m , υ 2 m ) satisfy (-∆ + 1 -f ′ (q β ))υ 1 m -β∂ 1 υ 2 m = -µ 2 m υ 1 m β∂ 1 υ 1 m + υ 2 m = -µ 2 m υ 2 m so that υ 2 m = - β 1 + µ 2 m ∂ 1 υ 1 m and -∆ + 1 -f ′ (q β ) + β 2 1 + µ 2 m ∂ 11 υ 1 m = -µ 2 m υ 1 m .
Then,

Lυ 1 m = -µ 2 m υ 1 m + β 2 µ 2 m 1 + µ 2 m ∂ 11 υ 1 m
and so

( Lυ 1 m , υ 1 m ) = -µ 2 m υ 1 m 2 L 2 + β 2 1 + µ 2 m ∂ 1 υ 1 m 2 L 2
For m = m ′ , note first that the orthogonality Υ m , Υ m ′ = 0 gives

0 = Υ m , Υ m ′ = υ 1 m υ 1 m ′ + υ 2 m υ 2 m ′ = υ 1 m υ 1 m ′ + β 2 (1 + µ 2 m )(1 + µ 2 m ′ ) ∂ 1 υ 1 m ∂ 1 υ 1 m ′ .
Thus, for m = m ′ ,

( Lυ 1 m , υ 1 m ′ ) = -µ 2 m υ 1 m υ 1 m ′ + β 2 1 + µ 2 m ∂ 1 υ 1 m ∂ 1 υ 1 m ′ = - β 2 µ 2 m µ 2 m ′ (1 + µ 2 m )(1 + µ 2 m ′ ) ∂ 1 υ 1 m ∂ 1 υ 1 m ′ Let w = -β 2 m m=1 α m υ 1 m non zero.
Then, we obtain for w

( Lw, w) = -β 2 m m,m ′ =1 α m α m ′ µ 2 m µ 2 m ′ (1 + µ 2 m )(1 + µ 2 m ′ ) ∂ 1 υ 1 m ∂ 1 υ 1 m ′ - m m=1 α 2 m µ 2 m υ 1 m 2 L 2 + β 2 (1 + µ 2 m ) 2 ∂ 1 υ 1 m 2 L 2
For the first term of the right hand side, we have the identity

m m,m ′ =1 α m α m ′ µ 2 m µ 2 m ′ (1 + µ 2 m )(1 + µ 2 m ′ ) ∂ 1 υ 1 m ∂ 1 υ 1 m ′ = m m=1 α m µ 2 m 1 + µ 2 m ∂ 1 υ 1 m 2 L 2
, and we obtain

( Lw, w) - m m=1 α 2 m µ 2 m υ 1 m 2 L 2 + β 2 (1 + µ 2 m ) 2 ∂ 1 υ 1 m 2 L 2 .
which means that ( L•, •) is definite negative on Span(υ 1 m , m = 1, . . . , m), a subspace of dimension m. By Sylvester inertia theorem, m k. In conclusion, we have proved m = k.

Even if m = k, we will still use k ∈ {1, . . . , k} and m ∈ {1, . . . , m} to denote with clarity the ranges of indices of the negative eigenvalues and corresponding eigenfunctions of the operators L and H.

A coercivity property.

The main result of this section is the following proposition, which states a coercivity property for H related to the eigenfunctions

Y ± k and Φ 0 ℓ of JH. Proposition 3. There exists c > 0 such that, for all V ∈ H 1 × L 2 , HV, V c V 2 - 1 c k ±,k=1 HV, Y ± k 2 - 1 c l ℓ=1 V, Φ 0 ℓ 2 .
This result is a generalization of Proposition 2 in [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF] to the case of bound states (we also refer to Lemma 5.2 in [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF] for a previous similar result for the energy critical NLS equation). In constrast with previous works in the case of ground states, this result is obtained with no a priori information on the spectrum of L.

Remark 1. The proof of the Claim page 7471 of [START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF] is not correct (the identities at the bottom of page 7471 are erroneous), which makes the proof of the proposition invalid. We provide a corrected proof in the present version. We refer to [START_REF] Yuan | Construction of excited multi-solitons for the 5D energy-critical wave equation[END_REF] for a self-contained proof in the analogue context of the energy critical wave equation. We also refer to [START_REF] Chen | Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein-Gordon equations[END_REF] for an alternate proof.

Proof. We assume that the Lorentz boost is of the form (β, 0, . . . , 0), with β ∈ (-1, 1). We define the functions W k by

W k = Y + k + Y - k .
The strategy is to establish that there exists c > 0 such that for any function V ∈ H 1 × L 2 satisfying the orthogonality conditions

HV, W k = V, Φ 0 ℓ = 0, for all k = 1, . . . , k, ℓ = 1, . . . , l, (25) 
it holds HV, V c V 2 . (26) By standard arguments, as W k ∈ Span(Y ± k ), this implies the statement of Proposition 3. Since H has exactly k + l nonpositive eigenvalues (see Lemma 2), it is more satisfactory to obtain coercivity under exactly k + l orthogonality conditions as in (25) rather than with 2 k + l scalar products as in the statement of the proposition.

Claim. The functions (W k ) 1≤k≤ k satisfy the following properties.

(1) For all k ∈ {1, . . . , k}, it holds

HW k , W k = - 4λ 2 k γ .
(2) For all k, k ′ ∈ {1, . . . , k} with k = k ′ , it holds

HW k , W k ′ = 0.
Proof of the Claim. We recall the expression of

Y ± k Y ± k (x) = e ∓γλ k βx1 φ k -γβ ∂ 1 φ k ± γλ k φ k (γx 1 , x ′ ). (27) 
Proof of (1). From ( 18), we have 16)) and then the explicit expressions of Y ± k in ( 27), we compute

HY + k , Y + k = HY - k , Y - k = 0 and thus HW k , W k = 2 HY + k , Y - k . Using HY + k = -λ k γ JY + k (see (
HY + k , Y - k = - λ k γ JY + k , Y - k = -2 λ 2 k γ φ k , φ k .
The result follows from the normalization φ k , φ k = 1. Proof of (2). Let k = k ′ . In the case where

λ k = λ ′ k , it is shown in the proof of Lemma 1 that HY + k , Y + k ′ = HY - k , Y - k ′ = HY + k , Y - k ′ = 0
, which provides the desired conclusion. In the case where [START_REF] Hebey | Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth[END_REF], φ k , φ k ′ = 0 and integration by parts, we compute

λ k = λ ′ k ,the identities HY + k , Y + k ′ = HY - k , Y - k ′ = 0 still hold. From HY + k = -λ k γ JY + k , then the explicit expressions of Y ± k in
HY + k , Y - k ′ = - λ k γ JY + k , Y - k ′ = - 2βλ k γ ∂ 1 φ k , φ k ′ .
Therefore by integration by parts,

HW k , W k ′ = HY + k , Y - k ′ + HY + k ′ , Y - k = 0,
which proves the claim.

We recall from Lemma 2 that there exists c 0 > 0 such that, for any

V ∈ H 1 × L 2 HV, V ≥ c 0 V 2 - 1 c 0 k k=1 V, Υ k 2 - 1 c 0 l ℓ=1 V, Φ 0 ℓ 2 . ( 28 
)
Recall also from the definition of H that, for any

V ∈ H 1 × L 2 HV, V = ∇v 1 2 L 2 + v 1 2 L 2 + v 2 2 L 2 + 2β (∂ 1 v 1 )v 2 -f ′ (q β )v 2 1 ≥ (1 -|β|) V 2 -f ′ (q β )v 2 1 . (29) 
Now, we prove that (25) implies [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. For the sake of contradiction, assume that there exists a sequence of functions

V n = (v 1,n , v 2,n ) ∈ H 1 × L 2
satisfying the orthogonality conditions [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] and the inequality

HV n , V n < 1 n V n 2 .
By [START_REF] Krieger | Global dynamics above the ground state energy for the one-dimensional NLKG equation[END_REF], for n large, f ′ (q β )v 1,n > 0 and we may normalize V n as follows

f ′ (q β )v 2 1,n = 1, so that the sequence (V n ) is bounded in H 1 × L 2 .
Up to extraction of a subsequence, it converges weakly to a function V ∈ H 1 × L 2 satisfying the orthogonality conditions [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. By Rellich Theorem, f ′ (q β )V 2 = 1, which means that V ≡ 0. Moreover, by

HV, V = (1 -β 2 ) ∂ 1 v 1 2 L 2 + ∇ ′ v 1 2 L 2 + v 1 2 L 2 + β∂ 1 v 1 + v 2 2 L 2 -f ′ (q β )v 2 1
and weak convergence property, it holds HV, V ≤ lim inf n→∞ HV n , V n ≤ 0. Now, let F = Span V, W 1 , . . . , Wk, Φ 0 1 , . . . , Φ 0 l . By the condition (25) on V and the properties of the families (W k ) k and (Φ 0 ℓ ) ℓ , we check that the dimension of F is 1 + k + l. We denote by B the restriction of the operator H to the subspace F . From what precedes, we check that B is nonpositive on F . This is contradictory with [START_REF] Krieger | Two-soliton solutions to the three-dimensional gravitational Hartree equation[END_REF] which says that B is positive under only k + l orthogonality conditions.

3. Proof of Proposition 2

3.1. Notation. Let N ∈ N \ {0}, β 1 , . . . , β N ∈ R d be such that ∀n, |β n | < 1 and ∀n ′ = n, β n ′ = β n ; γ n := 1 1 -β 2 n ,
and let q 1 , q 2 , . . . , q N be any bound states of equation [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF]. Denote by I and I 0 the following two sets of indices Denote by B the closed unit ball of R |I| for the euclidian norm. For any n ∈ {1, . . . , N }, we consider the operators L n and H n for the bound state q n , along with the eigenvalues and eigenfunctions defined in Lemma 1

I = {(n,
(λ n,k ) (n,k)∈I , (φ n,k ) (n,k)∈I (φ 0 n,ℓ ) (n,ℓ)∈I 0 , (Φ 0 n,ℓ ) (n,ℓ)∈I 0 and (Y ± n,k ) (n,k)∈I,± (with obvious notations). Let r n (t, x) = q n (Λ βn (x -β n t)), R n = r n -β n • ∇r n , ( 30 
)
ψ 0 n,ℓ (t, x) = φ 0 n,ℓ (Λ βn (x -β n t)), Ψ 0 n,ℓ = ψ 0 n,ℓ -β n • ∇ψ 0 n,ℓ = Φ n,ℓ (x -β n t), (31) 
and

Z ± n,k (t, x) = (H n Y ± n,k )(x -β n t) (32) 
be their travelling-in-time counterparts. We recall the equation for ψ 0 n,ℓ :

(∆ -(β n • ∇) 2 )ψ 0 n,ℓ -ψ 0 n,ℓ + f ′ (r n )ψ 0 n,ℓ = 0. ( 33 
)
Let T 0 ≫ 1 to be fixed later large enough and ω > 0 to be fixed later small enough, independently of T 0 . For brevity, we will omit to mention the fact that ω is taken small so that estimates hold. It will be convenient in the estimates to introduce the following enveloping functions: for any n = 1, . . . , N , we set ρ n (t, x) = e -ω|x-βnt| , and ρ = N n=1 ρ n .

In particular, ω will be so small and T 0 so large that so that for any n = n ′ ,

∀t T 0 , ∀x ∈ R d , e -(p0-1)ω0|x-βnt| e -(p0-1)ω0|x-β n ′ t| e -10ωt ρ(t, x). ( 34 
)
(the exponential decay rate ω 0 > 0 was defined in ( 19)). Fix any S 0 T 0 . To prove Proposition 2, we show that there exists a choice of coefficients

(θ ± n,k ) (n,k)∈I,± , |θ| ≪ e -ωS0
, such that the backward solution U (t) of ( 2) with data

U (S 0 ) = N n=1 R n (S 0 ) + ±,(n,k)∈I 0 θ ± n,k Z ± n,k (S 0 ) (35) 
exists on [T 0 , S 0 ] and satisfies the properties of Proposition 2.

We consider such a solution U defined on its maximal backwards interval of existence [S max , S 0 ], and we first set

U = u ∂ t u = N n=1 R n + V, V = v ∂ t v . ( 36 
)
We further decompose V according to the kernel of the linearized operator around each bound state r n .

Lemma 3. For T 0 > 1 large enough and t T 0 , there exists b = (b n,ℓ ) (n,ℓ)∈I 0 such that

W = w z := V - (n,ℓ)∈I 0 b n,ℓ Ψ 0 n,ℓ (37) 
satisfies, for all (n, ℓ) ∈ I 0 , and C > 0 independent of t,

W, Ψ 0 n,ℓ = 0, |b| C V . ( 38 
)
Proof. The orthogonality condition in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] is equivalent to a matrix identity

( V, Ψ 0 n,ℓ ) (n,ℓ)∈I 0 = H b, where b = (b n,ℓ ) (n,ℓ)∈I 0 (written in one row) and H = ( Ψ 0 n,ℓ , Ψ 0 n ′ ,ℓ ′ ) (n,ℓ),(n ′ ,ℓ ′ )∈I 0 = D 0 + O(e -10ωt ), D 0 = diag(H 0 1 , . . . , H 0 n ), H 0 n = ( Ψ 0 n,ℓ , Ψ 0 n,ℓ ′ ) ℓ,ℓ ′ ∈(1,.
.., ln) . Note that for fixed n, the family (Ψ 0 n,ℓ ) ℓ∈(1,..., ln) being linearly independent (see Lemma 1), the Gram matrix H 0 n is invertible. Thus, D 0 is invertible: for T 0 large enough, so is H and b = H -1 ( V, Ψ 0 n,ℓ ) (n,ℓ)∈I 0 (and H -1 has uniform norm in t T 0 ). Note that (37) is equivalent to

w = v - N n=1 ln ℓ=1 b n,ℓ ψ 0 n,ℓ (39) 
z = v t + N n=1 ln ℓ=1 b n,ℓ β n • ∇ψ 0 n,ℓ = w t + N n=1 ln ℓ=1 ḃn,ℓ ψ 0 n,ℓ (40) 
For the sake of brevity, we denote

r = N n=1 r n , ψ 0 = N n=1 ln ℓ=1 b n,ℓ ψ 0 n,ℓ so that u = r + v = r + ψ 0 + w.
Finally, we set

a ± n,k = V, Z ± n,k . (41) 
Observe that

Ψ 0 n,ℓ , Z ± n ′ ,k = O(e -10ωt
) ) for all n, n ′ = 1, . . . , N , ℓ = 1, . . . , ln , k = 1, . . . , kn ′ and signum ± (it is obvious by separation and decay [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energy-critical wave equation[END_REF] when n = n ′ , and when

n = n ′ it is equal to Φ 0 n,ℓ , H n JY ± n ′ ,k = JH n Φ 0 n,ℓ , Y ± n ′ ,k = 0. Therefore W, Z ± n,k = a ± n,k + O(|b|e -10ωt ). ( 42 
)
Let p 0 = min(2, p), 1 < p 0 2.

Bootstrap setting.

We consider the following bootstrap estimates

W (t) e -ωt , |b(t)| e -ωt , |a -(t)| e -1 3 (p0+2)ωt , |a + (t)| e -1 3 (p0+2)ωt . (43) 
We claim that any given initial value of a + (S 0 ) can be matched by a suitable choice of initial θ in the definition of U (S 0 ) in [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF].

Lemma 4. There exists a C 1 map Θ : B → (e -1 4 (p0+3)ωS0 B) 2 such that for any a + = (a + n,k ) (n,k)∈I ∈ B, if we take θ = (θ ± n,k ) ±,(n,k)∈I = Θ(a + ) in the definition of V (S 0 ) from (35)- [START_REF] Martel | Stability of two soliton collision for nonintegrable gKdV equations[END_REF], there holds, for a ± (S 0 ) = (a ± n,k (S 0 )) (n,k)∈I (defined in (41)), a + (S 0 ) = e -1 3 (p0+2)ωS0 a + and a -(S 0 ) = 0.

Moreover,

W (S 0 ) e -1 4 (p0+3)ωS0 , |b(S 0 )| Ce -10ωS0 . (45) 
Proof. The proof of this result is similar to that of Lemma 6 in [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF] and Lemma 3 in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF]. In view of ( 35) and [START_REF] Martel | Stability of two soliton collision for nonintegrable gKdV equations[END_REF], it holds

V (S 0 ) = (n ′ ,k ′ )∈I,± θ ± n ′ ,k ′ Z ± n ′ ,k ′ (S 0 )
and so we are looking for a solution (θ ± n,k ) ±,(n,k)∈I of the equalities:

e -1 3 (p0+2)ωS0 a + n,k = a + n,k (S 0 ) = (n ′ ,k ′ )∈I,± θ ± n ′ ,k ′ Z ± n ′ ,k ′ (S 0 ), Z + n,k (S 0 ) , 0 = a - n,k (S 0 ) = (n ′ ,k ′ )∈I,± θ ± n ′ ,k ′ Z ± n ′ ,k ′ (S 0 ), Z - n,k (S 0 ) ,
which rewrites as a = Z θ, where

a = (a + 1,1 , a - 1,1 , a + 1,2 , a - 1,2 , . . .) ⊤ = (a ± ) ±,(n,k)∈I , θ = (θ + 1,1 , θ - 1,1 , θ + 1,2 , θ - 1,2 , . . .) ⊤ = (θ ± ) ±,(n,k)∈I ,
and where Z is the 2|I| × 2|I| matrix

Z = ( Z ± n,k (S 0 ), Z ± ′ n ′ ,k ′ (S 0 ) ) ±,± ′ ,(n,k),(n ′ ,k ′ )∈I .
In particular, by [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energy-critical wave equation[END_REF], for ω > 0 small enough, we note that

Z = D + O(e -10ωS0 ), where D = diag Z 1 , . . . , Z N , with Z n =       (Z + n,1 (S 0 ), Z + n,1 (S 0 )) (Z - n,1 (S 0 ), Z + n,1 (S 0 )) . . . (Z - n,1 (S 0 ), Z + n, k(S 0 )) (Z + n,1 (S 0 ), Z - n,1 (S 0 )) (Z - n,1 (S 0 ), Z - n,1 (S 0 )) . . . (Z - n,1 (S 0 ), Z - n, k(S 0 )) . . . . . . (Z + n, k(S 0 ), Z - n,1 (S 0 )) (Z - n,1 (S 0 ), Z - n,1 (S 0 )) . . . (Z - n, kn (S 0 ), Z - n, k(S 0 ))      
For any n = 1, . . . , N , Z n is the Gram matrix of the linearly independent family of size 2 kn (Z ± n,k (S 0 )) ±,k=1,... kn . Thus, Z n is invertible and D is invertible. It follows that Z is invertible for T 0 large enough. Moreover, from (44), for T 0 large enough,

|θ| C|a(S 0 )| Ce -1 3 (p0+2)ωS0 . (46) 
and so from the definition of V (S 0 ) above, and the fact that Z ± n,k , Ψ 0 n,ℓ = 0 for any n, k = 1, . . . kn , ℓ = 1, . . . , ln and signum ±, we infer that

| V (S 0 ), Ψ 0 n,ℓ | Ce -10ωS0 .
Recalling the definition of b (at the end of the proof of Lemma 3), we deduce that 46) and ( 38), we get

|b(S 0 )| = |H -1 ( V, Ψ 0 n,k ) (n,ℓ)∈I 0 )| C|( V, Ψ 0 n,k ) (n,ℓ)∈I 0 | Ce -10ωS0 . From (
V (S 0 ) , W (S 0 )
Ce -1 3 (p0+2)ωS0 . To conclude, simply observe that for large T 0 , Ce -1 3 (p0+2)ωS0 e -1 4 (p0+3)ωS0 .

We define the following backward exit time S ⋆ = S ⋆ (a + ) related to the bootstrap estimates [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian evolution equations[END_REF].

S ⋆ = inf{T ∈ [T 0 , S 0 ] such that U is defined and satisfies (43) on [T, S 0 ]}.
Note that in view of Lemma 4, U (S 0 ) satisfies ( 43) so that that T 0 S ⋆ S 0 is well-defined. Our goal is to find a specific choice of a + ∈ B so that S ⋆ = T 0 . The argument goes by contradiction of this condition. In the next subsections, we fix a choice of a + ∈ B, such that

T 0 < S ⋆ (a + ) S 0 . (47) 
We now derive estimates on W , |b| and |a ± | on [S ⋆ , S 0 ], so as to prove -in Lemma 10 -that the flow issued from a + is transverse at the exit time S ⋆ = S ⋆ (a + ).

Equation of W and preliminary estimates.

Lemma 5. The function W satisfies

∂ t W = z ∆w -w + f r + ψ 0 + w -f r + ψ 0 + (n,ℓ)∈I 0 ḃn,ℓ Ψ 0 n,ℓ + G ( 48 
)
where

G = 0 g , g := f r + ψ 0 - N n=1 f (r n ) - (n,ℓ)∈I 0 b n,ℓ f ′ (r n )ψ 0 n,ℓ . (49) 
Proof. First, since U and R n solve (2), it is direct to check the following equation for v

∂ 2 t v = ∆v -v + f (r + v) - N n=1 f (r n ). (50) 
Next, the first line of [START_REF] Shatah | Instability of nonlinear bound states[END_REF] follows from the definition of z. For the second line, we observe from the equation of V ,

∂ t z = ∂ 2 t v + (n,ℓ)∈I 0 ḃn,ℓ β n • ∇ψ 0 n,ℓ - (n,ℓ)∈I 0 b n,ℓ (β n • ∇) 2 ψ 0 n,ℓ = ∆v -v + f (r + v) - N n=1 f (r n ) + (n,ℓ)∈I 0 ḃn,ℓ β n • ∇ψ 0 n,ℓ - (n,ℓ)∈I 0 b n,ℓ (β n • ∇) 2 ψ 0 n,ℓ .
Inserting v = w + (n,ℓ)∈I 0 b n,ℓ ψ 0 n,ℓ = w + ψ 0 , and using [START_REF] Mcleod | Uniqueness of positive radial solutions of ∆u + f (u) = 0 in R n . II[END_REF], we find the second line of [START_REF] Shatah | Instability of nonlinear bound states[END_REF]. Now, we derive some preliminary estimates related to the equation of W . Recall that p 0 = min(2, p), 1 < p 0 2. First, note that for K > 0 and any real numbers (s j ) j=1,..., j such that |s j | K, the following holds

f j j=1 s j - j j=1 f (s j ) C(K) j =j ′ |s j | p0-1 |s j ′ | p0-1 , (51) 
|f (s 1 + s 2 ) -f (s 1 ) -s 2 f ′ (s 1 )| C(K)|s 2 | p0 , ( 52 
)
|f ′ (s 1 + s 2 ) -f ′ (s 1 )| C(K)|s 2 | p0-1 . (53) 
Second, applying these estimates to various situations, using [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energy-critical wave equation[END_REF] and [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF], we obtain

f (r) - n f (r n ) C n =n ′ |r n | p0-1 |r n ′ | p0-1 Ce -10ωt ρ, (54) 
f (r + ψ 0 ) -f (r) -f ′ (r)ψ 0 C|ψ 0 | p0 C|b| p0 ρ, (55) 
f ′ (r)ψ 0 - (n,ℓ)∈I 0 b n,ℓ f ′ (r n )ψ 0 n,ℓ (n,ℓ)∈I 0 ψ 0 n,ℓ b n,ℓ (f ′ (r) -f ′ (r n )) C|b|e -10ωt ρ.
(56) (the implicit constant does essentially depend on max( q n L ∞ , n = 1, . . . , N )). In particular, we obtain

|g(t)| C e -10ωt + |b(t)| p0 ρ(t). (57) 
Moreover, we also have

|f (r + ψ 0 + w) -f (r + ψ 0 )| C ρ p0-1 |w| p0-1 + |w| p , ( 58 
) |f (r + ψ 0 + w) -f (r + ψ 0 ) -wf ′ (r + ψ 0 )| C (|w| p0 + |w| p ) .
(59) Since p > 1, a similar estimate for F holds: Proof. We differentiate the orthogonality W, Ψ 0 n,ℓ = 0 from (38), using [START_REF] Shatah | Instability of nonlinear bound states[END_REF],

F r + ψ 0 + w -F r + ψ 0 -wf r + ψ 0 C |w| 2 + |w| p+1 . ( 60 
0 = d dt W, Ψ 0 n,ℓ = ∂ t W, Ψ 0 n,k -β n W, ∇Ψ 0 n,k = β n • ∇w + z ∆w -w + f (r + ψ 0 + w) -f (r + ψ 0 ) + β n • ∇z , Ψ 0 n,k + (n ′ ,ℓ ′ )∈I 0 ḃn ′ ,ℓ ′ Ψ 0 n ′ ,ℓ ′ , Ψ 0 n,ℓ + G, Ψ 0 n,k .
We see that the first term of the equality is bounded by C W , by performing integration by parts so that derivatives fall on the components of Ψ 0 n,k and using [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF]. Using (57) and the notation of the proof of Lemma 3, we obtain

|H b| C W + e -10ωt + |b| p0 ,
and the first estimate in (61) follows from the the matrix H -1 being uniformly bounded, and the second, from the bootstrap estimate (43).

3.5. Energy properties. We let

E W = 1 2 |z| 2 + |∇w| 2 + |w| 2 -2 F r + ψ 0 + w -F r + ψ 0 -wf r + ψ 0
We consider a C ∞ radial function χ : R d → R such that

χ(x) = 0 for |x| 2, χ(x) = 1 for |x| < 1, 0 χ 1 on R d . (62) 
We set

P n = 1 2 χ n z∇w, χ n (t, x) = χ x -β n t δt , (63) 
where

δ = 1 10 min{|β n -β n ′ | : 1 n, n ′ N, n = n ′ } and 
F (t) = E W (t) + 2 N n=1 β n • P n (t). ( 64 
) Lemma 7. For all t ∈ [S ⋆ , S 0 ], d dt F (t) C t e -2ωt , (65) 
W (t) 2 C F (t) + |a(t)| 2 + e -10ωt . (66) 
Proof. Proof of (65). First, we see that

dE W dt = z∂ t z + ∂ t w -∆w + w -f r + ψ 0 + w + f r + ψ 0 -∂ t (r + ψ 0 ) f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0
Using [START_REF] Shatah | Instability of nonlinear bound states[END_REF],

z∂ t z = (∂ t w + n,ℓ ḃn,ℓ ψ 0 n,ℓ )[∆w -w + f (r + ψ 0 + w) -f (r + ψ 0 )] + z( n,ℓ ḃn,ℓ β n • ∇ψ 0 n,ℓ + g).
Now, we claim

ψ 0 n,ℓ [∆w -w + f (r + ψ 0 + w) -f (r + ψ 0 )] = w(β n • ∇) 2 ψ 0 n,ℓ + O( w p0 L 2 + w L 2 e -10ωt + |b|) ). (67) 
Indeed, using [START_REF] Mcleod | Uniqueness of positive radial solutions of ∆u + f (u) = 0 in R n . II[END_REF],

ψ 0 n,ℓ [∆w -w + f (r + ψ 0 + w) -f (r + ψ 0 )] = ψ 0 n,ℓ [∆w -w + wf ′ (r n )] + ψ 0 n,ℓ f (r + ψ 0 + w) -f (r + ψ 0 ) -wf ′ (r n ) = w(β n • ∇) 2 ψ 0 n,ℓ + ψ 0 n,ℓ f (r + ψ 0 + w) -f (r + ψ 0 ) -wf ′ (r n ) .
Moreover, by ( 59) and ( 51),

ψ 0 n,ℓ f (r + ψ 0 + w) -f (r + ψ 0 ) -wf ′ (r n ) C ρ n f (r + ψ 0 + w) -f (r + ψ 0 ) -wf ′ (r + ψ 0 ) + C ρ n |w| f ′ (r + ψ 0 ) -f ′ (r) + C ρ n |w| |f ′ (r) -f ′ (r n )| C w p0 L 2 + C w L 2 e -10ωt + 
|b|) , which proves (67). Next, using (57), we have

zg C(e -10ωt + |b| p0 ) z L 2 . (68) 
Thus,

z∂ t z + ∂ t w -∆w + w -f r + ψ 0 + w + f r + ψ 0 = w   (n,ℓ)∈I 0 ḃn,ℓ (β n • ∇) 2 ψ 0 n,ℓ   + z   (n,ℓ)∈I 0 ḃn,ℓ (β n • ∇ψ 0 n ′ ,ℓ )   + O | ḃ| w p0 L 2 + w L 2 e -10ωt + |b| + O z L 2 (e -10ωt + |b| p0 ) .
Finally, we have

-∂ t r f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0 = N n=1 (β n • ∇r n ) f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0 , and, since ∂ t (b n,ℓ ψ 0 n,ℓ ) = ḃn,ℓ ψ 0 n,ℓ -b n,ℓ (β n • ∇ψ 0 n,ℓ ), by (59), -∂ t ψ 0 f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0 = O (|b| + | ḃ|) W 2 .
Thus, in conclusion, using also (61

) to control | ḃ| C W + e -10ωt + |b| p0 , dE W dt = w   (n,ℓ)∈I 0 ḃn,ℓ (β n • ∇) 2 ψ 0 n,ℓ   + z   (n,ℓ)∈I 0 ḃn,ℓ (β n • ∇ψ 0 n,ℓ )   + n (β n • ∇r n ) f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0 + O W p0+1 + |b| W p0 + (e -10ωt + |b| p0 ) W . (69) 
Now, we compute

dP n dt = 1 2 (∂ t χ n )z∇w + 1 2 χ n z∇∂ t w + 1 2 χ n ∇w ∂ t z = - 1 2 x t • ∇χ n z∇w + 1 2 χ n z∇z - 1 2 χ n z   n ′ ,ℓ ḃn ′ ,ℓ ∇ψ 0 n ′ ,ℓ   + 1 2 χ n ∆w∇w - 1 2 χ n w∇w + 1 2 χ n ∇w f r + ψ 0 + w -f r + ψ 0 + 1 2 χ n ∇w   n ′ ,ℓ ḃn ′ ,ℓ (β n ′ • ∇ψ 0 n ′ ,ℓ )   + 1 2 χ n g∇w.
Integrating by parts, this writes

dP n dt = - 1 2 x t • ∇χ n z∇w - 1 4 ∇χ n z 2 - 1 4 ∇χ n |∇w| 2 + 1 2 (∇χ n • ∇w)∇w + 1 4 w 2 ∇χ n - 1 2 ∇χ n F r + ψ 0 + w -F r + ψ 0 -wf r + ψ 0 - 1 2 χ n ∇(r + ψ 0 ) f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0 - 1 2 χ n z   n ′ ,ℓ ḃn ′ ,ℓ ∇ψ 0 n ′ ,ℓ   + 1 2 χ n ∇w   n ′ ,ℓ ḃn ′ ,ℓ (β n ′ • ∇ψ 0 n ′ ,ℓ )   + 1 2 χ n g∇w.
For the terms on the first 3 lines, we use (60) to bound

x t • ∇χ n z∇w + ∇χ n z 2 + ∇χ n |∇w| 2 + (∇χ n • ∇w)∇w + ∇χ n w 2 + ∇χ n F r + ψ 0 + w -F r + ψ 0 -wf r + ψ 0 C ∇χ n L ∞ z 2 + |∇w| 2 + w 2 + |w| p+1 C t W 2 ,
For the fourth line, using (59), we have

(1 -χ n )∇r n f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0 C ∇q n,βn L ∞ (|x|>δt) W p0 Ce -10ωt W p0 ,
and for n ′ = n, using [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energy-critical wave equation[END_REF],

χ n z∇ψ 0 n ′ ,ℓ + χ n ∇w(β n ′ • ∇ψ 0 n ′ ,ℓ ) Ce -10ωt W .
Moreover, by (57)

χ n g∇w C(e -10ωt + |b| p0 ) W
Thus, in conclusion for this term

dP n dt = - 1 2 z   ln ℓ=1 ḃn,ℓ ∇ψ 0 n,ℓ   + 1 2 ∇w   ln ℓ=1 ḃn,ℓ (β n • ∇ψ 0 n,ℓ )   + 1 2 ∇r n f r + ψ 0 + w -f r + ψ 0 -wf ′ r + ψ 0 + O 1 t W 2 + (e -10ωt + |b| p0 ) W (70) 
Combining ( 69) and (70), we find

dF dt C W p0+1 + |b| + t -1 W 2 + (e -10ωt + |b| p0 ) W (71) 
Using [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian evolution equations[END_REF], we find (65). Proof of (66).

Expanding F (t) we get that

F (t) = N n=1 Hn (t)W, W + O( W p0+1 + e -10ωt ),
where Hn (t) is the analog of H n , localized on the ball B(0, δt) and translated by β n t. Using standard localization arguments and Proposition 3, we infer the following property

W (t) 2 C   F (t) + (n,k)∈I,± | W, Z ± n,k | 2 + (n,ℓ)∈I 0 | W, Ψ 0 n,ℓ | 2 + e -10ωt   .
(72) We refer e.g. to [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] for further details. Recall that by construction [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF], W, Ψ 0 n,ℓ = 0. Finally by [START_REF] Nakamura | The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces[END_REF] (and the boostrap ( 43)), we have

| W, Z ± n,k | |a ± n,k (t)| + C|b(t)|e -10ωt C(|a| + e -10ωt
).

3.6. Negative directions. Transversality at S ⋆ . Recall that we have set a

± n,k = V, Z ± n,k . Lemma 8 (Negative directions). For all t ∈ [S ⋆ , S 0 ], ȧ± n,k (t) ± λ n,k γ n a ± n,k (t) Ce -1 2 (p0+1)ωt . (73) 
Proof. From (50), we rewrite the equation of V as follows

∂ t V = ∂ t v ∆v -v + f (r + v) -f (r) = 0 1 ∆ -1 + f ′ (r n ) 0 V + G n ,
where

G n = 0 g n , g n = f (r + v) -f (r) -f ′ (r n )v.
Then, by ( 16)

d dt a ± n,k = ∂ t V, Z ± n,k -β n V, ∇Z ± n,k = β n • ∇ 1 ∆ -1 + f ′ (r n ) β n • ∇ V, Z ± n,k + G n , Z ± n,k = JH n V (. + β n t), H n Y ± n,k + G n , Z ± n,k = -V (. + β n t), H n (JH n Y ± n,k ) + G n , Z ± n,k = ∓ λ n,k γ n a ± n,k + G n , Z ± n,k .
Now, we estimate G n , Z ± n,k . By ( 51) and ( 52), one has

|g n | = |f (r + v) -f (r n ) -f ′ (r n )v| |f (r + v) -f (r n + v)| + |f (r n + v) -f (r n ) -f ′ (r n )v| n ′ ,n ′ =n |f (r ′ n )| + Ce -10ωt ρ + n ′ ,n ′ =n |v| p0-1 |r n ′ | p0-1 + C|v| p0 .
Thus,

| G n , Z ± n,k | C V p0 + Ce -10ωt C W p0 + C|b| p0 + Ce -10ωt
. Therefore, we have obtained, using the bootstrap estimates [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian evolution equations[END_REF] From the contradiction assumption (47) and a continuity argument, it follows that there must be at least one equality in the bootstrap assumptions [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian evolution equations[END_REF] + O e is well defined on the unit ball B with values in the unit sphere S of R |I| , continuous, and its restriction to S is the identity. A contradiction is reached from Brouwer's theorem. Hence there exists at least one a + ∈ B such that S ⋆ (a + ) = T 0 , and it provides the sought for solution U of (2). We refer to [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF] and [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF] for more details.

  k) : n = 1, . . . , N, k = 1, . . . , kn }, |I| = Card I = N n=1 kn , I 0 = {(n, ℓ) : n = 1, . . . , N, ℓ = 1, . . . , ln }, |I 0 | = Card I 0 = N n=1 ln .
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 31 p0+2)ωt e -1 2 (p0+1)ωt e -(p0+2)t -c 0 A (a + , t) + O e -1 6 (p0-1)ωt .(because for all (n, k) ∈ I, 2 λ ). Now, at time t = S ⋆ , by (75), we have A (a + , S ⋆ ) = 1 and sod dt A (a + , t)| t=S⋆(a) -c 0 + O e -1 6 (p0-1)ωt c 0 2 < 0,for T 0 large enough.

3. 7 . 1 3

 71 Conclusion: topological argument. To conclude the proof of Proposition 2, we argue by contradiction, and assume that for any a + ∈ B, (47) holds, that is S ⋆ (a + ) > T 0 . Then Lemma 10 applies to any a + ∈ B: as a standard consequence of this transversality result, the following map M : B → S, a + → M (a + ) := e (p0+2)ωS⋆ a + (S ⋆ )

  ) 3.4. Degenerate directions. Estimates for (b n,ℓ ).

	Lemma 6. For all t ∈ [S ⋆ , S 0 ], | ḃ(t)| C W (t) + e -10ωt + |b(t)| p0	Ce -ωt .	(61)

  for the final bound,C W p0 + |b| p0 + Ce -10ωtCe -1 2 (p0+1)ωt .We close the estimates for W , |b| and |a -| in the following result.Lemma 9. For all t ∈ [S ⋆ , S 0 ], Proof. Let t ∈ [S ⋆ , S 0 ]. First, F (0) C W (S 0 ) 2 sothat with (45), integrating (65) on [t, S 0 ] yields Then we integrate (61) on [t, S 0 ], using (45) and our improved bound W (t) Thus, by integration on [t, S 0 ], |a - n,k (t)| Ce -1 2 (p0+1)ωt . Taking the ℓ 2 (R |I| ) norm, we get

	It follows from (66) and the bootstrap assumption (43) that
	W (t) 2 CF (t) + C|a(t)| 2 + Ce -10ωt
					C t	e -2ωt + Ce -2 3 (p0+2)ωS0 + Ce -10ωt C t	e -2ωt .
	For T 0 4C large enough, we get W (t)	1 2	e -ωt .
	C √ t e -ωt , and we find					
				|b(t)| C	1 √ t	e -ωt + e -10ωS0	1 2	e -ωt .
	In view of (44) and (73), we have	
	d dt	e -	λ n,k γn t a -n,k (t)		Ce -	λ n,k γn t-1 2 (p0+1)ωt , a -n,k (S 0 ) = 0.
						|a -(t)|	1 2	e -1 3 (p0+1)ωt .
	ȧ± n,k ±	λ n,k γ n	a ± n,k			
	W (t)		1 2	e -ωt , |b(t)|	1 2	e -ωt , |a -(t)|	1 2	e -1 3 (p0+2)ωt .	(74)
	Moreover,							
						|a + (S ⋆ )| = e -1 3 (p0+2)ωS⋆ .	(75)
							F (t)	C t	e -ωt .

  at time S ⋆ : in view of the above, the only possibility is |a+ (S ⋆ )| = e -1 3 (p0+2)ωS⋆ .Now, we are in a position to state the transversality condition on a + at S ⋆ .We compute from (73) and (43), for any t ∈ [S ⋆ , S 0 ],

	Lemma 10. Let A (a + , t) = e ∂ ∂t 2 3 (p0+2)ωt |a + (t)| 2 . Then A (a + , t)| t=S⋆(a + ) < 0.		(76)
	Proof. Let c 0 = min	λ n,k γ n	, (n, k) ∈ I and consider so small ω > 0 that	8 3	ω < c 0 .
	d dt	A (a + , t) =	2 3	(p 0 + 2)ωA (a + , t) + 2e	2 3 (p0+2)ωt	(n,k)∈I	ȧ+ n,k (t)a + n,k (t)
		=	2 3	(p 0 + 2)ωA (a + , t) -2e	2 3 (p0+2)ωt	(n,k)∈I	λ n,k γ n	|a ± n,k (t)| 2
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