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Abstract. To employ data analytics effectively and efficiently on manufacturing 

systems, engineers and data scientists need to collaborate closely to bring their 

domain knowledge together. In this paper, we introduce a domain-specific 

modeling approach to integrate a manufacturing system model with advanced 

analytics, in particular neural networks, to model predictions. Our approach 

combines a set of meta-models and transformation rules based on the domain 

knowledge of manufacturing engineers and data scientists. Our approach uses a 

model of a manufacturing process and its associated data as inputs, and generates 

a trained neural network model as an output to predict a quantity of interest. This 

paper presents the domain-specific knowledge that the approach should employ, 

the formal workflow of the approach, and a milling process use case to illustrate 

the proposed approach. We also discuss potential extensions of the approach. 

Keywords: Data analytics, meta-model, neural network, manufacturing process, 

predictive modeling 

1 Introduction 

The manufacturing industry generates large amounts of data on products, processes, 

and resources, among other things. Data analytics provide the capabilities needed to 

extract insights and make predictions from these data. The potential impacts of data 

analytics on manufacturing-systems efficiency include a reduction of production cost 

and time across all manufacturing levels [1, 2]. Data scientists and manufacturing 

engineers often collaborate when using data analytics to solve process-specific 

problems to improve product quality [3, 4], equipment efficiency [5, 6], and resource 



 

 

efficiency [7, 8]. However, these collaborations require a significant amount of time 

and effort to merge the expertise from these two domains. In [9], the authors present a 

domain-specific framework to address this challenge. The framework 1) identifies the 

main components and interfaces that must be implemented to improve communication 

between these domains and 2) facilitates the application of data analytics in 

manufacturing. In this paper, we introduce an implementation of some of the 

components and interfaces that will be a part of this framework.  

Our approach focuses on using data analytics – specifically neural networks (NNs) 

– for predicting a set of manufacturing-process-related performance metrics. There are 

three main contributions of this paper. First, we provide meta-models to represent 

manufacturing processes and NNs. Second, we describe an algorithm to generate a 

trained NN automatically from a manufacturing process model and data. Third, we 

discuss a tool to export the NN in two standard formats: the Predictive Model Markup 

Language (PMML) [10] and the Portable Format for Analytics (PFA) [11]. 

The paper is organized as follows. Section 2 presents the domain-specific knowledge 

required from the manufacturing and data-science domains to generate NNs for 

manufacturing processes. It also introduces the approach to generate NNs 

automatically. Section 3 describes, in more detail, two components of the proposed 

approach: a manufacturing meta-model and transformation rules to generate an NN. 

Section 4 presents a process-level manufacturing use case to illustrate the capabilities 

of the approach.  

2 Domain Specific Knowledge from Neural Networks and 

Manufacturing Processes  

In this section, we discuss the knowledge required from manufacturing engineers 

and data scientists to apply NNs to manufacturing processes. We review applications 

of NNs in manufacturing processes, and devise a methodology based on the common 

practice of data scientists. 

2.1 Manufacturing Domain Knowledge 

To identify the required manufacturing-domain knowledge, we studied several 

research efforts on the applications of data analytics (DA) to manufacturing processes. 

In [12], the authors apply analytics to detect faults in the alignment of a cap to the base 

part of a product. In [13], [14], and [15], the authors predict product quality using three 

DA algorithms: Bayesian networks (BNs), linear regression, and NNs. In [16], the 

authors describe a way to predict the need for equipment repair using BNs. In [15], the 

authors used NNs to study surface roughness in a milling process. They identified 

surface roughness as the performance metric of interest. They also identified spindle 

speed, feed rate, depth of cut, and the vibration average per revolution as the process 

variables that have the most impact on surface roughness. They collected 492 data 

samples to train and validate the NN. Each application followed a similar workflow: 1) 

identify the performance metric to be studied, 2) identify the variables that impact this 



target quantity, and 3) use test data to build an analytical model to predict the 

performance metric from the process variables. We used this same workflow in our 

work. 

2.2 Data Science Domain 

Knowledge 

 To understand the knowledge required 

from a data scientist to apply data 

analytics techniques to build an NN, it is 

important to understand how an NN is 

built. Figure 1 presents the main 

elements and the structure of an NN. An 

NN is composed of an input layer, zero 

or more hidden layers, and an output layer. Each layer contains at least one neuron. All 

layers except the output layer contain a bias neuron (shown in black). Weighted edges 

fully connect neurons in different layers. From a mathematical viewpoint, NNs can be 

viewed as a set of nonlinear basis functions (the activation functions), with free 

parameters (the adjustable weights). Training the NN is about adjusting the weights to 

minimize the error between the output value of the NN and the known, real, output 

value for a given data sample [17]. 

As noted above, the first step in building the NN involves selecting the input 

variables relevant to the performance metric. This step is called feature selection and 

defines the number of input neurons of the NN.  There is one input neuron for each 

input variable. The second step is to determine the number of hidden layers and the 

number of neurons in each layer. In general, one hidden layer is sufficient [18] for the 

class of problems related to manufacturing processes. The number of hidden neurons 

has an impact on the NN accuracy, thus data scientists define this number very 

carefully. Finally, the output neuron represents the variable that we are trying to predict, 

which we call the quantity of interest. For example, a performance metric such as 

energy consumption may be the quantity of interest in a manufacturing scenario. 

Based on these reviews, our approach needs to define the input neurons based on the 

process variables, define the optimal number of hidden neurons for an NN with one 

hidden layer, and finally define the output neuron for the quantity of interest. 

2.3 Integration of Manufacturing and Data Science Domain Models 

After identifying the required knowledge from manufacturing engineers and data 

scientists, we describe our approach and how it contributes to the framework defined 

in [9]. Figure 2 summarizes the workflow of our approach. In this figure, meta-models 

(Ⓐ and Ⓑ) are in gray, models (,  and ) are in yellow, and software solutions 

(,  and ) are in blue. The dashed arrows represent actions defined in the related 

label. The solid arrows show the use of models as input or output of the software 

solutions. 

Figure 1. Structure of a Neural Network 



 

 

Box Ⓐ represents our manufacturing meta-model that captures the manufacturing 

knowledge. This meta-model defines the concepts, rules and constraints needed to 

represent a manufacturing process. Using the meta-model, a manufacturing engineer is 

able to build a manufacturing process model  to define the quantities of interest and 

the variables involved in the manufacturing process. Note, we provide an interface to 

collect data related to the manufacturing process.  

Taking the manufacturing process model and data as inputs, an NN model builder 

 embeds a set of algorithms to run a feature selection that 1) optimizes the number of 

input neurons, 2) computes the optimal number of hidden neurons, and 3) builds the 

optimal structure of the NN . This NN structure is recorded using an NN meta-model 

contained in the meta-model repository. The NN meta-model and NN model interpreter 

are presented in [19]. The NN model interpreter  generates a trained NN. This NN is 

exported as a PMML or PFA file  that is ready to use for prediction with new data. A 

scoring engine  provides predictions  using the PMML file and new data. Scoring 

is the process of using a model to make predictions about the behavior of a quantity of 

interest. A manufacturing engineer makes decisions based on these predictions to 

control the manufacturing process under investigation. 

3 Manufacturing Meta-Models and Transformation Rules of the 

Neural Network Builder 

In this section, we describe the components, Ⓐ, Ⓑ and  in Figure 2, to generate 

NNs from manufacturing process descriptions automatically. We also describe our 

implementations of these components. 

Figure 2. Formal workflow of the approach 



3.1 Meta-Model for Manufacturing Processes 

A meta-model is a graphical description of concepts and their relationships, which 

can be used to describe objects or instances of those concepts in a particular domain. 

We developed a meta-model for describing manufacturing processes in a way that is 

helpful to build an NN. A manufacturing engineer builds a manufacturing model using 

the meta-model to provide the required knowledge identified in Section 2.1. Since the 

purpose of the approach is to use data-driven techniques (in this case NNs), there are 

no physics-based equations associated with the model. Figure 3 presents the main 

concepts of the manufacturing meta-model. Please note that this is a simple but a 

reasonable representation of the domain model. The notation in Figure 3 and Figure 4 

is based on Unified Modeling Language Class Diagrams [20], where the rectangles 

represent concepts occurring in the domain, and the lines represent relationships 

between the concepts. A line with a solid diamond represents a containment 

relationship, with a numerical range at one end denoting the number of allowed 

instances. For example, in Figure 3, a ManufacturingModel can contain 0 or more 

instances of ManufacturingProcess. 

The annotation <<Model>> is used to identify first class objects, while the 

annotation <<Connection>> is used to represent edges, flows, or associations. 

ManufacturingModel is a high level concept that allows the description of a 

manufacturing model that is composed of Flows and ManufacturingProcess concepts. 

The Flow concept represents connections between instances of the 

ManufacturingProcess concept. A ManufacturingProcess is composed of Resource 

and Equipment concepts, which allow the manufacturer to include resource or 

equipment parameters as variables of the manufacturing process. 

ManufacturingProcess also contains the concepts of Parameter and Metric. Metric is 

used to define a quantity of interest in the manufacturing process. Parameters are the 

variables that can impact the metric for a manufacturing process.  

Figure 3. Manufacturing meta-model 



 

 

In the UML notation, an empty triangle is used to denote specialization, where one 

concept may be specialized into many sub-concepts. As shown in Figure 3, the 

Resource concept is extended to define different types of resources: energy, water, and 

material. The manufacturing meta-model can also be extended to define other kinds of 

resources such as labor. 

3.2 Meta-Model for Neural Networks 

 Figure 4 shows the neural network meta-model (NNMM) presented in [19]. The 
NNMM represents different types of NNs through various abstractions. A 
NeuralNetworkModel concept is composed of Neuron and Edge concepts. A Neuron can 
be one of four types: InputNeuron, HiddenNeuron, BiasNeuron, and OutputNeuron. An 
Edge can be a VisibleEdge or a HiddenEdge. A VisibleEdge is used to represent an edge 
between an input neuron and a hidden neuron, between a hidden neuron and an output 
neuron, or between a bias neuron and an output neuron. Edges between two hidden 
neurons, or between a bias neuron and a hidden neuron are represented using 
HiddenEdge. 

3.3 Transformation Rules to Generate an NN from a Manufacturing Model  

We developed a set of transformation rules to generate an NN model from a 

manufacturing model. Together, these rules represent a step-by-step process to build an 

NN from the input model and the data provided by a manufacturing engineer. We 

embedded these rules into the NN model builder, so that they can be applied to any type 

of manufacturing process model. The result of applying these rules is an untrained NN 

model, which is built based from the NN meta-model described above, and an input 

Figure 4. Neural network meta-model [19] 



data set for training. Figure 5 presents the workflow and the transformation rules of the 

NN model builder, identified as  in Figure 2.  

The NN model builder takes the manufacturing process model and data provided by 

the manufacturing engineer as inputs. In the builder, Step 1 identifies those variables 

that the manufacturer listed as impacting the quantity of interest in the manufacturing 

model. The identified variables are compared with the variables present in the data set. 

The variables that are not identified in the manufacturing model are then removed. Step 

1 takes advantage of the manufacturing expertise that the manufacturing engineer 

provides in the model.  

Step 2 uses the feature-selection algorithm and a real data set to identify those 

variables that do not contribute to the quantity of interest based on a data set. This 

algorithm takes the variables provided from Step 1 and removes the variables that do 

not contribute from the list.   

During Step 3, the builder runs an algorithm to optimize the number of hidden 

neurons for the NN. Several reports document the studies associated with optimizing 

the number of hidden neurons and putting them all into a single hidden layer. Sheela et 

al. [21], for example, analyzes the performance of the different optimization methods 

described in different reports – that is, their ability to predict the actual optimal number 

of hidden neurons. Our algorithm applies these different methods and computes the 

number that appeared most frequently. That number is the one selected for the NN. As 

we mentioned previously, one hidden layer is sufficient for manufacturing process-

related problems, and the algorithm is implemented to build one hidden layer. This 

algorithm, however, can easily be modified to build NNs with more than one hidden 

layer. 

In Step 4, the builder generates the NN instance model and a data set as outputs. The 

NN instance model describes the structure of the NN, and must be trained in order to 

predict the quantity of interest. The output data set is a subset of the input data set. The 

input data set variables that do not impact the quantity of interest are not included in 

the output data set. 

Using the output data set, the NN model interpreter [19] performs the NN training 

and updates the weights on the NN instance model. It also generates a PMML or PFA 

file containing the trained NN model. 

4 Use Case 

In this section, we show how our implementation of the proposed approach is used 

in a typical manufacturing scenario. For our approach, manufacturing engineers build 

Figure 5. Workflow of the NN model builder 



 

 

a model of the process they wish to study using the meta-model described earlier. Next, 

they collect test data by conducting experiments or from other sources. Finally, they 

use the automated tools described in Figure 2 to generate an NN for their process. This 

NN can be used to make future decisions without having to conduct physical 

experiments to determine target values. 

4.1 Scenario Description 

This case study focuses on predicting the energy consumed by a milling machine 

tool. The data set used in this case study was generated in [22] from a total of 18 parts 

machined with 196 face milling, 108 contouring, 54 slotting and pocketing, 16 spiraling 

and 32 drilling operations. We focused on face milling in this use case. The series of 

machining operations were performed. Data was collected using power meters and 

different sensors, and then stored in a database. We use the collected data as test data 

to build an NN model to predict power consumption for different combinations of 

machining parameters.  

The test data includes the timestamp, power demand, feed rate, spindle speed, depth 

of cut, cutting direction, cutting strategy, cutting ratio, cutting volume, and length of 

cut in the 3 axis, referred as cutX, cutY and cutZ. As described below, we first built a 

manufacturing process model based on our case study, then identified the optimal 

process parameters and the metric of interest.  

4.2 Building the Manufacturing Process Model 

Figure 6 shows the manufacturing process 

model that we built for the milling process. This 

model contains the parameters that the 

manufacturing engineer has specified as 

contributing to the quantity of interest. In this 

model, we defined power as the quantity of 

interest. We defined feed rate, spindle speed, 

depth of cut, cutting ratio, cutting volume, cutX, 

cutY, and cutZ as parameters that impact the 

power consumption. During this step, the 

manufacturers use their domain expertise to list 

only those parameters that they think will have a significant impact on their power 

consumption. The test data and the manufacturing model are the inputs to our next step, 

which performs feature selection and generates the NN. 

4.3 Generating the Neural Network for Prediction 

 In the next step, the manufacturing engineer executes the NN model builder using 

both the manufacturing model (in Figure 6) and the test data as inputs. Our algorithm, 

Figure 6. Manufacturing model 



takes those inputs and generates a trained NN. It does this using two pieces of software: 

the NN model builder and the NN model interpreter. 

The NN model builder identifies the quantity of interest (the selected performance 

metric) from the manufacturing model. In this case, it is power. The NN model builder 

prunes the data set by removing the data that were omitted in the manufacturing model. 

In our case, it removes the cutting direction and cutting strategy variables from the data 

set since these are not present in the manufacturing model in Figure 6. Next, the feature 

selection algorithm is executed. It uses the test data to identify and remove parameters 

that have an insignificant impact on the target variable. In our example, feed rate, depth 

of cut, cutX, and cutY were found not to have a significant effect on power; therefore, 

these parameters are not considered when building the NN.  

The NN model builder then displays which variables were removed 1) based on the 

manufacturing model and 2) using the feature selection algorithm. Then the builder 

saves the new data set in a location identified by the manufacturing engineer. Figure 7 

shows the resulting NN model, an automatically generated instance of the NNMM 

which is shown in Figure 4. 

In this NN model, the NN model 

builder keeps four variables: spindle 

speed, cutting ratio, cutting volume and 

cutZ. They are defined as input neurons 

in the NN. The algorithm computes that 

two hidden neurons are optimal in this 

model. Power is defined as the output 

neuron in the NN. Finally, the builder 

adds a bias neuron for every layer except 

the output layer to build a correct NN. 

The NN model builder generates the 

structure model the NN.  It still needs 

to be trained (i.e. weights must be 

assigned to the edges to make correct 

predictions). To generate the weights, the structural NN must be trained with the test 

data. The NN model and the test data are inputs to the NN model interpreter. The 

interpreter generates a trained NN based on the structure described in the NN model 

and the test data. The NN is generated as a standard PMML file. Several off-the-shelf 

data analytics tools can read this PMML file.  

The manufacturer can now use this NN to predict the energy consumption of the 

milling machine under different conditions. This allows the manufacturer to perform 

different tests and make decisions, without having to physically execute experiments 

on the machine. 

5 Summary and Future Work 

In this paper, we proposed an approach to generate an NN to predict performance 

metrics for manufacturing processes. This approach provides capabilities to collect the 

required manufacturing knowledge and to use that knowledge to build NN models to 

Figure 7. Neural network model 



 

 

predict the performance metrics for different values of the process parameters. This can 

be used to optimize performance by finding the best values for the process parameters.    

We first reviewed the applications of data analytics to manufacturing processes for 

identifying the steps taken by data scientists to create NNs. We then developed and 

implemented the components needed to provide the capabilities required by this 

approach. Part of that approach is developing a manufacturing meta-model. The meta-

model allows manufacturing engineers to provide a set of the most important process 

parameters – those have the most impact on performance – in a manufacturing model. 

In addition to this meta-model, we implemented an NN model builder to automatically 

build an NN model from a manufacturing model and data provided by manufacturing 

engineers. The NN model builder provides 1) a feature-selection algorithm based on 

the test data and 2) an NN model generator that generates the structure of the NN. From 

the generated NN structure, an NN model interpreter produces a trained NN in a 

standard format. Using a scoring engine, the trained NN can then be used to predict the 

quantity of interest. 

We illustrated the capabilities of our implementation using a realistic manufacturing 

scenario. In this scenario, an NN is trained to predict energy use during a particular 

milling process. A manufacturing engineer provides a manufacturing model used as 

input to the NN builder. The implemented algorithms finally generate a trained NN that 

can be used with new data for predicting energy consumption. 

This paper presented an initial description and implementation of an approach to 

generate predictive models for manufacturing applications. We implemented a 

translator (the NN model builder) to generate neural networks automatically. More 

translators will be implemented in future work to generate other types of predictive 

models. In practice, manufacturing processes and their interactions with their 

surrounding environment are complex. In order to generate reliable prediction models 

for practical scenarios, our meta-models and translators must be extended to account 

for other parameters and constraints that affect manufacturing processes. Future work 

lies in four directions. The first is to extend the manufacturing meta-model to enable 

the representation of problems in greater detail, and at different manufacturing levels 

such as assembly. Next, add new steps to the NN model builder to improve its accuracy.  

Third, include a scoring engine. Fourth, extend the framework to include different 

analytical techniques such as Bayesian networks. Capabilities to build BN models could 

enable the application of uncertainty quantification in manufacturing [23]. 
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