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 which was restricted to the index α ∈ (1, 2) and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus, we obtain the representation of the density and its derivative as an expectation and a conditional expectation. This permits to analyze the asymptotic behavior in small time of the density, using the time rescaling property of the stable process.

Introduction

We consider the following stochastic differential equation (SDE)

X β t = x 0 + t 0 b(X β s , θ)ds + σL t (1.1)
for t ∈ [0, 1], where (L t ) t∈[0,1] is a truncated α-stable process with exponent 0 < α < 2 and our aim is to study the asymptotic behavior, in small time, of the density of (X β t ), the solution of (1.1), as well as its derivative with respect to the parameter β = (θ, σ) T . This problem plays an important role in asymptotic statistics based on high frequency observations. Indeed, considering the estimation of β from the discrete time observations (X β i/n ) 0≤i≤n , and denoting by p β 1/n (x, y) the transition density of the discrete time process, the estimation rate of the parameter β strongly relies on the asymptotic behavior of the derivative ∇ β p β 1/n (x, y), as n goes to infinity. Based on the results established in the present paper, we derive, in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF], an asymptotic expansion of the log-likelihood ratio and we prove the LAMN property for the parameter β.

In the last decades, a large literature has been devoted to the existence and regularity of the density to the solution (X t ) t , for t > 0, of a general stochastic equation driven by pure jump Lévy processes. We can mention the works of Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], Picard [START_REF] Picard | On the existence of smooth densities for jump processes[END_REF], Denis [START_REF] Denis | A criterion of density for solutions of Poisson-driven SDEs[END_REF], Ishikawa-Kunita [START_REF] Ishikawa | Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps[END_REF], Fournier-Printems [START_REF] Fournier | Absolute continuity for some one-dimensional processes[END_REF] and more recently the works of Debussche-Fournier [START_REF] Debussche | Existence of densities for stable-like driven SDE's with Hölder continuous coefficients[END_REF] and Kulik [START_REF] Kulik | On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise[END_REF], under Hölder continuity assumptions on the coefficients of the equation and assuming that the equation is driven by an α-stable process.

In this paper, the main contributions are obtained by using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] and adapted to the particular case of equation (1.1) by Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. Although it requires some strong derivability assumptions on the coefficients of the equation, it leads to some explicit representation formulas for the density and its derivative (see also ). Let us mention that alternative representations for the density can be obtained by other methods, for example the method proposed by Bouleau-Denis [START_REF] Bouleau | Dirichlet forms methods for Poisson point measures and Lévy processes[END_REF] based on Dirichlet forms or the parametrix method used by Kulik [START_REF] Kulik | On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise[END_REF].

To study the asymptotic behavior of the transition density of X β t and its derivative, in small time, we establish some representation formulas. This extends the results of Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where only the derivative with respect to the drift parameter θ was considered, with the restriction α > 1. These representation formulas involve some Malliavin weights whose expressions are given explicitly. This permits first to identify in the Malliavin weights a main part and a negligible part in small time asymptotics and then to derive the asymptotics for the density stated in Theorem 2.1 and Theorem 2.2. In contrast to [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the exposition now involves the solution of the ordinary differential equation defined by the deterministic part of (1.1). Moreover, the study of each terms appearing in the Malliavin weights is complicated by the non integrability of the α-stable process as α ≤ 1.

The present paper is organized as follows. Section 2 contains the main results (Theorem 2.1 and Theorem 2.2). Section 3 presents the methodology consisting first in a representation of the density by Malliavin calculus where the Malliavin weights can be decomposed into a main part and a negligible part and then in the study of their asymptotic behavior. We prove our main results in Sections 4 and 5. Finally, in Section 6, we recall the Malliavin integration by parts setting developed by [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] and used in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], and give some representations of the transition density, its derivative, as well as its logarithm derivative. We also explicit the iterated Malliavin weights appearing in the expression of the derivative of the density.

Asymptotics for the density and its derivative

We consider the process (X β t ) t∈[0,1] solution to the stochastic equation (1.1) where (L t ) t∈[0,1] is a pure jump Lévy process defined on a filtered probability space (Ω, G, (G t ) t∈[0,1] , P), b is a real valued function and the parameter β = (θ, σ) T belongs to R × (0, ∞). We assume that the following assumptions are fulfilled. H 1 : (a) The function b has bounded derivatives up to order five with respect to both variables. (b i ) The Lévy process (L t ) t∈[0,1] is given by L t = t 0 [-1,1] z{µ(ds, dz)-υ(ds, dz)}+ t 0 [-1,1] c zµ(ds, dz) where µ is a Poisson random measure, with compensator υ(dt, dz) = dt × F (z)dz where F (z) is given on R * by F (z) = 1 |z| α+1 τ (z), α ∈ (0, 2). Moreover, we assume that τ is a non negative smooth function equal to 1 on [-1,1], vanishing on [-2, 2] c such that 0 ≤ τ ≤ 1.

(b ii ) We assume that ∀p ≥ 1, R τ (u) τ (u) p τ (u)du < ∞, R τ (u) τ (u) p τ (u)du < ∞.
Under these assumptions, X β t admits a smooth density for t > 0 (see Section 6), and we denote by p β t (x, y) the transition density of the Markov process (X β t ). Throughout the paper, we will use the following notation. For a vector h ∈ R 2 , h T denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on R × R 2 depending on both variables (x, β), here β = (θ, σ) T ∈ R × (0, +∞), we denote by f the derivative of f with respect to the variable x, by ∂ θ f the derivative of f with respect to the parameter θ, by ∂ σ f the derivative of f with respect to the parameter σ, and

∇ β f = ∂ θ f ∂ σ f .
The regularity assumption H 1 (a) on the drift coefficient b is a sufficient condition to obtain the representations of the density and its derivative. This assumption could be weakened but our methodology is based on the Malliavin calculus developed in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] that requires strong regularity assumptions on the coefficients. From Theorem 10-3 in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], the computation of the Malliavin operators for a stochastic differential equation needs coefficients with derivatives up to order three. As we iterate the Malliavin operators we need derivatives up to order five (see Lemma 6.2). Note that we relax the boundedness assumption on b assumed in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF].

Remark 2.1. The assumptions on the Lévy measure are restrictive and one may expect that our results hold with a more general Lévy measure F (z) = 1 |z| α+1 g(z), where g satisfies (b ii ) and g(0) = 1. However in our approach the integrability assumptions for the tails of the Lévy process are crucial to ensure that our process belongs to the Malliavin space. Moreover, the exact α-stable behavior of the Lévy measure around zero is also largely used (see Lemma 3.1) to study the Malliavin weights asymptotics. The truncation function τ ensures both the integrability of |L t | p , ∀p ≥ 1, and the exact α-stable behavior around zero (τ = 1). It permits the careful study of each Malliavin terms appearing in the representation formulas (3.12) and (5.1). All these terms are not yet being in control without these restrictions on the Lévy measure.

Our aim is to study the asymptotic behavior of p β

1 n (x 0 , u) (the density of X β 1 n
) and its derivative with respect to the parameter β. To this end, we introduce the solution to the ordinary differential equation

ς n,θ,x 0 t = x 0 + 1 n t 0 b(ς n,θ,x 0 s , θ)ds t ∈ [0, 1]. (2.1) Heuristically, n 1/α (X β 1/n -ς n,θ,x 0 1
) is close to σn 1/α L 1/n and from assumption H 1 (b i ), the rescaled process (n 1/α L t/n ) t∈[0,1] converges in distribution to an α-stable process (L α t ) t∈[0,1] (see Section 3.1). Our first result shows that the density of n 1/α σ (X β 1/n -ς n,θ,x 0

1

) converges to the density of L α 1 , as n goes to infinity.

In what follows, we denote by ϕ α the density of L α 1 where (L α t ) is an α-stable process with Lévy measure υ(dz) = 1 |z| α+1 1 z =0 dz. With these notations, we can state our main results. In view of statistical applications, we need some uniformity with respect to the parameter around the true value β = (θ, σ) T and consequently we study the asymptotic behavior of p βn

1 n where (β n ) n≥1 = ((θ n , σ n ) T ) n≥1 is a sequence converging to β.
Theorem 2.1. Let (ς n,θ,x 0 t ) be the solution to the ordinary differential equation (2.1) and let (β n ) n≥1 be a sequence such that

β n n→∞ ---→ β. For all (x 0 , u) ∈ R 2 , 1. σn n 1/α p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ ϕ α (u), 2. sup u∈R sup n σn n 1/α p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) < ∞,
where ϕ α is the density of L α 1 . If the solution to the ordinary equation (1.1) is not given explicitly, we can approximate it by a numerical scheme. The previous convergence will be preserved if the order of the numerical scheme is sufficiently high. This is explain in the next remark.

Remark 2.2. If we assume that the function b is of class C 1+k with respect to x (k ≥ 0) and setting

A(f ) = bf (and A 0 (f ) = f ) such that f (ς n,θ,x 0 t , θ) = f (ς n,θ,x 0 0 , θ) + t 0 (Af )(ς n,θ,x 0 s , θ)ds, we obtain ς n,θ,x 0 t = x 0 + 1 n t 0 A 0 (b)(ς n,θ,x 0 s , θ)ds = x 0 + t(A 0 b)(x 0 , θ) n + 1 n t 0 t 1 0 (Ab) n (ς n,θ,x 0 t 2 , θ)dt 2 dt 1 = ς (k),n,θ,x 0 t + 1 n k+1 t 0 t 1 0 ... t k 0 (A k b)(ς n,θ,x 0 t k , θ)dt k+1 ...dt t 1 with ς (k),n,θ,x 0 t = x 0 + t(A 0 b)(x 0 ,θ) n + t 2 (Ab)(x 0 ,θ) 2n 2 + ... + t k (A k-1 b)(x 0 ,θ) k!n k , for k ≥ 1, and ς (0),n,θ,x 0 t = x 0 .
Assuming moreover that the function b has bounded derivatives, we deduce that ς n,θ,x 0 t -ς (k),n,θ,x 0 t ≤ C n k+1 . Then from the proof of Theorem 2.1, if n 1/α /n k+1 goes to zero, we can replace ς n,θn,x 0 1 by ς (k),n,θn,x 0 1 in the statement of the theorem and we obtain

σ n n 1/α p βn 1 n (x 0 , uσ n n 1/α + ς (k),n,θn,x 0 1 ) n→∞ ---→ ϕ α (u), if k > 1 α -1.
In particular, if α > 1, the choice ς (0),n,θn,x 0 1 = x 0 is convenient as established in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF].

Remark 2.3. The results of Theorem 2.1 have been obtained by Kulik [START_REF] Kulik | On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise[END_REF], using the parametrix method.

The next result gives the asymptotic behavior of the derivatives of the density with respect to the parameters θ and σ.

Theorem 2.2. Let (β n ) n≥1 be a sequence such that β n n→∞ ---→ β. For all (x 0 , u) ∈ R 2 , i) σ 2 n n 2 α -1 ∂ θ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ -∂ θ b(x 0 , θ) × ϕ α (u), σ 2 n n 1/α ∂ σ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ -ϕ α (u) -uϕ α (u), ii) sup u∈R sup n σ 2 n n 2 α -1 ∂ θ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) < ∞, sup u∈R sup n σ 2 n n 1/α ∂ σ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) < ∞.
Considering the statistical experiment (R n , B n , P β n ) corresponding to the observation of (X β i/n ) 1≤i≤n , Theorems 2.1 and 2.2 permit to prove in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF] the L 2 -regularity property of the transition density p β 1/n (x, y):

n i=1 E    R    p β+rnh 1 n X β i-1 n , y 1/2 -p β 1 n X β i-1 n , y 1/2 - 1 2 h T r n ∇ β p β 1 n (X β i-1 n , y) (p β 1 n ) 1/2 (X β i-1 n , y)    2 dy    n→∞ ---→ 0, with rate r n = n 1 2 -1 α 0 0 n -1 2
. In this application, the sequence (

β n = (θ n , σ n ) T ) is (β + r n h). The L 2 -regularity property (related to the L 2 -differentiability of β → (p β 1 n ) 1/2
) is the first step to obtain an asymptotic expansion of the log-likelihood ratio log dP β+rnh n dP β n (X β 1/n , . . . , X β 1 ) (see Theorem 2.1 in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF]) and to deduce the Local Asymptotic Mixed Normality property (see Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF]). We proved that the LAMN property holds (Corollary 2.4 in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF]) for the parameter β with rate r n and information matrix

I = I 11 0 0 I 22 where I 11 = 1 σ 2 1 0 ∂ θ b(X β s , θ) 2 ds R ϕ α (u) 2
ϕα(u) du and

I 22 = 1 σ 2 R (ϕα(u)+uϕ α (u)) 2 ϕα(u)
du. As a consequence, we deduce that the estimation rate for θ is n

1 2 -1
α and that the estimation rate for σ is the usual one n -1 2 . Moreover, the best asymptotic variance of any regular estimator of β (that converges in distribution with rate r n ) is the inverse of the information matrix I.

The proofs of Theorems 2.1 and 2.2 are based on the representations of the density and its derivative obtained by using Malliavin calculus and on the study of the asymptotic behavior of the Malliavin weights. This is given in the next sections.

Rescaling and representation of the density in small time

In this section, we give a representation of the density and identify in this representation the main terms and the remainder terms. This decomposition is a key step for the convergence study and is mainly based on the rescaling described in the next subsection.

Rescaling

We can observe that the process (n 1/α L t/n ) equals in law to a centered Lévy process with Lévy measure

F n (z) = 1 |z| 1+α τ ( z n 1/α ). (3.1)
As mentioned previously, this clearly suggests that when n grows, the process (n 1/α L t/n ) converges to an α-stable process. In the sequel, it will be convenient to construct a family of Lévy processes (L n t ) n≥1 with the same law as (n 1/α L t/n ), on a common probability space where the limiting α-stable process exists as well, and where the convergence holds true in a path-wise sense, as done in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. Let us consider µ e (dt, dz, du) a Poisson measure on [0, ∞) × R * × [0, 1] with compensating measure υ e (dt, dz, du) = dt dz |z| 1+α du and we denote by μe (dt, dz, du) = µ e (dt, dz, du) -υ e (dt, dz, du) the compensated Poisson random measure. This measure corresponds to the jump measure of an α-stable process, where each jump is marked with an uniform variable on [0, 1]. We define the Poisson measures µ (n) , for all n ≥ 1, and µ by setting :

∀A ⊂ [0, ∞) × R, µ (n) (A) = [0,∞) R [0,1] 1 A (t, z)1 {u≤τ ( z n 1/α )} µ e (dt, dz, du), ∀A ⊂ [0, ∞) × R, µ(A) = [0,∞) R [0,1]
1 A (t, z)µ e (dt, dz, du).

By simple computation, one can check that the compensator of the measure

µ (n) (dt, dz) is υ (n) (dt, dz) = dt × τ ( z n 1/α ) dz |z| 1+α = dt × F n (z)dz and the compensator of µ(dt, dz) is υ(dt, dz) = dt × dz |z| 1+α . Moreover, we note μ(n) (dt, dz) = µ (n) (dt, dz) -υ (n) (
dt, dz) and μ(dt, dz) = µ(dt, dz) -υ(dt, dz) the compensated Poisson random measures. Remark that since τ (z) = 1 for |z| ≤ 1, the measures µ (n) (dt, dz) and µ(dt, dz) coincide on the set {(t, z)|t ∈ [0, 1], |z| ≤ n 1/α }. Now we define the stochastic processes associated to these random measures,

L α t = t 0 [-1,1]
z μ(ds, dz)

+ t 0 [-1,1] c zµ(ds, dz), (3.2) 
L n t = t 0 [-n 1/α ,n 1/α ] z μ(n) (ds, dz) + t 0 [-n 1/α ,n 1/α ] c zµ (n) (ds, dz). (3.3)
By construction, the process (L α t ) is a centered α-stable process and the process (L n t ) is equal in law to the process (n 1/α L t/n ) t∈[0,1] , since they are based on random measures with the same compensator. Remark that the jumps of L n t with size smaller than n 1/α exactly coincide with the jumps of L α with size smaller than n 1/α . On the other hand, the process L n has no jump with a size greater than 2n 1/α . Using that the measures µ and µ (n) coincide on the subsets of {(t, z); |z| ≤ n 1/α }, and the function

τ ( z n 1/α ) 1 |z| 1+α = 1 |z| 1+α is symmetric on |z| ≤ n 1/α
, we can rewrite:

L n t = t 0 [-1,1]
z μ(ds, dz)

+ t 0 1<|z|<n 1/α zµ(ds, dz) + t 0 n 1/α ≤|z|≤2n 1/α zµ (n) (ds, dz). (3.4) 
The following simple lemma gives a connection between L n and the stable process L α .

Lemma 3.1. On the event

A n = µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n 1/α }) = 0 , we have µ (n) = µ, L n t = L α t , (3.5) 
and

P (A n ) = 1 + O(1/n). (3.6) 
Furthermore, let (f n ) n∈N and f be measurable functions from Ω × [0, 1] × R to R such that there exists

C with P(C) = 1 and ∀ω ∈ C, ∀s ∈ [0, 1], ∀|z| > 1 f n (ω, s, z) n→∞ ---→ f (ω, s, z). Then 1 0 |z|>1 f n (ω, s, z)µ (n) (ds, dz) n→∞ ---→ a.s. 1 0 |z|>1
f (ω, s, z)µ(ds, dz).

(3.7)

Moreover, we have sup t∈[0,1] |L n t -L α t | n→∞ ---→ a.s.

0.

Proof. We know that the measures µ (n) and µ coincide on the set {(s, z)|s 

∈ [0, 1], |z| ≤ n 1/α },
ω ∈ A ∩ C, ∃n 0 (ω) ≥ 1, ∀n ≥ n 0 (ω), µ (n) = µ and f n (ω, s, z) → f (ω, s, z)∀s ∈ [0, 1], ∀|z| > 1. Then we deduce that 1 0 |z|>1 f n (ω, s, z)µ (n) (ds, dz) n→∞ ---→ a.s. 1 0 |z|>1
f (ω, s, z)µ(ds, dz).

We also get sup t∈

[0,1] |L n t -L α t | n→∞ ---→ 0.

Representation of the density in small time and first approximation

We introduce the process (Y n,β,x 0 t

) t∈[0,1] given by

Y n,β,x 0 t = x 0 + 1 n t 0 b(Y n,β,x 0 s , θ)ds + σ n 1/α L n t t ∈ [0, 1], (3.8) 
where (L n t ) is defined by (3.4) and is such that 1 n 1/α (L n t ) equals in law to (L t/n ). By construction, the process (X

β t n ) t∈[0,1] equals in law (Y n,β,x 0 t ) t∈[0,1] . Let q n,β,x 0 be the density of Y n,β,x 0 1 then the connection between the densities of X β 1 n and Y n,β,x 0 1
is given by p β 1/n (x 0 , x) = q n,β,x 0 (x).

(3.9)

Using the Malliavin calculus for jump processes recalled in Section 6, we get a representation of the density of X β 1 n involving some random variable H Y n,β,x 0 1 (1) (Malliavin weight). Moreover, we obtain an asymptotic expansion of this weight that leads to the decomposition of the density into a main part and a remainder part.

To state our next result we define ( n s ) s∈[0,1] by

n s = exp 1 n s 0 b (Y n,β,x 0 u , θ)du (3.10)
and the function

ρ n ρ n (z) =      z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2 z 2 τ ( z 2n 1/α ) if |z| > 2, (3.11) 
where τ is defined in assumption H 1 (b i ), and ζ is a non negative function belonging to C ∞ such that ρ n belongs to C ∞ . The function ρ n is an auxiliary function related the the Malliavin calculus developed in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. In our setting, the above choice (not unique) is convenient (see Remark 4.1).

Theorem 3.1. Under the assumption H 1 , we have

p β 1 n (x 0 , u) = q n,β,x 0 (u) = E(1 {Y n,β,x 0 1 ≥u} H Y n,β,x 0 1 (1)), (3.12 
)

with H Y n,β,x 0 1 (1) = 1 σ n 1/α H n 1,β (1) + H n 2,β (1) + R n 1,β (1) + R n 2,β (1) + R n 3,β (1). 
(3.13)

The main terms

H n 1,β (1), H n 2,β (1) 
are given by

H n 1,β (1) =    1 0 R ( n s ) -3 ρ n (z)(ρ n ) (z)µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2    , (3.14) 
H n 2,β (1) = - 1 0 R ( n s ) -1 (ρ n ) (z) -1+α z ρ n (z) µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) , (3.15) 
and the remainder terms satisfy for any compact subset

Q ⊂ R × (0, ∞) ∀p ≥ 2, E sup β∈Q R n 1,β (1) p ≤ C n , sup β∈Q |R n 2,β (1)| ≤ C n , sup β∈Q |R n 3,β (1)| ≤ C n , (3.16) 
where C is some deterministic constant.

Let us heuristically explain how this decomposition permits to establish the result of Theorem 2.1. Let (β n ) be a sequence converging to β. First, from Lemma 4.1, n 1/α (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) converges almost surely to σL α 1 , this permits to check that 1

{n 1/α (Y n,βn,x 0 1 -ς n,θn,x 0 1 
)≥σnv} converges to 1 {L α 1 ≥v} . From Theorem 3.1, we deduce that σn n 1/α p βn

1 n (x 0 , σn n 1/α u+ς n,θn,x 0 1 ) is close to E1 {L α 1 ≥u} [ H n 1,βn (1)+ H n 2,βn (1) 
] and it remains to study the limit of the main terms.

We can see from the definition of

ρ n that ρ n (z) n→∞ ---→ ρ(z) where ρ(z) =      z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2, z 2 if |z| > 2.
(3.17)

Combining this with Lemma 3.1, it permits to establish the almost sure convergence of the main terms:

H n 1,βn (1) n→∞ ---→ a.s. H 1,L α (1), (3.18) 
H n 2,βn (1) n→∞ ---→ a.s. H 2,L α (1), (3.19) 
where H 1,L α (1), H 2,L α (1) are given by

H 1,L α (1) = 1 0 R ρ(z)ρ (z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 , (3.20) 
H 2,L α (1) = - 1 0 R ρ (z) -1+α z ρ(z) µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) . (3.21)
Moreover, the limit weight H 1,L α (1) + H 2,L α (1) can be interpreted as a Malliavin weight (see (4.29)) and we have the following representation for the density of

L α 1 ϕ α (u) = E1 [u,∞) (L α 1 )[H 1,L α (1) + H 2,L α (1)].
This suggests that, as n goes to infinity, σn n 1/α p βn

1 n (x 0 , σn n 1/α u + ς n,θn,x 0 1 ) is close to ϕ α .
This is rigorously established in the next section.

4 Proof of Theorems 3.1 and 2.1

Proof of Theorem 3.1

The proof is based on the Malliavin calculus developed in Section 6. We recall that q n,β,x 0 is the density of Y n,β,x 0 1

and that the connection between the densities of X β

1 n and Y n,β,x 0 1 is given by p β 1/n (x 0 , x) = q n,β,x 0 (x).
We use the framework of Sections 6.1 and 6.2, with g(z)

:= F n (z) = 1 |z| 1+α τ ( z n 1/α
) and with the auxiliary function ρ n defined by (3.11) such that it satisfies all conditions of Section 6.1. From the assumptions on τ , we can easily deduce that z 2 τ ( z

2n 1/α ) = z 2 if 2 ≤ |z| ≤ 2n 1/α 0 if |z| > 4n 1/α . Moreover, we recall that ρ n (z) n→∞ ---→ ρ(z)
where ρ is defined by (3.17). Note that from the definitions of ρ n and ρ, we can easily see that )) is a particular case of (6.1) with the function a and the constant c given explicitly as

ρ n (z) = ρ(z) if |z| ≤ 2n 1/α .
a(x, θ) = 1 n b(x, θ), c = 1 n 1/α . (4.1)
Under the assumptions H 1 , we can apply the results of Theorem 6.1 to Y n,β,x 0 1

. The non-degeneracy assumption is verified by the choice of ρ n (z) near zero (see (3.11)). Let us denote by

U n,β t = Γ[Y n,β,x 0 t , Y n,β,x 0 t ] and W n,β t = Γ[Y n,β,x 0 t , U n,β
t ], then we obtain:

p β 1 n (x 0 , u) = q n,β,x 0 (u) = E(1 {Y n,β,x 0 1 ≥u} H Y n,β,x 0 1 (1));
with

H Y n,β,x 0 1 (1) = W n,β 1 (U n,β 1 ) 2 -2 LY n,β,x 0 1 U n,β 1 . (4.2)
Applying the results of Theorem 6.1 and solving the linear equations (6.8)-(6.10) (with a and c given by (4.1)) we get,

U n,β 1 = ( n 1 ) 2 σ 2 n 2/α 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz), (4.3) 
L(Y n,β,x 0 1 ) = n 1 2n 1 0 b (Y n,β,x 0 s , θ)(U n,β s )( n s ) -1 ds + σ n 1 2n 1/α 1 0 R ( n s ) -1 [(ρ n ) (z) + F n (z) F n (z) ρ n (z)]µ (n) (ds, dz), (4.4) 
W n,β

1 = σ 3 ( n 1 ) 3 n 3/α 1 0 R ( n s ) -3 (ρ n ) (z)ρ n (z)µ (n) (ds, dz) + 2( n 1 ) 3 n 1 0 b (Y n,β,x 0 s , θ)(U n,β s ) 2 ( n s ) -3 ds. (4.5) Recalling that F n (z) = 1 |z| 1+α τ ( z n 1/α ) (see (3.1)), then F n (z) Fn(z) = -1+α z + τ (z/n 1/α ) τ (z/n 1/α ) 1 n 1/α if |z| ≤ 2n 1/α .
Based on these expressions and (4.2) we deduce, after some calculus, the decomposition (3.13), where the remainder terms are given by,

R n 1,β (1) = - 1 0 R ( n s ) -1 ρ n (z) τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) σ n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) , (4.6) R n 2,β (1) = 2( n 1 ) 3 1 0 b (Y n,β,x 0 s , θ)(U n,β s ) 2 ( n s ) -3 ds n(U n,β 1 ) 2 , (4.7) R n 3,β (1) = - ( n 1 ) 1 0 b (Y n,β,x 0 s , θ)(U n,β s )( n s ) -1 ds 2n(U n,β 1 ) . (4.8)
We can establish the following bounds for the remainder terms. For R n 1,β (1), since ( n s ) is lower and upper bounded uniformly with respect to β (recall (3.10)), and since τ (z) = 0 on [-1, 1] then for M a positive constant we have

sup β∈Q R n 1,β (1) ≤ M   1 0 |z|>2 z 2 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)   . (4.9) 
Assume that there exists a jump of the Lévy process

L n 1 in [-2n 1/α , -n 1/α ) ∪ (n 1/α , 2n 1/α ], then we get 1 0 |z|>2 z 2 µ (n) (ds, dz) > n 2/α . Thus, 1 0 |z|>2 z 2 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) ≤ 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz). (4.10)
Assume that there are no jumps in [-2n

1/α , -n 1/α ) ∪ (n 1/α , 2n 1/α ], since τ (z/n 1/α ) = 1 if |z| ≤ n 1/α
, then τ (z/n 1/α ) = 0 and as a consequence, the right-hand side of (4.9) equals zero in this case.

In both cases, for any p ≥ 1

E   1 0 |z|>2 z 2 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)   p ≤ E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) p . (4.11) Now from µ (n) (ds, dz) = μ(n) (ds, dz)+υ (n) (ds, dz), by convexity inequality, we have for C(p) a positive constant E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) p ≤ C(p)E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) μ(n) (ds, dz) p + C(p) 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) υ (n) (ds, dz) p . (4.12) 
Using Kunita's first inequality (see Theorem 4.4.23 in [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF]) for p ≥ 2, there exists a constant D(p) > 0 such that

E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) μ(n) (ds, dz) p ≤ D(p)   1 0 |z|>2 z n 1/α 4 τ (z/n 1/α ) τ (z/n 1/α ) 2 υ (n) (ds, dz)   p/2 + D(p) 1 0 |z|>2 z n 1/α 2p τ (z/n 1/α ) τ (z/n 1/α ) p υ (n) (ds, dz) = D(p) n p/2 1 0 2 1 1 u α-3 τ (u) τ (u) 2 τ (u) duds p/2 + D(p) n 1 0 2 1 1 u α+1-2p τ (u) τ (u) p τ (u) duds ,
where we have used that υ (n) (ds, dz) = ds 1 |z| 1+α τ (z/n 1/α )dz and the change of variable u = z n 1/α .

Moreover, we have

1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) υ (n) (ds, dz) p = 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ (z/n 1/α ) 1 |z| 1+α τ (z/n 1/α )dzds p = 1 n 1 0 2 1 1 u α-1 τ (u) τ (u) τ (u)duds p . (4.13)
Under the assumption

H 1 (b ii ), we deduce E sup β∈Q R n 1,β (1) 
p ≤ C/n, ∀p ≥ 2 .
Using that b has bounded derivatives and that sup β∈Q sup 0≤s≤1

U n,β s U n,β 1 is bounded, the remainder terms R n 2,β (1), R n 3,β (1) satisfy the upper bound sup β∈Q |R n 2,β (1)| ≤ C n , sup β∈Q |R n 3,β (1)| ≤ C n ,
where C is some deterministic constant.

Proof of Theorem 2.1

We first prove that

n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1
) is close to a stable Lévy process.

Lemma 4.1. Let (ς n,θ,x 0 t ) be the solution to the ordinary differential equation (2.1), then

n 1/α (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) n→∞ ---→ a.s. σL α 1 , (4.14) 
for any sequence (β n ) converging to β, and this convergence is uniform with respect to x 0 .

Proof. Using (3.8) and the boundedness of b , we have for t ∈ [0, 1]

n 1/α Y n,βn,x 0 t -ς n,θn,x 0 t -σL α t = 1 n t 0 n 1/α b(Y n,βn,x 0 s , θ n ) -b(ς n,θn,x 0 s , θ n ) ds + [σ n L n t -σL α t ] ≤ 1 n t 0 ||b || ∞ n 1/α Y n,βn,x 0 s -ς n,θn,x 0 s -σL α s ds + σ||b || ∞ n 1 0 |L α s | ds + sup t∈[0,1] |σ n L n t -σL α t | , where ||b || ∞ = sup x,θ |b (x, θ)|. Applying Gronwall's Lemma, we get sup x 0 n 1/α Y n,βn,x 0 1 -ς n,θn,x 0 1 -σL α 1 ≤ C σ n 1 0 |L α s |ds + sup t∈[0,1] |σ n L n t -σL α t | , (4.15)
where C is a positive constant. From Lemma 3.1, we have sup

t∈[0,1] |L n t -L α t | a.s.
--→ 0 and we deduce sup

t∈[0,1] |σ n L n t -σL α t | a.s.
--→ 0.

Since t → L α t is càdlàg, we get

1 0 |L α s |ds < ∞ a.s., then σ n 1 0 |L α s |ds a.s.
--→ 0 and we get the result of Lemma 4.1.

We now proceed to the proof of Theorem 2.1. From (3.9) and Theorem 3.1, we have the representation 

σ n n 1/α p βn 1 n (x 0 , uσ n n 1/α +ς n,θn,x 0 1 ) = σ n n 1/α q n,β,x 0 ( uσ n n 1/α +ς n,θn,x 0 1 ) = E 1 {Y n,βn,x 0 1 ≥ uσn n 1/α +ς n,θn,x 0 1 } σ n n 1/α H Y n,βn,x 0 1 (1) 
H n 1,βn (1) ≤ C *    1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2    , (4.17) 
H n 2,βn (1) ≤ C *   1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)   , (4.18) 
for some constant C * > 0.

We now show that sup n H n 1,βn (1)

p and sup n H n 2,βn (1) 
p are integrable ∀p ≥ 1. The proof will be divided into the two following steps.

Step 1: We show that the right-hand side of (4.17) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p . In fact, since the measures µ (n) and µ coincide on the set {(s, z)|s ∈ [0, 1], |z| ≤ n 1/α }, and ρ n (z) = ρ(z) on the support of the Poisson measure µ (n) , we have

1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 ≤    1 0 |z|≤2 |ρ (z)| ρ(z)µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 2 + 1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2    . (4.19)
We first consider the first term in the right-hand side of (4.19). Using that ρ, ρ belongs to

∩ p≥1 L p (1 |z|≤2 |z| -1-α dz), we get E 1 0 |z|≤2 |ρ (z)|ρ(z)µ(ds, dz) p < ∞, ∀p ≥ 1. (4.20)
On the other hand, since ρ satisfies the non degeneracy assumption (6.6), [ [5, Theorem 4 p.2323]], we deduce that the first term of (4.19) belongs to ∩ p≥1 L p , moreover, it does not depend on n . Turning to the second term in the right-hand side of (4.19), since υ

1 0 |z|≤2 ρ(z)µ(ds, dz)] -1 belongs to ∩ p≥1 L p [see
(n) ({(t, z)|0 ≤ t ≤ 1, |z| > 2}) < ∞,
we have the following representation [see Chapter VI in [START_REF] Erhan | Probability and stochastics[END_REF]]

1 0 |z|>2 2|z| 3 µ (n) (ds, dz) = N 1 i=1 2|Z i | 3 a.s., 1 0 |z|>2 z 2 µ (n) (ds, dz) = N 1 i=1 Z 2 i a.s., (4.21) 
where N = (N t ) 1≥t≥0 is a Poisson process with intensity λ n = |z|>2 F n (z)dz < ∞, and (Z i ) i≥0 are i.i.d. random variables independent of N with probability measure

Fn(z)1 |z|>2 dz λn
. Thus,

1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 = N 1 i=1 2|Z i | 3 N 1 i=1 Z 2 i 2 ≤ N 1 i=1 2|Z i | 3 N 1 i=1 Z 4 i ≤ 1.
where we used Z 2 i ≥ 0 and

|Z i | > 2. We deduce that sup n H n 1,βn (1) 
p is integrable ∀p ≥ 1.

Step 2:

We show that sup n H n 2,βn (1) 
p is integrable. Using the definitions of ρ n (recall (3.11)), ρ (recall (3.17)) and ρ n = ρ on the support of the Poisson measure µ (n) (see Section 3.2), we have

1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) ≤ 1 0 |z|≤2 |ρ(z) | + ρ(z) 1+α |z| µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) + 1 0 |z|>2 (3 + α)|z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) (4.22) 
where we used Proceeding as for the first term in the right-hand side of (4.19), we also get that the first term of (4.22) belongs to ∩ p≥1 L p . On the other hand, for the second term of (4.22) we have:

1 0 |z|>2 (3 + α)|z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) ≤ 1 0 |z|>2 (3 + α)z 2 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) = 3 + α.
This completes the proof of Step 2. We finally deduce (with additionally some uniformity with respect to x 0 )

∀p ≥ 1, E( sup n,β,x 0 H n 1,β (1) 
p + sup n,β,x 0 H n 2,β (1) p ) < ∞. (4.23)
Recalling the almost sure convergences (3.18) and (3.19), we get from the dominated convergence theorem the L p -convergences

H n 1,βn (1) n→∞ ---→ L p H 1,L α (1), ∀p ≥ 1. (4.24) H n 2,βn (1) n→∞ ---→ L p H 2,L α (1), ∀p ≥ 1, (4.25) 
where H 1,L α (1) and H 2,L α (1) are defined respectively by (3.20) and (3.21).

On the other hand, Lemma 4.1 implies that n 1/α (Y n,βn,x 0 1 -ς n,θn,x 0

1

) converges almost surely to σL α 1 . Then, using P (L α 1 = u) = 0, we deduce the almost sure convergence

1 {Y n,βn,x 0 1 ≥ uσn n 1/α +ς n,θn,x 0 1 } = 1 [u,∞) n 1/α (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) σ n n→∞ ---→ a.s. 1 [u,∞) (L α 1 ). (4.26)
Applying the dominated convergence theorem, we get the latter convergence in L p , ∀p ≥ 1. This gives finally :

σ n n 1/α q n,βn,x 0 ( uσ n n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ E[1 [u,∞) (L α 1 )H L α (1)], (4.27) 
where σ n n 1/α q n,βn,x 0 (

H L α (1) = H 1,L α (1) + H 2,L α (1)
uσ n n 1/α + ς n,θn,x 0 1 ) < ∞. (4.28)
To finish the proof of the convergence, it remains to show that

ϕ α (u) = E[1 [u,∞) (L α 1 )H L α (1)]. (4.29) 
Let us denote by ϕ n (u) the density of the variable L n 1 . We consider the situation where the drift function b ≡ 0 and x 0 = 0 for which n 1/α Y n,β,x 0 1 = σL n 1 . Then (4.27), (4.28) yield Assume by contradiction that, for some u, we have ψ(u) = ϕ α (u). Since P (L α 1 = u) = 0, it can be seen that ψ is continuous at the point u. Hence, one can find a continuous, compactly supported, function f such that

ϕ n (u) n→∞ ---→ E[1 [u,∞) (L α 1 )H L α (1)] := ψ(u), (4 
f (x)ψ(x)dx = f (x)ϕ α (x)dx. (4.32)
On the one hand we have,

E[f (L n 1 )] = f (x)ϕ n (x)dx n→∞ ---→ f (x)ψ(x)
dx where we have used the dominated convergence theorem with (4.30)-(4.31). On the other hand, we can write

E[f (L n 1 )] = E[f (L n 1 )1 {L n 1 =L α 1 } ] + E[f (L n 1 )1 {L n 1 =L α 1 } ]. (4.33) By Lemma 3.1, we have P(L n 1 = L α 1 ) n→∞ ---→ 1. We deduce that, E[f (L n 1 )] n→∞ ---→ E[f (L α 1 )] = f (x)ϕ α (x)dx. (4.34)
This last convergence result clearly contradicts (4.32) and we get (4.29).

Combining the preceding results with (4.27), we can get the results of Theorem 2.1.

Proof of Theorem 2.2

The proof is divided into three steps. We first give a representation of the derivative of the density and explicit the iterated Malliavin weights based on the calculus given in Section 6. We then study the convergence of these weights and proceed to the proof of Theorem 2.2.

Representation of ∇ β p βn

1 n

and computation of the iterated Malliavin weights

We intensively use the results of Section 6. From Theorem 6.3, we have the representation

∇ β p βn 1 n (x 0 , uσ n n 1/α + ς n,θn,x 0 1 ) = ∇ β q n,βn,x 0 ( uσ n n 1/α + ς n,θn,x 0 1 ) = E 1 {Y n,βn,x 0 1 ≥ uσn n 1/α +ς n,θn,x 0 1 } H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∇ β Y n,βn,x 0 1 
)) . (5.1)

Using (6.7), (6.14) and (6.18), (6.19), by some simple calculus, we get the explicit formula for the iterated Malliavin weight ) t are respectively solution to

H Y n,β,x 0 1 (H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 )) =   ∂ θ Y n,β,x 0 1 ∂ σ Y n,β,x 0 1   H Y n,β,x 0 1 (1) 2 - V n,θ 1 V n,σ 1 2H Y n,β,x 0 1 (1) 
U n,β 1 +   ∂ θ Y n,β,x 0 1 ∂ σ Y n,β,x 0 1   H Y n,β,x 0 1 (1)W n,β 1 (U n,β 1 ) 2 +   ∂ θ Y n,β,x 0 1 ∂ σ Y n,β,x 0 1   (W n,β 1 ) 2 (U n,β 1 ) 4 - V n,θ 1 V n,σ 1 W n,β 1 (U n,β 1 ) 3 +   ∂ θ Y n,β,x 0 1 ∂ σ Y n,β,x 0 1   2D n,β 1 (U n,β 1 ) 2 -   ∂ θ Y n,β,x 0 1 ∂ σ Y n,β,x 0 1   Q n,β 1 (U n,β 1 ) 3 + T n,θ 1 T n,σ 1 1 (U n,β 1 ) 2 . (5.2) where H n Y n,β,x 0 1 (1), U n,β 1 , W
∂ θ Y n,β,x 0 t = 1 n t 0 b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s ds + 1 n t 0 ∂ θ b(Y n,β,x 0 s , θ)ds, (5.3) 
∂ σ Y n,β,x 0 t = 1 n t 0 b (Y n,β,x 0 s , θ)∂ σ Y n,β,x 0 s ds + L n t n 1/α . (5.4)
For the computations of V n,θ

1 = Γ(Y n,β,x 0 1 , ∂ θ Y n,β,x 0 1
) and V n,σ

1 = Γ(Y n,β,x 0 1 , ∂ σ Y n,β,x 0 1
), using (6.15), (6.16) we have

V n,θ 1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 U n,β s (∂ θ b) (Y n,β,x 0 s , θ) + b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s ds, (5.5) 
V n,σ

1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 b (Y n,β,x 0 s , θ)∂ σ Y n,β,x 0 s U n,β s ds + σ n 2/α ( n 1 ) 2 t 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz). (5.6) 
Finally from ((6.20) -(6.23)) we compute explicitly

D n,β 1 = Γ(Y n,β,x 0 1 , LY n,β,x 0 1 ), Q n,β 1 = Γ(Y n,β,x 0 1 , W n,β 1 ), T n,θ 1 = Γ(Y n,β,x 0 1 , V n,θ 1 ) and T n,σ 1 = Γ(Y n,β,x 0 1 , V n,σ 1 
). We get:

D n,β 1 = ( n 1 ) 2 n 1 0 ( n s ) -2 b (Y n,β,x 0 s , θ)LY n,β,x 0 s U n,β s ds + ( n 1 ) 2 2n 1 0 ( n s ) -2 b (Y n,β,x 0 s , θ)W n,β s ds + ( n 1 ) 2 2n 1 0 ( n s ) -2 b (Y n,β,x 0 s , θ)(U n,β s ) 2 ds + σ 2 ( n 1 ) 2 2n 2/α 1 0 R ( n s ) -2 ρ n (z) (ρ n ) (z) + ρ n (z) F n (z) F n (z) µ (n) (ds, dz), (5.7) 
Q n,β 1 = 7( n 1 ) 4 n 1 0 ( n 1 ) -4 b (Y n,β,x 0 s , θ)W n,β s U n,β s ds + 2( n 1 ) 4 n 1 0 ( n 1 ) -4 b (Y n,β,x 0 s , θ)(U n,β s ) 3 ds + σ 4 ( n 1 ) 4 n 4/α 1 0 R ( n 1 ) -4 ρ n (z) (ρ n ) (z) 2 + ρ n (z)(ρ n ) (z) µ (n) (ds, dz), (5.8) 
T n,θ

1 = 3( n 1 ) 3 n 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)V n,θ s U n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 (∂ θ b) (Y n,β,x 0 s , θ)W n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s W n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 (∂ θ b) (Y n,β,x 0 s , θ)(U n,β s ) 2 ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s (U n,β s ) 2 ds, (5.9) 
T n,σ

1 = 3( n 1 ) 3 n 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)V n,σ s U n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)∂ σ Y n,β,x 0 s W n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)∂ σ Y n,β,x 0 s (U n,β s ) 2 ds + σ 2 ( n 1 ) 3 n 3/α 1 0 R ( n 1 ) -3 ρ n (z)(ρ n ) (z)µ (n) (ds, dz).
(5.10)

From the above calculus and combining with (5.1) and (5.2) we have an explicit representation for the derivative of the density with respect to parameter β that allows to analyze its asymptotic behavior in small time. To obtain the results of Theorem 2.2, we will study the convergence of each term appearing in the decompostion (5.2). This is based on the preceding explicit expressions that permit to identify some main terms and some remainder terms.

In the sequel, we prove that all the terms involving the derivatives of b with respect to x are remainder terms.

Convergence of the iterated weights

In this section, we study the convergence of the iterated Malliavin weight

H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∇ β Y n,βn,x 0 1
)) which is the cornerstone of the proof for the convergence of ∇ β p βn 1 n later. Firstly, we state some technical lemmas useful for our aim. The proofs of these lemmas are postponed to the end of the section.

We recall that (∂ θ Y n,β,x 0 t

) t and (∂ σ Y n,β,x 0 t

) t are respectively solution to (5.3) and (5.4).

Lemma 5.1. We have for all compact subset

Q ⊂ R × (0, ∞) i) sup β∈Q |∂ θ Y n,β,x 0 1 | ≤ C n ,
where C is some deterministic constant.

ii)

sup β∈Q sup s∈[0,1] ∂ σ Y n,β,x 0 s n→∞ ---→ L p 0, ∀p ≥ 1.
Lemma 5.2. Let (β n ) be a sequence converging to β and Q be a compact subset of R × (0, ∞), the following decompositions and estimates hold,

i) 1 n 1/α D n,β 1 U n,β 1 2 = n 1/α 2σ 2 H n 3,β (1) + R n 4,β (1) + R n 5,β (1) + R n 6,β (1) 
.

ii)

1 n 1/α Q n,β 1 U n,β 1 3 = n 1/α σ 2 H n 4,β (1) + R n 7,β (1) + R n 8,β (1) 
.

iii) sup β∈Q

1 n 1/α+1 sup s∈[0,1] |∂σY n,β,x 0 s W n,β s | U n,β 1 2 n→∞ ---→ L p 0, ∀p ≥ 1.
The main terms H n 3,β (1), H n 4,β (1) are given by

H n 3,β (1) = 1 0 R ( n s ) -2 ρ n (z) (ρ n ) (z) -(ρ n ) (z) (1+α) z + ρ n (z) (1+α) z 2 µ (n) (ds, dz) ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 , (5.11) 
H n 4,β (1) = 1 0 R ( n 1 ) -4 ρ n (z) ((ρ n ) (z)) 2 + ρ n (z)(ρ n ) (z) µ (n) (ds, dz) ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 3 .
(5.12) where ( n s ) s∈[0,1] is given by (3.10). Moreover we have for p ≥ 1and some deterministic constant C

H n 3,βn (1) n→∞ ---→ L p H 3,L α (1), H n 4,βn (1) n→∞ 
---→ L p H 4,L α (1), (5.13) 
sup β∈Q |R n 4,β (1)| n→∞ ---→ L p 0, sup β∈Q |R n 5,β (1)| n→∞ ---→ L p 0, sup β∈Q |R n 6,β (1)| ≤ C 2n 1+1/α , (5.14) sup β∈Q |R n 7,β (1)| n→∞ ---→ L p 0, sup β∈Q |R n 8,β (1)| ≤ C n 1+1/α , (5.15) 
where

H 3,L α (1) = 1 0 R ρ(z)ρ (z) -ρ(z)ρ (z) (1+α) z + (ρ(z)) 2 (1+α) z 2 µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 , (5.16 
)

H 4,L α (1) = 1 0 R ρ(z) (ρ (z)) 2 + ρ(z)ρ (z) µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 3 .
(5.17) Lemma 5.3. Let (β n ) be a sequence converging to β and Q be a compact subset of R × (0, ∞), the following estimates hold:

i) sup β∈Q V n,θ 1 U n,β 1 ≤ C n , ii) sup β∈Q 1 n 2/α-1 |T n,θ 1 | U n,β 1 2 n→∞ ---→ L p 0, ∀p ≥ 1, iii) V n,σ 1 U n,β 1 = 1 σ + R n 9,β (1) 
,

iv) 1 n 1/α T n,σ 1 U n,β 1 2 = 1 σ 2 H n 5,β (1) + R n 10,β (1) + R n 11,β (1) + R n 12,β (1) 
,

where C is some deterministic constant. The main term H n 5,β (1) is given by H 5,L α (1), with

H n 5,β (1) = 1 0 R ( n 1 ) -3 ρ n (z)(ρ n ) (z)µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (
H 5,L α (1) = 1 0 R ρ(z)ρ (z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 .
(5.19) Lemma 5.4. Let (β n ) be a sequence converging to β. For all p ≥ 1, the following convergences hold uniformly with respect to x 0 :

n∂ θ Y n,βn,x 0 1 H n βn (1) q n→∞ ---→ L p ∂ θ b(x 0 , θ) (H L α (1)) q , ∀q ≥ 1, (5.20) n∂ θ Y n,βn,x 0 1 H n βn (1) H n 1,βn (1) n→∞ ---→ L p ∂ θ b(x 0 , θ)H L α (1)H 1,L α (1), 
(5.21) 

n 1/α ∂ σ Y n,βn,x 0 1 H n βn (1) q n→∞ ---→ L p L α 1 (H L α (1)) q , ∀q ≥ 1, (5.22) n 1/α ∂ σ Y n,βn,x 0 1 H n βn (1) H n 1,βn (1) n→∞ ---→ L p L α 1 H L α (1)H 1,L α (1), ( 5 
: i) n∂ θ Y n,βn,x 0 1 H n 3,βn (1) n→∞ ---→ L p ∂ θ b(x 0 , θ)H 3,L α (1), ii) n∂ θ Y n,βn,x 0 1 H n 4,βn (1) n→∞ ---→ L p ∂ θ b(x 0 , θ)H 4,L α (1), iii) n 1/α ∂ σ Y n,βn,x 0 1 H n 3,βn (1) n→∞ ---→ L p L α 1 H 3,L α (1), iv) n 1/α ∂ σ Y n,βn,x 0 1 H n 4,βn (1) 
n→∞ ---→

L p L α 1 H 4,L α (1)
,

where H n 3,β (1), H n 4,β (1 
) are given by (5.11), (5.12), and H 3,L α (1), H 4,L α (1), are defined by (5.16), (5.17).

The uniform convergence with respect to x 0 is not required in this paper but will be useful in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF].

Remark 5.1. We observe that although L α 1 does not belong to L p , the choice of the auxiliary function ρ permits to prove that

L α 1 (H L α (1)) 2 , L α 1 H 3,L α (1) and L α 1 H 4,L α (1) belong to L p , ∀p ≥ 1.
Based on the preceding lemmas, we can prove the following convergence result.

Proposition 5.1. Let (β n ) n≥1 be a sequence such that β n n→∞ ---→ β then for all p ≥ 1

σ 2 n n 1/α H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 
)

) n→∞ ---→ L p
H (2) , (5.24)

σ 2 n n 2/α-1 H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 
)

) n→∞ ---→ L p ∂ θ b(x 0 , θ)H (2) 1 , (5.25) 
where H (2) and H

(2)

1 are some random variables whose expressions do not depend on β and b.

Proof. From the equation (5.2), we have

  σ 2 n n 2/α-1 H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 
))

σ 2 n n 1/α H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 
)) (5.26) We will prove the convergence of each term in the right-hand side of (5.26)

  = σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 H Y n,βn,x 0 1 (1) 2 - σ 2 n n 2/α-1 V n,θn 1 σ 2 n n 1/α V n,σn 1 2H Y n,βn,x 0 1 (1) (U n,βn 1 ) + σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 H Y n,βn,x 0 1 (1)W n,βn 1 (U n,βn 1 ) 2 + σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 (W n,βn 1 ) 2 (U n,βn 1 ) 4 - σ 2 n n 2/α-1 V n,θn 1 σ 2 n n 1/α V n,σn 1 W n,βn 1 (U n,βn 1 ) 3 + σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 2D n,βn 1 (U n,βn 1 ) 2 - σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 Q n,βn 1 (U n,βn 1 ) 3 + σ 2 n n 2/α-1 T n,θn 1 σ 2 n n 1/α T n,σn 1 1 (U n,βn
Term 1: Recall (3.13) and set

H n βn (1) = H n 1,βn (1) + H n 2,βn (1), R n βn (1) = R n 2,βn (1) + R n 3,βn (1) 
. Remark that by (3.16), we have R n βn (1) ≤ C n where C is some deterministic constant. Moreover, we can rewrite the first term as

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 H Y n,βn,x 0 1 (1) 2 = σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 n 1/α σ n H n 1,βn (1) + H n 2,βn (1) + R n 1,βn (1) + R n 2,βn (1) + R n 3,βn (1) 2 = n∂ θ Y n,βn,x 0 1 n 1/α ∂ σ Y n,βn,x 0 1 H n βn (1) 2 + 2σn n 1/α-1 ∂ θ Y n,βn,x 0 1 2σ n ∂ σ Y n,βn,x 0 1 H n βn (1)R n βn (1) + 2σn n 1/α-1 ∂ θ Y n,βn,x 0 1 2σ n ∂ σ Y n,βn,x 0 1 H n βn (1)R n 1,βn (1) 
+

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 R n 1,βn (1) 2 + σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 R n βn (1) 2 + 2σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 2σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 R n 1,βn (1)R n βn (1). 
(5.27) where R n 1,βn (1) is given by (4.6). We can deduce from (3.16), (4.24), (4.25), Lemma 5.4 and Lemma 5.1 that

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 H Y n,βn,x 0 1 (1) 2 n→∞ -----→ L p ,∀p≥1 ∂ θ b(x 0 , θ) L α 1 (H L α (1)) 2 .
Term 2: From (3.13) and Lemma 5.3 part i) and part iii), we can estimate the second term as

σ 2 n n 2/α-1 V n,θn 1 σ 2 n n 1/α V n,σn 1 2H n Y n,βn,x 0 1 (1) (U n,βn 1 ) = O( 1 n 2/α ) 2σ 2 n n 1/α R n 9,βn (1) + 1 σn 1 σ n n 1/α H n βn (1) + R n 1,βn (1) + R n βn (1) =   O( 1 n 1/α ) H n βn (1) + O( 1 n 2/α )R n 1,βn (1) + O( 1 n 2/α )R n βn (1) 2 H n βn (1) + 2σnR n 1,βn (1) n 1/α + 2σnR n βn (1) n 1/α + 2σ n R n 9,βn (1) H n βn (1) + 2σ 2 n R n 1,βn (1)R n 9,βn (1) n 1/α + 2σ 2 n R n βn (1)R n 9,βn (1) n 1/α  
where C is some deterministic constant and O( 1 n 2/α ) is a random variable bounded by C n 2/α . From (3.16), (4.24), (4.25) and Lemma 5.3, we also conclude that

σ 2 n n 2/α-1 V n,θn 1 σ 2 n n 1/α V n,σn 1 2H Y n,βn,x 0 1 (1) (U n,βn 1 ) n→∞ -----→ L p ,∀p≥1 0 2H L α (1)
Term 3: From (3.13) and 

W n,βn 1 (U n,βn 1 ) 2 = n 1/α σn H n 1,βn (1) + R n 2,βn ( 
σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 H Y n,βn,x 0 1 (1)W n,βn 1 (U n,βn 1 ) 2 = σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 n 1/α H n βn (1) σ n + R n 1,βn (1) + R n βn (1)
n 1/α σ n H n 1,βn (1) + R n 2,βn (1) 
= n∂ θ Y n,βn,x 0 1 n 1/α ∂ σ Y n,βn,x 0 1 H n βn (1) H n 1,βn (1) + σn n 1/α-1 ∂ θ Y n,βn,x 0 1 σ n ∂ σ Y n,βn,x 0 1 H n βn (1)R n 2,βn (1) 
+

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 R n 1,βn (1)R n 2,βn (1) + σn n 1/α-1 ∂ θ Y n,βn,x 0 1 σ n ∂ σ Y n,βn,x 0 1 R n 1,βn (1) H n 1,βn (1) 
+ σn n 1/α-1 ∂ θ Y n,βn,x 0 1 σ n ∂ σ Y n,βn,x 0 1 R n βn (1) H n 1,βn (1) + σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 R n βn (1)R n 2,βn (1) 
.

From (3.16), (4.24), (4.25), Lemma 5.1 and Lemma 5.4, we also conclude that

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 H Y n,βn,x 0 1 (1)W n,βn 1 (U n,βn 1 ) 2 n→∞ -----→ L p ,∀p≥1 ∂ θ b(x 0 , θ)H 1,Lα (1)H Lα (1) L α 1 H 1,Lα (1)H Lα (1).
Term 4: Using

W n,βn 1 (U n,βn 1 
) 2 = n 1/α σn H n 1,βn (1) + R n 2,βn (1 
) again, we can rewrite

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 (W n,βn 1 ) 2 (U n,βn 1 ) 4 = σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 n 1/α σ n H n 1,βn (1) + R n 2,βn (1) 2 
= n∂ θ Y n,βn,x 0 1 n 1/α ∂ σ Y n,βn,x 0 1 ( H n 1,βn (1)) 2 + σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 (R n 2,βn (1)) 2 + 2σn n 1/α-1 ∂ θ Y n,βn,x 0 1 2σ n ∂ σ Y n,βn,x 0 1 R n 2,βn (1) H n 1,βn (1) 
.

From (3.16), (4.24), (4.25), Lemma 5.4 and Lemma 5.1, we also conclude that

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 (W n,βn 1 ) 2 (U n,βn 1 ) 4 n→∞ -----→ L p ,∀p≥1 ∂ θ b(x 0 , θ) (H 1,L α (1)) 2 L α 1 (H 1,L α (1)) 2
Term 5: From Lemma 5.3 we can estimate the fifth term as

σ 2 n n 2/α-1 V n,θn 1 σ 2 n n 1/α V n,σn 1 W n,βn 1 (U n,βn 1 ) 3 = O( 1 n 2/α ) σ 2 n n 1/α R n 9,βn (1) + 1 σn n 1/α σ n H n 1,βn (1) + R n 2,βn (1) = O( 1 n 1/α ) H n 1,βn (1) + O( 1 n 2/α )R n 2,βn (1) σ n R n 9,βn (1) H n 1,βn (1) + σ 2 n n 1/α R n 9,βn (1)R n 2,βn (1) + H n 1,βn (1) + σn n 1/α R n 2,βn (1) 
where C is some deterministic constant. From (3.16), (4.24), Lemma 5.3, we also conclude that

σ 2 n n 2/α-1 V n,θn 1 σ 2 n n 1/α V n,σn 1 W n,βn 1 (U n,βn 1 ) 3 n→∞ -----→ L p ,∀p≥1 0 H 1,L α (1)
Term 6: Using Lemma 5.2 we write the sixth term as

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 D n,βn 1 (U n,βn 1 ) 2 = n 2 ∂ θ Y n,βn,x 0 1 n 1/α 2 ∂ σ Y n,βn,x 0 1 H n 3,βn (1) + σ 2 n n 1/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n ∂ σ Y n,βn,x 0 1 R n 4,βn (1) + R n 5,βn (1) + R n 6,βn (1) 
.

Applying Lemma 5.2, Lemma 5.5 and Lemma 5.1 we obtain that

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 2D n,βn 1 (U n,βn 1 ) 2 n→∞ -----→ L p ,∀p≥1 ∂ θ b(x 0 , θ)H 3,L α (1) L α 1 H 3,L α (1)
where H 3,L α (1) is defined in Lemma 5.2. Term 7: From Lemma 5.2, we can rewrite the seventh term as

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 Q n,βn 1 (U n,βn 1 ) 3 = n∂ θ Y n,βn,x 0 1 n 1/α ∂ σ Y n,βn,x 0 1 H n 4,βn (1) + σ 2 n n 1/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n ∂ σ Y n,βn,x 0 1 R n 7,βn (1) + R n 8,βn (1) 
.

Applying Lemma 5.2, Lemma 5.5 and Lemma 5.1 we obtain that

σ 2 n n 2/α-1 ∂ θ Y n,βn,x 0 1 σ 2 n n 1/α ∂ σ Y n,βn,x 0 1 Q n,βn 1 (U n,βn 1 ) 3 n→∞ -----→ L p ,∀p≥1 ∂ θ b(x 0 , θ)H 4,L α (1) L α 1 H 4,L α (1)
where H 4,L α (1) is defined in Lemma 5.2. Term 8: From Lemma 5.3, we have

σ 2 n n 2/α-1 T n,θn 1 σ 2 n n 1/α T n,σn 1 1 (U n,βn 1 ) 2 =   σ 2 n n 2/α-1 T n,θn 1 (U n,βn 1 ) 2 H n 5,βn (1) + σ 2 n R n 10,βn (1) + σ 2 n R n 11,βn (1) + σ 2 n R n 12,βn (1) 

 

Using the results of Lemma 5.3, we easily deduce that

σ 2 n n 2/α-1 T n,θn 1 σ 2 n n 1/α T n,σn 1 1 (U n,βn 1 ) 2 n→∞ -----→ L p ,∀p≥1 0 H 5,L α (1)
where H 5,L α (1) is defined in Lemma 5.3. Finally from the above convergences, we can deduce the result of Proposition 5.1.

Proof of Theorem 2.2

We will first prove part ii) and then give a proof for part i). ii) Remark that from (5.24), (5.25)

sup u∈R sup n E 1 {Y n,βn,x 0 1 ≥ uσn n 1/α +ς n,θn,x 0 1 } σ 2 n n 2/α-1 H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 
)) < ∞ and sup

u∈R sup n E 1 {Y n,βn,x 0 1 ≥ uσn n 1/α +ς n,θn,x 0 1 } σ 2 n n 1/α H Y n,βn,x 0 1 (H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 
)) < ∞.

By representation (5.1) this leads to

sup u∈R sup n σ 2 n n 2 α -1 ∂ θ p βn 1 n (x 0 , uσ n n 1/α + ς n,θn,x 0 1 ) < ∞ and sup u∈R sup n σ 2 n n 1/α ∂ σ p βn 1 n (x 0 , uσ n n 1/α + ς n,θn,x 0 1 ) < ∞.
i) From (5.1), (4.26) and Proposition 5.1, we easily deduce that

σ 2 n n 1/α ∂ σ p βn 1 n (x 0 , uσ n n 1/α + ς n,θn,x 0 1 ) = σ 2 n n 1/α ∂ σ q n,βn,x 0 ( uσ n n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ E[1 [u,∞) (L α 1 )H (2) ], (5.28) 
σ 2 n n 2 α -1 ∂ θ p βn 1 n (x 0 , uσ n n 1/α +ς n,θn,x 0 1 ) = σ 2 n n 2 α -1 ∂ θ q n,βn,x 0 ( uσ n n 1/α +ς n,θn,x 0 1 ) n→∞ ---→ ∂ θ b(x 0 , θ)×E[1 [u,∞) (L α 1 )H (2) 1 ] 
, (5.29) where H (2) and H

(2) 1 are defined in Proposition 5.1. To finish the proof of Theorem 2.2, it remains to show that

E[1 [u,∞) (L α 1 )H (2) 1 ] = -ϕ α (u) and E[1 [u,∞) (L α 1 )H (2) ] = -[ϕ α (u) + uϕ α (u)]
. This is done in Lemma 5.6 below.

Lemma 5.6. We have

ϕ α (u) = -E[1 [u,∞) (L α 1 )H (2) 1 ], -ϕ α (u) + uϕ α (u) = E[1 [u,∞) (L α 1 )H (2) ],
where ϕ α is the density of L α 1 and H (2) and H

1 are defined in Proposition 5.1.

Proof. Let us consider the situation where b(x, θ) = θ and x 0 = 0. In that case, we have

Y 1 n,β,x 0 = θ n + σ n 1/α L n 1
and thus the density of Y 1 n,β,x 0 is related to the density of L n 1 by the relation,

q n,β,x 0 (u) = n 1/α σ ϕ n n 1/α σ u - θ n .
Then,

∂ θ q n,β,x 0 (u) = - n 2/α-1 σ 2 (ϕ n ) n 1/α σ u - θ n , ∂ σ q n,β,x 0 (u) = - n 1/α σ 2 ϕ n n 1/α σ u - θ n - (n 1/α ) 2 σ 3 u - θ n (ϕ n ) n 1/α σ u - θ n ,
By a change of variables, we get

∂ θ q n,β,x 0 uσ n 1/α + θ n = - n 2/α-1 σ 2 (ϕ n ) (u) ∂ σ q n,β,x 0 ( uσ n 1/α + θ n ) = - n 1/α σ 2 ϕ n (u) + u(ϕ n ) (u) .
Hence, we can apply the results of part ii) of Theorem 2.2 and (5.28), (5.29) in this specific setting. This yields

∀u, (ϕ n ) (u) n→∞ ---→ -E[1 [u,∞) (L α 1 )H (2) 1 ], (5.30) 
∀u,

ϕ n (u) + u(ϕ n ) (u) n→∞ ---→ -E[1 [u,∞) (L α 1 )H (2) ], (5.31) 
sup u,n |(ϕ n ) (u)| < ∞, (5.32) sup u,n 
ϕ n (u) + u(ϕ n ) (u) < ∞. (5.33) Let us denote X (u) = -E[1 [u,∞) (L α 1 )H (2) 
1 ] and assume by contradiction that X = ϕ α . Using the continuity of u → X (u), there exists a smooth, compactly supported function f , such that X (u)f (u)du = ϕ α (u)f (u)du. Now, on the one hand we have

(ϕ n ) (u)f (u)du n→∞ ---→ X (u)f (u)du, (5.34) 
where we have used the dominated convergence theorem, together with (5.30), (5.32).

On the other hand, we can write,

(ϕ n ) (u)f (u)du = -ϕ n (u)f (u)du = -E[f (L n 1 )] n→∞ ---→ -E[f (L α 1 )] (5.35) = -ϕ α (u)f (u)du = ϕ α (u)f (u)du (5.36)
where the convergence (5.35) is obtained in the same way as (4.34). Clearly (5.36) contradicts (5.34), and we get

E[1 [u,∞) (L α 1 )H (2) 
1 ] = -ϕ α (u). By the same method, let us denote

X 1 (u) = -E[1 [u,∞) (L α
1 )H (2) ] and assume by contradiction that u → X 1 (u) is different from u → ϕ α (u) + u(ϕ α ) (u) . Using the continuity of u → X 1 (u), there exists a smooth, compactly supported function f , such that X 1 (u)f (u)du = ϕ α (u) + u(ϕ α ) (u) f (u)du. Now, we have

ϕ n (u) + u(ϕ n ) (u) f (u)du n→∞ ---→ X 1 (u)f (u)du, (5.37) 
where we have used the dominated convergence theorem, together with (5.31), (5.33).

On the other hand, letting g(u) = uf (u) and using the integration by parts formula, we can write,

ϕ n (u) + u(ϕ n ) (u) f (u)du = ϕ n (u)f (u)du + (ϕ n ) (u)g(u)du = E[f (L n 1 )] -ϕ n (u)g (u)du = E[f (L n 1 )] -E[g (L n 1 )] n→∞ ---→ E[f (L α 1 )] -E[g (L α 1 )] (5.38) = ϕ α (u)f (u)du -ϕ α (u)g (u)du = ϕ α (u)f (u)du + ϕ α (u)g(u)du (5.39)
where the convergence (5.38) is obtained in the same way as (4.34). Clearly (5.39) contradicts (5.37), and the lemma is proved.

Proofs of the intermediate lemmas

In this subsection, we give the proofs of Lemmas 5.1 -5.5 of Section 5.2.

Proof of Lemma 5.1: i) Since b has bounded derivatives, we obtain from (5.3)

sup β∈Q |∂ θ Y n,β,x 0 1 | ≤ C n .
ii) From (5.4) and Gronwall's Lemma, we get

sup β∈Q sup s∈[0,1] ∂ σ Y n,β,x 0 s ≤ C n 1/α sup s∈[0,1] |L n s | ≤ C n 1/α sup s∈[0,1] s 0 |z|≤1 z μ(du, dz) + C n 1/α 1 0 |z|>1 |z|µ (n) (du, dz) (5.40) 
We now consider the first term of (5.40).

Using Kunita's first inequality (see Theorem 4.4.23 in [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF]) ∀p ≥ 2, we have E sup s∈[0,1] s 0 |z|≤1 z μ(du, dz) p < ∞, and the first term of (5.40) converges to zero in L p , ∀p ≥ 1. We now consider the second term of (5.40). From µ (n) (ds, dz) = μ(n) (ds, dz) + υ (n) (ds, dz) then for C 2 (p) a positive constant, we have

1 n p/α E 1 0 |z|>1 |z|µ (n) (du, dz) p ≤ C 2 (p) n p/α E 1 0 |z|>1 |z|μ (n) (du, dz) p + E 1 0 |z|>1 |z|υ (n) (du, dz) p .
Using again Kunita's first inequality (see Theorem 4.4.23 in [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF]), for p ≥ 2, there exists a positive constant C 3 (p) such that

1 n p/α E 1 0 |z|>1 |z|μ (n) (ds, dz) p ≤ C 3 (p) n p/α   1 0 |z|>1 z 2 υ (n) (ds, dz) p/2 + 1 0 |z|>1 |z| p υ (n) (ds, dz)   = C 3 (p) n p/α 1 0 |z|>1 z 2 1 |z| 1+α τ (z/n 1/α )dzds p/2 + C 3 (p) n p/α 1 0 |z|>1 |z| p 1 |z| 1+α τ (z/n 1/α )dzds ≤ 2C 3 (p) n p/α 1 0 2n 1/α 1 1 z α-1 dzds p/2 + 2C 3 (p) n p/α 1 0 2n 1/α 1 1 z α+1-p dzds n→∞ ---→ 0, (5.41)
where we used that 0 ≤ τ ≤ 1 and τ = 0 on [-2, 2] c . Hence, we get that the second term of (5.40) also converges to zero in L p , ∀p ≥ 1. This finishes the proof of ii).

Proof of Lemma 5.2: Recall that D n,β 1 and U n,β 1 are given by (5.7) and (4.3). The part i) is proved by decomposing

D n,β 1 (U n,β 1 )
2 , then we obtain that the main term is (5.11) and the remainder terms are

R n 4,β (1) = 1 0 |z|>2 ( n s ) -2 ρ n (z)ρ n (z) τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) 2σ 2 n 1/α ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 + + 1 0 |z|>2 ( n s ) -2 (ρ n (z)) 2 τ (z/n 1/α ) τ (z/n 1/α ) -τ (z/n 1/α ) τ (z/n 1/α ) 2 µ (n) (ds, dz) 2σ 2 n 1/α ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 , R n 5,β (1) = ( n 1 ) 2 1 0 ( n s ) -2 b (Y n,β,x 0 s , θ) 2LY n,β,x 0 s U n,β s + W n,β s ds 2n 1+1/α U n,β 1 2 , R n 6,β (1) = ( n 1 ) 2 1 0 ( n s ) -2 b (Y n,β,x 0 s , θ)(U n,β s ) 2 ds 2n 1+1/α U n,β 1 2 
.

The part ii) is proved by decomposing

Q n,β 1 (U n,β 1 )
3 , then we obtain that the main term is (5.12) and the remainder terms are

R n 7,β (1) = 7( n 1 ) 4 1 0 ( n 1 ) -4 b (Y n,β,x 0 s , θ)W n,β s U n,β s ds n 1+1/α U n,β 1 3 R n 8,β (1) = 2( n 1 ) 4 1 0 ( n 1 ) -4 b ((Y n,β,x 0 s , θ)(U n,β s ) 3 ds n 1+1/α U n,β 1 3 
.

We now study the convergence of the main terms. From (3.10), the boundedness of b and Lemma 3.1, it is clear that H n 3,βn [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF] converges almost surely to H 3,L α (1). Moreover, using again the boundedness of b , the upper and lower bounds of ( n s ) s∈[0,1] and the fact that ρ n (z) is a non negative function, we deduce the upper bound, for some constant C > 0,

H n 3,β (1) ≤ C     1 0 R ρ n (z) (ρ n ) (z) + ρ n (z) |ρ n (z)| (1+α) |z| + (ρ n (z)) 2 (1+α) z 2 µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2     .
( 

sup s∈[0,1] |LY n,β,x 0 s | n 1+1/α U n,β 1 ≤ C   1 n 2+1/α + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) n 1 0 R ρ n (z)µ (n) (ds, dz)   + C   1 0 |z|>2 z 2 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz) n 1+1/α 1 0 |z|>2 z 2 µ (n) (ds, dz)   , sup β∈Q sup s∈[0,1] |W n,β s | n 1+1/α (U n,β 1 ) 2 ≤ C    1 n 2+1/α + 1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) n 1 0 R ρ n (z)µ (n) (ds, dz) 2    .
( 

β∈Q R n 4,β (1) ≤ C     1 0 |z|>2 |z| 3 n 1/α τ (z/n 1/α ) τ (z/n 1/α ) + z 4 n 1/α τ (z/n 1/α ) τ (z/n 1/α ) + τ (z/n 1/α ) τ (z/n 1/α ) 2 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2     (5.46) ≤ C     1 0 |z|>2 |z| 3 n 1/α τ (z/n 1/α ) τ (z/n 1/α ) + z 4 n 1/α τ (z/n 1/α ) τ (z/n 1/α ) + τ (z/n 1/α ) τ (z/n 1/α ) 2 µ (n) (ds, dz) n 4/α     (5.47)
where we used 1 0 |z|>2 z 2 µ (n) (ds, dz) > n 2/α , if there exists a jump of the Lévy process in [-2n 1/α , -n 1/α )∪ (n 1/α , 2n 1/α ]. If there are no jumps in [-2n 1/α , -n 1/α )∪(n 1/α , 2n 1/α ], since τ (z/n 1/α ) = 1 if |z| ≤ n 1/α , we have τ (z/n 1/α ) = 0 and τ (z/n 1/α ) = 0. Thus for M (p) a positive constant we have

E sup β∈Q |R n 4,β (1)| p ≤ C p n p/α E   1 0 |z|>2   1 n 1/α z n 1/α 3 τ (z/n 1/α ) τ (z/n 1/α ) + z n 1/α 4   τ (z/n 1/α ) τ (z/n 1/α ) + τ (z/n 1/α ) τ (z/n 1/α ) 2     µ (n) (ds, dz)   p ≤ M (p) n p/α   E   1 0 |z|>2 1 n 1/α z n 1/α 3 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz)   p + E   1 0 |z|>2 z n 1/α 4 τ (z/n 1/α ) τ (z/n 1/α ) µ (n) (ds, dz)   p + E   1 0 |z|>2 z n 1/α 4 τ (z/n 1/α ) τ (z/n 1/α ) 2 µ (n) (ds, dz)   p  
Similarly to the proof of Theorem 3.1, we show that under assumption

H 1 (b ii ), sup β∈Q |R n 4,β (1) 
| converges to zero as n → ∞ in L p for all p ≥ 1 and this completes the proof of ii). The result of iii) follows from Lemma 5.1 ii) and the estimation (5.45).

Proof of Lemma 5.3: i) From (5.5), the fact that b has bounded derivatives, sup β sup 0≤s≤1 U n,β s U n,β 1 is bounded, the upper and lower bounds of (( n t )) t∈[0,1] , we deduce i). ii) From (4.3), (5.9) we have

T n,θ 1 n 2 α -1 U n,β 1 2 = 3( n 1 ) 3 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)V n,θ s U n,β s ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 (∂ θ b) (Y n,β,x 0 s , θ)W n,β s ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s W n,β s ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 (∂ θ b) (Y n,β,x 0 s , θ)(U n,β s ) 2 ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s (U n,β s ) 2 ds n 2 α U n,β 1 2 
.

We deduce, using Lemma 5.1 i) and Lemma 5. 

3 i) that sup β∈Q T n,θ 1 n 2 α -1 U n,β 1 2 ≤ C 1 n 2 α + C 2 sup β∈Q sup s∈(0,1] |W n,β s | n 2 α (U n,β 1 ) 2 , ( 5 
∂ σ Y n,β,x 0 s , sup β∈Q R n 10,β (1) ≤ C 1 n 1+1/α sup β∈Q sup s∈[0,1] |V n,σ s | U n,β 1 , sup β∈Q |R n 11,β (1)| ≤ C 2 n 1+1/α sup β∈Q    sup s∈[0,1] |∂ σ Y n,β,x 0 s W n,β s | U n,β 1 2    , sup β∈Q |R n 12,β (1)| ≤ C 3 n 1+1/α sup β∈Q sup s∈[0,1] ∂ σ Y n,β,x 0 s where C, C 1 , C
|n∂ θ Y n,βn,x 0 1 -∂ θ b(x 0 , θ)| n→∞ ---→ a.s 0.
From the expressions (3.14), (3.15), using sup x 0 sup s∈[0,1] | n s -1| → 0 and Lemma 3.1, it can be seen that sup

x 0 | H n βn (1) q -H L α (1) q | n→∞ ---→ a.s 0, ∀q ≥ 1.
(5.49)

We deduce that almost surely, one has the convergence ∀q ≥ 1, sup | ≤ C n , we can apply the dominated convergence theorem and see that the convergence (5.50) holds in L p -norm for all p ≥ 1. For (5.21): the proof is similar to (5.20). For (5.22): using (5.4), Gronwall's Lemma and Lemma 3.1, we can prove sup

x 0 n∂ θ Y n,βn,x 0 1 H n βn (1) q -∂ θ b(x 0 , θ) (H L α (1)) q n→∞ ---→ 0. ( 5 
x 0 |n 1/α ∂ σ Y n,βn,x 0 1 -L α 1 | n→∞ ---→ a.s 0,
and from (5.49) we deduce ∀q ≥ 1, sup

x 0 n 1/α ∂ σ Y n,βn,x 0 1 H n βn (1) q -L α 1 (H L α (1)) q n→∞ ---→ 0.
Consequently, to prove the convergence in L p -norm, it remains to check

∀p, q ≥ 1, E sup n,β,x 0 n 1/α ∂ σ Y n,βn,x 0 1 H n β (1) 
q p < ∞.

(5.51)

Using again (5.4) and Gronwall's Lemma, we have sup

x 0 ,β |n 1/α ∂ σ Y n,β,x 0 1 | ≤ C sup t∈[0,1]
|L n t |, and (5.51) reduces to 

∀p, q ≥ 1, E sup n,β,x 0 sup t∈[0,1] |L n t | H n β (1) q p < ∞. ( 5 
|L n t | ≤ sup t∈[0,1] | t 0 |z|≤1 z μ(ds, dz)| + 1 0 |z|>1 |z|µ (n) (ds, dz).
From this decomposition and since sup t∈[0,1] | t 0 |z|≤1 z μ(ds, dz)| p is integrable, for all p ≥ 1, we see that (5.52) is a consequence of (4.23) and the following bound

∀p ≥ 1, E sup n,β,x 0 H n β (1) 1 0 |z|>1 |z|µ (n) (ds, dz) p < ∞.
(5.53)

To prove (5.53), we first remark from (4.17) that for C a positive constant,

H n β (1) 1 0 |z|>1 |z|µ (n) (ds, dz) ≤ C       1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    1 0 2≥|z|>1 |z|µ(ds, dz)    +C       1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (ds, dz)    (5.54)
Considering the first term in the right-hand side of (5.54), from the proofs of Step 1 and Step 2 in Theorem 2.1, we deduce that it is bounded by a random variable independent of n, β and x 0 and belonging to ∩ p≥1 L p . We now consider the second term in the right-hand side of (5.54). From (3.11), we have

   1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (ds, dz) ≤    1 0 |z|≤2 ρ(z) |ρ (z)| µ(ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 + 1 0 |z|≤2 |ρ (z)| + ρ(z) 1+α |z| µ(ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (dt, dz) +    1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 + 1 0 |z|>2 (3 + α) |z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (dt, dz) (5.55)
Using the Cauchy-Schwarz inequality

1 0 |z|>2 µ n (dt, dz)× 1 0 |z|>2 z 2 µ (n) (ds, dz) ≥ 1 0 |z|>2 |z|µ n (dt, dz) 2 
we get:

1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ 1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 |z|µ (n) (dt, dz) 3 1 0 |z|>2 µ (n) (dt, dz) 2 = N 1 i=1 2|Z i | 3 N 1 i=1 |Z i | 3 1 0 |z|>2 µ (n) (dt, dz) 2 ≤ 2 1 0 |z|>2 µ(dt, dz) 2 
(5.56) and

1 0 |z|>2 (3 + α)|z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 1 0 |z|>2 |z|µ n (dt, dz) ≤ (3 + α) 1 0 |z|>2
µ(dt, dz).

(5.57) Combining (5.56), (5.57) with (5.55), it follows that the second term in the right-hand side of (5.54) is also bounded by a random variable independent of n, β and x 0 and belonging to ∩ p≥1 L p . Consequently, we get (5.53) and this achieves the proof of (5.22). For (5.23), the proof is similar to (5.22).

Proof of Lemma 5.5: From (5.13), we prove i) and ii) proceeding as in the proof of (5.20), and iii) and iv) proceeding as in the proof of (5.22).

Appendix. Representation of the transition density via Malliavin calculus

The aim of this section is to represent the density of a pure jump Lévy process as well as its derivative and its logarithm derivative as an expectation, using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] and used by Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. We are not exactly in the context of [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], where the compensator of the Poisson measure is uniform on [0, 1] × E. In fact, in our context the compensator of the Poisson measure is dt × g(z)dz, where g is the density of the Lévy measure and we need to adapt slightly the definitions of Malliavin operators given in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. We recall here the appropriate integration by parts setting developed in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] for the reader convenience. where the parameter β = (θ, σ) T belongs to R × (0, ∞), a is a real valued function and c is a constant. This is the framework of Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] and our aim is to give some explicit representation formulas for the density of Y β 1 and its derivative with respect to β. We assume that the following assumptions are fulfilled. H: (a) The function a has bounded derivatives up to order five with respect to both variables. (b) The compensator of the Poisson random measure µ is given by υ(dt, dz) = dt × g(z)dz with g ≥ 0 on E, C 1 on E and such that ∀p ≥ 2, E |z| p g(z)dz < ∞.

We now recall the Malliavin operators L and Γ and their basic properties (see Bichteler, Gravereaux, Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], Chapter IV, Section 8-9-10). For a test function f : [0, 1] × E → R ( f is measurable, C 2 with respect to the second variable, with bounded derivative, and f ∈ ∩ p≥1 L p (ν)) we set µ(f ) = 1 0 E f (t, z)µ(dt, dz). We introduce an auxiliary function ρ : E → (0, ∞) such that ρ admits a derivative and ρ, ρ and ρ g g belong to ∩ p≥1 L p (g(z)dz). With these notations, we define the Malliavin operator L, on a simple functional µ(f ), in the same way as in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] by the following equations :

L(µ(f )) = 1 2 µ ρ f + ρ g g f + ρf ,
where f and f are the derivatives with respect to the second variable. For Φ = F (µ(f 1 ), .., µ(f k )), with F of class C 2 , we set

LΦ = k i=1 ∂F ∂x i (µ(f 1 ), ..., µ(f k ))L(µ(f i )) + 1 2 k i,j=1
∂ 2 F ∂x i ∂x j (µ(f 1 ), ..., µ(f k ))µ(ρf i f j ).

These definitions permit to construct a linear operator L on a space D ⊂ ∩ p≥1 L p with the same basic properties as in The integration by parts setting of the preceding section permits to derive the existence of the density of Y β 1 given by (6.1), and gives a representation of this density as an expectation. From Bichteler, Gravereaux, Jacod [2, Section 10, p.130], we know that ∀t > 0, the variable Y β t , the solution of (6.1), belongs to the domain of the operator L, and we can compute LY β t and Γ(Y β t , Y β t ) as in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. We recall the representation formula for the density of Y β 1 (see [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]). Theorem 6.1. [Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]]: Let us denote by q β the density of Y β 1 . We assume that H holds and that the auxiliary function ρ satisfies:

lim inf u→∞ 1 ln u E
1 {ρ(z)≥1/u} g(z)dz = +∞. (6.6)

Then, q β (u) = E(1 {Y β 1 ≥u} H Y β 1 (1)),
with,

H Y β 1 (1) = Γ(Y β 1 , Γ(Y β 1 , Y β 1 )) Γ(Y β 1 , Y β 1 ) 2 -2 LY β 1 Γ(Y β 1 , Y β 1 ) = W β 1 (U β 1 ) 2 -2 LY β 1 U β 1 , (6.7) 
where the processes (LY ρ(z)ρ (z)µ(ds, dz). (6.10)

In [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the authors studied the derivative of q β with respect to the drift parameter θ only. Here, we intend to study the derivative of q β with respect to both parameters θ and σ. We first remark that (Y β t ) t admits derivatives with respect to θ and σ (see [ By iterating the integration by parts formula, since Y β 1 admits derivatives with respect to θ and σ, one can prove, under the assumption H, the existence and the continuity in β of ∇ β q β (see Theorem 4-21 in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]), moreover, we will represent it as an expectation in Theorem 6.3. The next result extends the result of Theorem 5 in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], by giving an expression for the logarithm derivatives of the density w.r.t. (θ, σ) in terms of a conditional expectation. Theorem 6.2. Under the assumptions of Theorem 6.1,

∇ β q β q β (u) =   ∂ θ q β q β (u) ∂σq β q β (u)   = E(H Y β 1 (∇ β Y β 1 )|Y β 1 = u), (6.13) 
where 

H Y β 1 (∇ β Y β 1 ) := H Y β 1 (∂ θ Y β 1 ) H Y β 1 (∂ σ Y β 1 ) = -2 ∂ θ Y β 1 ∂ σ Y β 1 LY β 1 U β 1 + ∂ θ Y β T σ t =

Remark 4 . 1 . 1 (

 411 The choice of the auxiliary function ρ n for |z| < 1 ensures that the non-degeneracy condition (6.6) is satisfied. It will appear later that the choice of the auxiliary function ρ n for |z| > 2 permits to obtain Malliavin weights sufficiently integrable to compensate the lack of integrability of L α see Remark 5.1 below). The equation (3.8) (defining (Y n,β,x 0 t

1 0 1 0

 11 |z|≤2 ρ(z)µ(ds, dz) ≥ 0, |z|>2 ρ n (z)µ (n) (ds, dz) ≥ 0, and the equality of µ (n) and µ on the set {(s, z)|s ∈ [0, 1], |z| ≤ n 1/α }.

1

 1 

) 2 .

 2 

2 α (U n,β 1 ) 2

 212 .48) where C 1 , C 2 are some deterministic constants. Now from the estimation (5.45), we easily deduce that sup β∈Q sup s∈(0,1] |W n,β s | n tends to zero as n → ∞ and then we get ii).

6. 1

 1 Integration by parts settingWe consider a filtered probability space (Ω, G, (G t ) t∈[0,1] , P) endowed with a Poisson random measure µ on [0, 1] × E, where E is an open subset of R, with compensator υ on [0, 1] × E and with compensated measure μ = µ -υ. We now consider the process (Y β t ) t∈[0,1] , the solution ofY β t = y 0 + t 0 a(Y β s , θ)ds + cσ t 0 Ez μ(ds, dz), (6.1)

2 FProposition 6 . 1 .

 261 [5, equations (i)-(iii), p.2322]. We associate to L, the symmetric bilinear operator Γ:Γ(Φ, Ψ) = L(ΦΨ) -ΦLΨ -ΨLΦ.Moreover, if f and h are two test functions, we have:Γ(µ(f ), µ(h)) = µ(ρf h ).These operators satisfy the following properties (see[2, equation (8-3)])LF (Φ) = F (Φ)LΦ + 1 (Φ)Γ(Φ, Φ), Γ(F (Φ), Ψ) = F (Φ)Γ(Φ, Ψ), Γ(F (Φ 1 , Φ 2 ), Ψ) = ∂ Φ 1 F (Φ 1 , Φ 2 )Γ(Φ 1 , Ψ) + ∂ Φ 2 F (Φ 1 , Φ 2 )Γ(Φ 2 , Ψ). (6.2)The operator L and the operator Γ permit to establish the following integration by parts formula (see [2, Propositions 8-10, p.103]). For Φ and Ψ in D, and f bounded with bounded derivatives up to order two, we haveEf (Φ)ΨΓ(Φ, Φ) = Ef (Φ)(-2ΨLΦ -Γ(Φ, Ψ)). Morover, if Γ(Φ, Φ) is invertible and Γ -1 (Φ, Φ) ∈ ∩ p≥1 L p , we have Ef (Φ)Ψ = Ef (Φ)H Φ (Ψ),(6.3)withH Φ (Ψ) = -2ΨΓ -1 (Φ, Φ)LΦ -Γ(Φ, ΨΓ -1 (Φ, Φ)) (6.4) = -2ΨΓ -1 (Φ, Φ)LΦ -1 Γ(Φ, Φ) Γ(Φ, Ψ) + Ψ Γ(Φ, Φ) 2 Γ(Φ, Γ(Φ, Φ)).(6.5)6.2 Representation of the density of Y β 1 and its derivative

  .45) From the results of Step 1, Step 2 in the proof of Theorem 2.1, and the control given in the proof of

	Theorem 3.1 for (4.11) we can deduce that sup β∈Q to zero in L p , ∀p ≥ 1 and we deduce the convergence of sup β∈Q |R n sup s∈[0,1] |LY n,β,x 0 s | n 1+1/α U n,β 1 and sup β∈Q 5,β (1)| and sup β∈Q |R n sup s∈[0,1] |W n,β s n 1+1/α (U n,β ) 2 converge | 1 7,β (1)|. It remains to study the convergence of sup β∈Q |R n 4,β (1)|.
	From the boundedness of ( n t ) t∈[0,1] , the definition of ρ n (see (3.11)), and since µ (n) is a positive
	measure, we have
	sup

  2 , C 3 are deterministic constants. We observe that from Lemma 5.1 and Lemma 5.2 iii), we can deduce immediately the convergences to zero in L p , ∀p ≥ 1 of the remainder terms sup β∈Q |R n 9,β (1)|, sup β∈Q |R n 11,β (1)| and sup β∈Q |R n 12,β (1)|. For sup β∈Q |R n 10,β (1)|, the proof follows from Lemma 5.1 ii), (5.6), (4.3), the boundedness of ( n s ), the fact that b has bounded derivatives and sup β sup s

	U n,β s 1 U n,β	is bounded.
	The convergence of H n 5,βn (1) is proved as the convergence of H n 3,βn (1) in the proof of Lemma 3.3. This
	completes the proof Lemma 5.3.	
	Proof of Lemma 5.4: We first prove (5.20). From (5.3) we have (we omit the details)
	sup	
	x 0	

  β t ) and (U β t ) = Γ(Y β t , Y β t )are solutions of the linear equations:

	LY β t =	0	t	a (Y β s , θ)LY β s ds +	1 2	0	t	a (Y β s , θ)U β s ds +	cσ 2	0	t	E	ρ (z) + ρ(z)	g (z) g(z)	µ(ds, dz), (6.8)
	U β t = 2	t	a (Y β s , θ)U β s ds + c 2 σ 2			1	ρ(z)µ(ds, dz).						(6.9)
		0				0	E							
	The process (W β t ) = Γ(Y β t , U β t ) is the solution of the linear equation:	
	t = 3 W β	t	a (Y β s , θ)W β s ds + 2	t	a (Y β s , θ)(U β s ) 2 ds + c 3 σ 3		t		
		0			0							0		E	

  2, Theorem 5.24 p.51 ]), denoted by (∂ θ Y β t ) t and (∂ σ Y β t ) t respectively. Moreover, (∂ θ Y β t ) t , (∂ σ Y β t ) t are respectively the unique solutions of

	∂ θ Y β t =		t	a (Y β s , θ)∂ θ Y β s ds +	t	∂ θ a(Y β s , θ)ds,	(6.11)
		0		0		
	∂ σ Y β t =	t	a (Y β s , θ)∂ σ Y β s ds + c	t	z μ(ds, dz).	(6.12)
	0			0	E

  3Proof. The proof of Lemma 6.2 is a direct consequence of Theorem 10-3 in[START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. Indeed, considering the stochastic differential equation satisfied by the vectorY β t , LY β t , U β t , W β t , V θ t , V σ t , ∂ θ Y β t , ∂ σ Y β )) t and (T σ t ) t = (Γ(Y β t , V σ t )) t are solutions of linear equations, respectively, given by (6.20)-(6.23).

		t	t	t
		a (Y β s , θ)T β s ds + 3	a (Y β s , θ)V σ s U β s ds +	a (Y β s , θ)∂ σ Y β s W β s ds
		0	0	0
	t		t
	+	a (Y β s , θ)∂ σ Y β s (U β s ) 2 ds + c 3 σ 2	ρ(z)ρ(z) µ(ds, dz).
	0		0	E
				(6.23)
				T
				t	and
	using Theorem 10-3 in [2], we prove that the processes (D β t ) = (Γ(Y β t , LY β t )) t , (Q β t ) = Γ(Y β t , W β t ) t , (T θ t ) t = (Γ(Y β t , V θ t

 (6.16)Proof. Theorem 6.2 is an extension of Theorem 5 in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where the main novelty is the expression for ∂σq β q β . For the computation of the new term

, we apply Theorem 10-3 in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] to the stochastic differential equation satisfied by the vector (Y β t , U β t , ∂ σ Y β t ) T , this gives the above expression for (V σ t ).

We end this subsection with an explicit representation of ∇ β q β (u) which gives a computation of the iterated Malliavin weight

Theorem 6.3. Under the assumptions of Theorem 6.1,

where

where ∂ θ Y β 1 , ∂ σ Y β 1 are respectively given by equations (6.11), (6.12) and

Proof. Let f be a smooth functions with compact support. Then,

On the other hand, using the integration by parts formula of the Malliavin calculus, we have

where F denotes a primitive function of f . If f converges to Dirac mass at some point u, from the estimates above, we can deduce (6.17). Moreover, from (6.5) we also get (6.18).

To complete the result of Theorem 6.3, we give the expressions for Γ(Y

Lemma 6.1. Under the assumptions of Theorem 6.1,

where

1 are respectively given in (6.11), (6.12), U β 1 , W β 1 are computed in Theorem 6.1,

From the basic properties of the operators L and Γ (linearity and the chain rule property) stated in Section 6.1, we get that

Similarly, we have

Then, from (6.7) and the above estimates, we get the formula (6.19), after some calculus and the proof is complete.