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Asymptotics in small time for the density of a

stochastic differential equation driven by a stable

Lévy process
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Abstract

This work focuses on the asymptotic behavior of the density in small time of a stochastic differ-
ential equation driven by a truncated α-stable process with index α ∈ (0, 2). We assume that the
process depends on a parameter β = (θ, σ)T and we study the sensitivity of the density with respect
to this parameter. This extends the results of [5] which was restricted to the index α ∈ (1, 2) and
considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus,
we obtain the representation of the density and its derivative as an expectation and a conditional
expectation. This permits to analyze the asymptotic behavior in small time of the density, using
the time rescaling property of the stable process.

MSC2010: 60G51; 60G52; 60H07; 60H20; 60H10; 60J75.
Keywords. Lévy process, Density in small time, Stable process, Malliavin calculus for jump processes.

1 Introduction

We consider the following stochastic differential equation (SDE)

Xβ
t = x0 +

∫ t

0
b(Xβ

s , θ)ds+ σLt (1.1)

for t ∈ [0, 1], where (Lt)t∈[0,1] is a truncated α-stable process with exponent 0 < α < 2 and our aim

is to study the asymptotic behavior, in small time, of the density of (Xβ
t ), the solution of (1.1), as

well as its derivative with respect to the parameter β = (θ, σ)T . This problem plays an important role
in asymptotic statistics based on high frequency observations. Indeed, considering the estimation of
β from the discrete time observations (Xβ

i/n)0≤i≤n, and denoting by pβ1/n(x, y) the transition density
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of the discrete time process, the estimation rate of the parameter β strongly relies on the asymptotic
behavior of the derivative ∇βpβ1/n(x, y), as n goes to infinity. Based on the results established in the

present paper, we derive, in [6], an asymptotic expansion of the log-likelihood ratio and we prove the
LAMN property for the parameter β.

In the last decades, a large literature has been devoted to the existence and regularity of the
density to the solution (Xt)t, for t > 0, of a general stochastic equation driven by pure jump Lévy
processes. We can mention the works of Bichteler, Gravereaux and Jacod [2], Picard [14], Denis [8],
Ishikawa-Kunita [10], Fournier-Printems [9] and more recently the works of Debussche-Fournier [7]
and Kulik [13], under Hölder continuity assumptions on the coefficients of the equation and assuming
that the equation is driven by an α-stable process.

In this paper, the main contributions are obtained by using the Malliavin calculus for jump pro-
cesses developed by Bichteler, Gravereaux and Jacod [2] and adapted to the particular case of equation
(1.1) by Clément-Gloter [5]. Although it requires some strong derivability assumptions on the coeffi-
cients of the equation, it leads to some explicit representation formulas for the density and its derivative
(see also Ivanenko - Kulik [11]). Let us mention that alternative representations for the density can be
obtained by other methods, for example the method proposed by Bouleau-Denis [3] based on Dirichlet
forms or the parametrix method used by Kulik [13].

To study the asymptotic behavior of the transition density of Xβ
t and its derivative, in small time,

we establish some representation formulas. This extends the results of Clément-Gloter [5] where only
the derivative with respect to the drift parameter θ was considered, with the restriction α > 1. These
representation formulas involve some Malliavin weights whose expressions are given explicitly. This
permits first to identify in the Malliavin weights a main part and a negligible part in small time
asymptotics and then to derive the asymptotics for the density stated in Theorem 2.1 and Theorem
2.2. In contrast to [5], the exposition now involves the solution of the ordinary differential equation
defined by the deterministic part of (1.1). Moreover, the study of each terms appearing in the Malliavin
weights is complicated by the non integrability of the α-stable process as α ≤ 1.

The present paper is organized as follows. Section 2 contains the main results (Theorem 2.1 and
Theorem 2.2). Section 3 presents the methodology consisting first in a representation of the density by
Malliavin calculus where the Malliavin weights can be decomposed into a main part and a negligible
part and then in the study of their asymptotic behavior. We prove our main results in Sections 4 and
5. Finally, in Section 6, we recall the Malliavin integration by parts setting developed by [2] and used
in [5], and give some representations of the transition density, its derivative, as well as its logarithm
derivative. We also explicit the iterated Malliavin weights appearing in the expression of the derivative
of the density.

2 Asymptotics for the density and its derivative

We consider the process (Xβ
t )t∈[0,1] solution to the stochastic equation (1.1) where (Lt)t∈[0,1] is a pure

jump Lévy process defined on a filtered probability space (Ω,G, (Gt)t∈[0,1],P), b is a real valued function

and the parameter β = (θ, σ)T belongs to R× (0,∞). We assume that the following assumptions are
fulfilled.
H1: (a) The function b has bounded derivatives up to order five with respect to both variables.
(bi) The Lévy process (Lt)t∈[0,1] is given by Lt =

∫ t
0

∫
[−1,1] z{µ(ds, dz)−υ(ds, dz)}+

∫ t
0

∫
[−1,1]c zµ(ds, dz)
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where µ is a Poisson random measure, with compensator υ(dt, dz) = dt×F (z)dz where F (z) is given
on R∗ by F (z) = 1

|z|α+1 τ(z), α ∈ (0, 2). Moreover, we assume that τ is a non negative smooth function

equal to 1 on [-1,1], vanishing on [−2, 2]c such that 0 ≤ τ ≤ 1.

(bii) We assume that ∀p ≥ 1,
∫
R

∣∣∣ τ ′(u)
τ(u)

∣∣∣p τ(u)du <∞,
∫
R

∣∣∣ τ ′′(u)
τ(u)

∣∣∣p τ(u)du <∞.

Under these assumptions, Xβ
t admits a smooth density for t > 0 (see Section 6), and we denote

by pβt (x, y) the transition density of the Markov process (Xβ
t ).

Throughout the paper, we will use the following notation. For a vector h ∈ R2, hT denotes the
transpose of h, and |h| denotes the euclidean norm. For a function f defined on R×R2 depending on
both variables (x, β), here β = (θ, σ)T ∈ R× (0,+∞), we denote by f ′ the derivative of f with respect
to the variable x, by ∂θf the derivative of f with respect to the parameter θ, by ∂σf the derivative of

f with respect to the parameter σ, and ∇βf =

(
∂θf

∂σf

)
.

The regularity assumption H1(a) on the drift coefficient b is a sufficient condition to obtain the
representations of the density and its derivative. This assumption could be weakened but our method-
ology is based on the Malliavin calculus developed in [2] that requires strong regularity assumptions on
the coefficients. From Theorem 10-3 in [2], the computation of the Malliavin operators for a stochastic
differential equation needs coefficients with derivatives up to order three. As we iterate the Malliavin
operators we need derivatives up to order five (see Lemma 6.2). Note that we relax the boundedness
assumption on b assumed in [5].

Remark 2.1. The assumptions on the Lévy measure are restrictive and one may expect that our
results hold with a more general Lévy measure F (z) = 1

|z|α+1 g(z), where g satisfies (bii) and g(0) = 1.

However in our approach the integrability assumptions for the tails of the Lévy process are crucial
to ensure that our process belongs to the Malliavin space. Moreover, the exact α-stable behavior of
the Lévy measure around zero is also largely used (see Lemma 3.1) to study the Malliavin weights
asymptotics. The truncation function τ ensures both the integrability of |Lt|p, ∀p ≥ 1, and the exact
α-stable behavior around zero (τ = 1). It permits the careful study of each Malliavin terms appearing
in the representation formulas (3.12) and (5.1). All these terms are not yet being in control without
these restrictions on the Lévy measure.

Our aim is to study the asymptotic behavior of pβ1
n

(x0, u) (the density of Xβ
1
n

) and its derivative

with respect to the parameter β. To this end, we introduce the solution to the ordinary differential
equation

ςn,θ,x0t = x0 +
1

n

∫ t

0
b(ςn,θ,x0s , θ)ds t ∈ [0, 1]. (2.1)

Heuristically, n1/α(Xβ
1/n − ςn,θ,x01 ) is close to σn1/αL1/n and from assumption H1(bi), the rescaled

process (n1/αLt/n)t∈[0,1] converges in distribution to an α-stable process (Lαt )t∈[0,1] (see Section 3.1).

Our first result shows that the density of n1/α

σ (Xβ
1/n− ς

n,θ,x0
1 ) converges to the density of Lα1 , as n goes

to infinity.
In what follows, we denote by ϕα the density of Lα1 where (Lαt ) is an α-stable process with Lévy

measure υ(dz) = 1
|z|α+1 1z 6=0dz.

With these notations, we can state our main results. In view of statistical applications, we need
some uniformity with respect to the parameter around the true value β = (θ, σ)T and consequently
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we study the asymptotic behavior of pβn1
n

where (βn)n≥1 = ((θn, σn)T )n≥1 is a sequence converging to

β.

Theorem 2.1. Let (ςn,θ,x0t ) be the solution to the ordinary differential equation (2.1) and let (βn)n≥1

be a sequence such that βn
n→∞−−−→ β. For all (x0, u) ∈ R2,

1. σn
n1/α p

βn
1
n

(x0,
uσn
n1/α + ςn,θn,x01 )

n→∞−−−→ ϕα(u),

2. supu∈R supn
σn
n1/α p

βn
1
n

(x0,
uσn
n1/α + ςn,θn,x01 ) <∞,

where ϕα is the density of Lα1 .

If the solution to the ordinary equation (1.1) is not given explicitly, we can approximate it by a
numerical scheme. The previous convergence will be preserved if the order of the numerical scheme is
sufficiently high. This is explain in the next remark.

Remark 2.2. If we assume that the function b is of class C1+k with respect to x (k ≥ 0) and setting

A(f) = bf ′ (and A0(f) = f) such that f(ςn,θ,x0t , θ) = f(ςn,θ,x00 , θ) +
∫ t

0 (Af)(ςn,θ,x0s , θ)ds, we obtain

ςn,θ,x0t = x0 +
1

n

∫ t

0
A0(b)(ςn,θ,x0s , θ)ds

= x0 +
t(A0b)(x0, θ)

n
+

1

n

∫ t

0

∫ t1

0

(Ab)

n
(ςn,θ,x0t2

, θ)dt2dt1

= ς
(k),n,θ,x0
t +

1

nk+1

∫ t

0

∫ t1

0
...

∫ tk

0
(Akb)(ςn,θ,x0tk

, θ)dtk+1...dtt1

with ς
(k),n,θ,x0
t = x0 + t(A0b)(x0,θ)

n + t2(Ab)(x0,θ)
2n2 + ...+ tk(Ak−1b)(x0,θ)

k!nk
, for k ≥ 1, and ς

(0),n,θ,x0
t = x0.

Assuming moreover that the function b has bounded derivatives, we deduce that
∣∣∣ςn,θ,x0t − ς(k),n,θ,x0

t

∣∣∣ ≤
C

nk+1 . Then from the proof of Theorem 2.1, if n1/α/nk+1 goes to zero, we can replace ςn,θn,x01 by

ς
(k),n,θn,x0
1 in the statement of the theorem and we obtain

σn

n1/α
pβn1
n

(x0,
uσn

n1/α
+ ς

(k),n,θn,x0
1 )

n→∞−−−→ ϕα(u), if k >
1

α
− 1.

In particular, if α > 1, the choice ς
(0),n,θn,x0
1 = x0 is convenient as established in [5].

Remark 2.3. The results of Theorem 2.1 have been obtained by Kulik [13], using the parametrix
method.

The next result gives the asymptotic behavior of the derivatives of the density with respect to the
parameters θ and σ.

Theorem 2.2. Let (βn)n≥1 be a sequence such that βn
n→∞−−−→ β. For all (x0, u) ∈ R2,

i) σ2
n

n
2
α−1

∂θp
βn
1
n

(x0,
uσn
n1/α + ςn,θn,x01 )

n→∞−−−→ −∂θb(x0, θ)× ϕ′α(u),

σ2
n

n1/α∂σp
βn
1
n

(x0,
uσn
n1/α + ςn,θn,x01 )

n→∞−−−→ −ϕα(u)− uϕ′α(u),
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ii) supu∈R supn

∣∣∣∣ σ2
n

n
2
α−1

∂θp
βn
1
n

(x0,
uσn
n1/α + ςn,θn,x01 )

∣∣∣∣ <∞,
supu∈R supn

∣∣∣∣ σ2
n

n1/α∂σp
βn
1
n

(x0,
uσn
n1/α + ςn,θn,x01 )

∣∣∣∣ <∞.
Considering the statistical experiment (Rn,Bn,Pβn) corresponding to the observation of (Xβ

i/n)1≤i≤n,

Theorems 2.1 and 2.2 permit to prove in [6] the L2-regularity property of the transition density

pβ1/n(x, y):

n∑
i=1

E

∫
R

pβ+rnh
1
n

(
Xβ

i−1
n

, y

)1/2

− pβ1
n

(
Xβ

i−1
n

, y

)1/2

− 1

2
hT rn

∇βpβ1
n

(Xβ
i−1
n

, y)

(pβ1
n

)1/2(Xβ
i−1
n

, y)


2

dy

 n→∞−−−→ 0,

with rate rn =

(
n

1
2
− 1
α 0

0 n−
1
2

)
. In this application, the sequence (βn = (θn, σn)T ) is (β + rnh). The

L2-regularity property (related to the L2-differentiability of β 7→ (pβ1
n

)1/2) is the first step to obtain an

asymptotic expansion of the log-likelihood ratio log dPβ+rnhn

dPβn
(Xβ

1/n, . . . , X
β
1 ) (see Theorem 2.1 in [6]) and

to deduce the Local Asymptotic Mixed Normality property (see Jeganathan [12]). We proved that the
LAMN property holds (Corollary 2.4 in [6]) for the parameter β with rate rn and information matrix

I =

(
I11 0

0 I22

)
where I11 = 1

σ2

∫ 1
0 ∂θb(X

β
s , θ)2ds

∫
R
ϕ′α(u)2

ϕα(u) du and I22 = 1
σ2

∫
R

(ϕα(u)+uϕ′α(u))2

ϕα(u) du. As

a consequence, we deduce that the estimation rate for θ is n
1
2
− 1
α and that the estimation rate for σ

is the usual one n−
1
2 . Moreover, the best asymptotic variance of any regular estimator of β (that

converges in distribution with rate rn) is the inverse of the information matrix I.
The proofs of Theorems 2.1 and 2.2 are based on the representations of the density and its derivative

obtained by using Malliavin calculus and on the study of the asymptotic behavior of the Malliavin
weights. This is given in the next sections.

3 Rescaling and representation of the density in small time

In this section, we give a representation of the density and identify in this representation the main
terms and the remainder terms. This decomposition is a key step for the convergence study and is
mainly based on the rescaling described in the next subsection.

3.1 Rescaling

We can observe that the process (n1/αLt/n) equals in law to a centered Lévy process with Lévy measure

Fn(z) =
1

|z|1+α
τ(

z

n1/α
). (3.1)

As mentioned previously, this clearly suggests that when n grows, the process (n1/αLt/n) converges
to an α-stable process. In the sequel, it will be convenient to construct a family of Lévy processes
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(Lnt )n≥1 with the same law as (n1/αLt/n), on a common probability space where the limiting α-stable
process exists as well, and where the convergence holds true in a path-wise sense, as done in [5].
Let us consider µe(dt, dz, du) a Poisson measure on [0,∞) × R∗ × [0, 1] with compensating measure
υe(dt, dz, du) = dt dz

|z|1+αdu and we denote by µ̃e(dt, dz, du) = µe(dt, dz, du) − υe(dt, dz, du) the com-

pensated Poisson random measure. This measure corresponds to the jump measure of an α-stable
process, where each jump is marked with an uniform variable on [0, 1].
We define the Poisson measures µ(n), for all n ≥ 1, and µ by setting :

∀A ⊂ [0,∞)× R, µ(n)(A) =

∫
[0,∞)

∫
R

∫
[0,1]

1A(t, z)1{u≤τ( z

n1/α
)}µ

e(dt, dz, du),

∀A ⊂ [0,∞)× R, µ(A) =

∫
[0,∞)

∫
R

∫
[0,1]

1A(t, z)µe(dt, dz, du).

By simple computation, one can check that the compensator of the measure µ(n)(dt, dz) is υ(n)(dt, dz) =
dt×τ( z

n1/α ) dz
|z|1+α = dt×Fn(z)dz and the compensator of µ(dt, dz) is υ(dt, dz) = dt× dz

|z|1+α . Moreover,

we note µ̃(n)(dt, dz) = µ(n)(dt, dz)− υ(n)(dt, dz) and µ̃(dt, dz) = µ(dt, dz)− υ(dt, dz) the compensated
Poisson random measures. Remark that since τ(z) = 1 for |z| ≤ 1, the measures µ(n)(dt, dz) and
µ(dt, dz) coincide on the set {(t, z)|t ∈ [0, 1], |z| ≤ n1/α}.
Now we define the stochastic processes associated to these random measures,

Lαt =

∫ t

0

∫
[−1,1]

zµ̃(ds, dz) +

∫ t

0

∫
[−1,1]c

zµ(ds, dz), (3.2)

Lnt =

∫ t

0

∫
[−n1/α,n1/α]

zµ̃(n)(ds, dz) +

∫ t

0

∫
[−n1/α,n1/α]

c
zµ(n)(ds, dz). (3.3)

By construction, the process (Lαt ) is a centered α-stable process and the process (Lnt ) is equal in law
to the process (n1/αLt/n)t∈[0,1], since they are based on random measures with the same compensator.

Remark that the jumps of Lnt with size smaller than n1/α exactly coincide with the jumps of Lα with
size smaller than n1/α. On the other hand, the process Ln has no jump with a size greater than 2n1/α.
Using that the measures µ and µ(n) coincide on the subsets of {(t, z); |z| ≤ n1/α}, and the function
τ( z

n1/α ) 1
|z|1+α = 1

|z|1+α is symmetric on |z| ≤ n1/α, we can rewrite:

Lnt =

∫ t

0

∫
[−1,1]

zµ̃(ds, dz) +

∫ t

0

∫
1<|z|<n1/α

zµ(ds, dz) +

∫ t

0

∫
n1/α≤|z|≤2n1/α

zµ(n)(ds, dz). (3.4)

The following simple lemma gives a connection between Ln and the stable process Lα.

Lemma 3.1. On the event An =
{
µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n1/α}) = 0

}
, we have

µ(n) = µ, Lnt = Lαt , (3.5)

and
P (An) = 1 +O(1/n). (3.6)
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Furthermore, let (fn)n∈N and f be measurable functions from Ω× [0, 1]×R to R such that there exists
C with P(C) = 1 and ∀ω ∈ C, ∀s ∈ [0, 1], ∀|z| > 1 fn(ω, s, z)

n→∞−−−→ f(ω, s, z). Then∫ 1

0

∫
|z|>1

fn(ω, s, z)µ(n)(ds, dz)
n→∞−−−→
a.s.

∫ 1

0

∫
|z|>1

f(ω, s, z)µ(ds, dz). (3.7)

Moreover, we have supt∈[0,1] |Lnt − Lαt |
n→∞−−−→
a.s.

0.

Proof. We know that the measures µ(n) and µ coincide on the set {(s, z)|s ∈ [0, 1], |z| ≤ n1/α}, and by
comparison of the representations (3.2) and (3.4), it is clear that equation (3.5) holds true on the event
that the supports of the random measure µ and µ(n) do not intersect {(t, z)|0 ≤ t ≤ 1, |z| ≥ n1/α}.
On the other hand, the support of µ(n) is included in the support of µ, and thus (3.5) is true on the
event An = {µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n1/α}) = 0}. The probability of the latter event is e−2/αn which
converges to 1 at rate 1/n as stated. Then we also get (3.6).
Let A = ∪∞n=1An, we get that P (A) = 1 since An ⊆ An+1 for each n ∈ N and (3.6) holds. Thus, for
all ω ∈ A ∩ C,∃n0(ω) ≥ 1, ∀n ≥ n0(ω), µ(n) = µ and fn(ω, s, z)→ f(ω, s, z)∀s ∈ [0, 1],∀|z| > 1. Then
we deduce that ∫ 1

0

∫
|z|>1

fn(ω, s, z)µ(n)(ds, dz)
n→∞−−−→
a.s.

∫ 1

0

∫
|z|>1

f(ω, s, z)µ(ds, dz).

We also get supt∈[0,1] |Lnt − Lαt |
n→∞−−−→ 0.

3.2 Representation of the density in small time and first approximation

We introduce the process (Y
n,β,x0
t )t∈[0,1] given by

Y
n,β,x0
t = x0 +

1

n

∫ t

0
b(Y

n,β,x0
s , θ)ds+

σ

n1/α
Lnt t ∈ [0, 1], (3.8)

where (Lnt ) is defined by (3.4) and is such that 1
n1/α (Lnt ) equals in law to (Lt/n). By construction,

the process (Xβ
t
n

)t∈[0,1] equals in law (Y
n,β,x0
t )t∈[0,1]. Let qn,β,x0 be the density of Y

n,β,x0
1 then the

connection between the densities of Xβ
1
n

and Y
n,β,x0
1 is given by

pβ1/n(x0, x) = qn,β,x0(x). (3.9)

Using the Malliavin calculus for jump processes recalled in Section 6, we get a representation of the
density of Xβ

1
n

involving some random variable H
Y
n,β,x0
1

(1) (Malliavin weight). Moreover, we obtain

an asymptotic expansion of this weight that leads to the decomposition of the density into a main
part and a remainder part.

To state our next result we define (εns )s∈[0,1] by

εns = exp

(
1

n

∫ s

0
b′(Y

n,β,x0
u , θ)du

)
(3.10)
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and the function ρn

ρn(z) =


z4 if |z| < 1

ζ(z) if 1 ≤ |z| ≤ 2

z2τ( z
2n1/α ) if |z| > 2,

(3.11)

where τ is defined in assumption H1(bi), and ζ is a non negative function belonging to C∞ such
that ρn belongs to C∞. The function ρn is an auxiliary function related the the Malliavin calculus
developed in [2]. In our setting, the above choice (not unique) is convenient (see Remark 4.1).

Theorem 3.1. Under the assumption H1, we have

pβ1
n

(x0, u) = qn,β,x0(u) = E(1{Y n,β,x01 ≥u}HY n,β,x01

(1)), (3.12)

with

H
Y
n,β,x0
1

(1) =
1

σ
n1/α

[
Ĥn1,β(1) + Ĥn2,β(1)

]
+Rn1,β(1) +Rn2,β(1) +Rn3,β(1). (3.13)

The main terms Ĥn1,β(1), Ĥn2,β(1) are given by

Ĥn1,β(1) =

∫ 1
0

∫
R(εns )−3ρn(z)(ρn)′(z)µ(n)(ds, dz)

εn1

[∫ 1
0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

]2

 , (3.14)

Ĥn2,β(1) =

[
−
∫ 1

0

∫
R(εns )−1

[
(ρn)′(z)− 1+α

z ρn(z)
]
µ(n)(ds, dz)

εn1
∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

]
, (3.15)

and the remainder terms satisfy for any compact subset Q ⊂ R× (0,∞)

∀p ≥ 2, E sup
β∈Q

∣∣Rn1,β(1)
∣∣p ≤ C

n
, sup

β∈Q
|Rn2,β(1)| ≤ C

n
, sup

β∈Q
|Rn3,β(1)| ≤ C

n
, (3.16)

where C is some deterministic constant.

Let us heuristically explain how this decomposition permits to establish the result of Theorem 2.1.

Let (βn) be a sequence converging to β. First, from Lemma 4.1, n1/α(Y
n,βn,x0
1 − ςn,θn,x01 ) converges

almost surely to σLα1 , this permits to check that 1{n1/α(Y
n,βn,x0
1 −ςn,θn,x01 )≥σnv}

converges to 1{Lα1≥v}.

From Theorem 3.1, we deduce that σn
n1/α p

βn
1
n

(x0,
σn
n1/αu+ςn,θn,x01 ) is close to E1{Lα1≥u}[Ĥ

n
1,βn

(1)+Ĥn2,βn(1)]

and it remains to study the limit of the main terms.
We can see from the definition of ρn that ρn(z)

n→∞−−−→ ρ(z) where

ρ(z) =


z4 if |z| < 1

ζ(z) if 1 ≤ |z| ≤ 2,

z2 if |z| > 2.

(3.17)

Combining this with Lemma 3.1, it permits to establish the almost sure convergence of the main
terms:
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Ĥn1,βn(1)
n→∞−−−→
a.s.

H1,Lα(1), (3.18)

Ĥn2,βn(1)
n→∞−−−→
a.s.

H2,Lα(1), (3.19)

where H1,Lα(1),H2,Lα(1) are given by

H1,Lα(1) =

∫ 1
0

∫
R ρ(z)ρ′(z)µ(ds, dz)[∫ 1

0

∫
R ρ(z)µ(ds, dz)

]2 , (3.20)

H2,Lα(1) = −
∫ 1

0

∫
R
[
ρ′(z)− 1+α

z ρ(z)
]
µ(ds, dz)∫ 1

0

∫
R ρ(z)µ(ds, dz)

. (3.21)

Moreover, the limit weight H1,Lα(1) +H2,Lα(1) can be interpreted as a Malliavin weight (see (4.29))
and we have the following representation for the density of Lα1

ϕα(u) = E1[u,∞)(L
α
1 )[H1,Lα(1) +H2,Lα(1)].

This suggests that, as n goes to infinity, σn
n1/α p

βn
1
n

(x0,
σn
n1/αu+ ςn,θn,x01 ) is close to ϕα.

This is rigorously established in the next section.

4 Proof of Theorems 3.1 and 2.1

4.1 Proof of Theorem 3.1

The proof is based on the Malliavin calculus developed in Section 6. We recall that qn,β,x0 is the density

of Y
n,β,x0
1 and that the connection between the densities of Xβ

1
n

and Y
n,β,x0
1 is given by pβ1/n(x0, x) =

qn,β,x0(x).
We use the framework of Sections 6.1 and 6.2, with g(z) := Fn(z) = 1

|z|1+α τ( z
n1/α ) and with the

auxiliary function ρn defined by (3.11) such that it satisfies all conditions of Section 6.1. From the

assumptions on τ , we can easily deduce that z2τ( z
2n1/α ) =

{
z2 if 2 ≤ |z| ≤ 2n1/α

0 if |z| > 4n1/α.

Moreover, we recall that ρn(z)
n→∞−−−→ ρ(z) where ρ is defined by (3.17). Note that from the definitions

of ρn and ρ, we can easily see that ρn(z) = ρ(z) if |z| ≤ 2n1/α.

Remark 4.1. The choice of the auxiliary function ρn for |z| < 1 ensures that the non-degeneracy
condition (6.6) is satisfied. It will appear later that the choice of the auxiliary function ρn for |z| > 2
permits to obtain Malliavin weights sufficiently integrable to compensate the lack of integrability of Lα1
(see Remark 5.1 below).

The equation (3.8) (defining (Y
n,β,x0
t )) is a particular case of (6.1) with the function a and the

constant c given explicitly as

a(x, θ) =
1

n
b(x, θ), c =

1

n1/α
. (4.1)
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Under the assumptions H1, we can apply the results of Theorem 6.1 to Y
n,β,x0
1 . The non-degeneracy

assumption is verified by the choice of ρn(z) near zero (see (3.11)). Let us denote by Un,βt =

Γ[Y
n,β,x0
t , Y

n,β,x0
t ] and Wn,β

t = Γ[Y
n,β,x0
t , Un,βt ], then we obtain:

pβ1
n

(x0, u) = qn,β,x0(u) = E(1{Y n,β,x01 ≥u}HY n,β,x01

(1));

with

H
Y
n,β,x0
1

(1) =
Wn,β

1

(Un,β1 )
2 − 2

LY
n,β,x0
1

Un,β1

. (4.2)

Applying the results of Theorem 6.1 and solving the linear equations (6.8)-(6.10) (with a and c given
by (4.1)) we get,

Un,β1 =
(εn1 )2σ2

n2/α

∫ 1

0

∫
R

(εns )−2ρn(z)µ(n)(ds, dz), (4.3)

L(Y
n,β,x0
1 ) =

εn1
2n

∫ 1

0
b′′(Y

n,β,x0
s , θ)(Un,βs )(εns )−1ds

+
σεn1

2n1/α

∫ 1

0

∫
R

(εns )−1[(ρn)′(z) +
F ′n(z)

Fn(z)
ρn(z)]µ(n)(ds, dz), (4.4)

Wn,β
1 =

σ3(εn1 )3

n3/α

∫ 1

0

∫
R

(εns )−3(ρn)′(z)ρn(z)µ(n)(ds, dz) +
2(εn1 )3

n

∫ 1

0
b′′(Y

n,β,x0
s , θ)(Un,βs )

2
(εns )−3ds.

(4.5)

Recalling that Fn(z) = 1
|z|1+α τ( z

n1/α ) (see (3.1)), then F ′n(z)
Fn(z) = −1+α

z + τ ′(z/n1/α)

τ(z/n1/α)
1

n1/α if |z| ≤ 2n1/α.

Based on these expressions and (4.2) we deduce, after some calculus, the decomposition (3.13), where
the remainder terms are given by,

Rn1,β(1) = −

∫ 1
0

∫
R(εns )−1ρn(z) τ

′(z/n1/α)

τ(z/n1/α)
µ(n)(ds, dz)

σεn1
∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

, (4.6)

Rn2,β(1) =
2(εn1 )3 ∫ 1

0 b
′′(Y

n,β,x0
s , θ)(Un,βs )

2
(εns )−3ds

n(Un,β1 )2
, (4.7)

Rn3,β(1) = −
(εn1 )

∫ 1
0 b
′′(Y

n,β,x0
s , θ)(Un,βs )(εns )−1ds

2n(Un,β1 )
. (4.8)

We can establish the following bounds for the remainder terms.
For Rn1,β(1), since (εns ) is lower and upper bounded uniformly with respect to β (recall (3.10)), and
since τ ′(z) = 0 on [−1, 1] then for M a positive constant we have

sup
β∈Q

∣∣Rn1,β(1)
∣∣ ≤M

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)

 . (4.9)
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Assume that there exists a jump of the Lévy process Ln1 in [−2n1/α,−n1/α) ∪ (n1/α, 2n1/α], then we

get
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz) > n2/α. Thus,

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
≤
∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz). (4.10)

Assume that there are no jumps in [−2n1/α,−n1/α) ∪ (n1/α, 2n1/α], since τ(z/n1/α) = 1 if |z| ≤ n1/α,
then τ ′(z/n1/α) = 0 and as a consequence, the right-hand side of (4.9) equals zero in this case.
In both cases, for any p ≥ 1

E

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)

p

≤ E

(∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

)p
.

(4.11)
Now from µ(n)(ds, dz) = µ̃(n)(ds, dz)+υ(n)(ds, dz), by convexity inequality, we have for C(p) a positive
constant

E

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

]p

≤ C(p)E

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ µ̃(n)(ds, dz)

]p

+ C(p)

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ υ(n)(ds, dz)

]p
.

(4.12)

Using Kunita’s first inequality (see Theorem 4.4.23 in [1]) for p ≥ 2, there exists a constant D(p) > 0
such that

E

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ µ̃(n)(ds, dz)

]p

≤ D(p)

∫ 1

0

∫
|z|>2

( z

n1/α

)4
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
2

υ(n)(ds, dz)

p/2

+D(p)

[∫ 1

0

∫
|z|>2

( z

n1/α

)2p
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
p

υ(n)(ds, dz)

]

=
D(p)

np/2

[∫ 1

0

∫ 2

1

(
1

uα−3

∣∣∣∣τ ′(u)

τ(u)

∣∣∣∣2 τ(u)

)
duds

]p/2
+

[
D(p)

n

∫ 1

0

∫ 2

1

(
1

uα+1−2p

∣∣∣∣τ ′(u)

τ(u)

∣∣∣∣p τ(u)

)
duds

]
,

where we have used that υ(n)(ds, dz) = ds 1
|z|1+α τ(z/n1/α)dz and the change of variable u = z

n1/α .
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Moreover, we have[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ υ(n)(ds, dz)

]p
=

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ 1

|z|1+α
τ(z/n1/α)dzds

]p
=

[
1

n

∫ 1

0

∫ 2

1

1

uα−1

∣∣∣∣τ ′(u)

τ(u)

∣∣∣∣ τ(u)duds

]p
. (4.13)

Under the assumption H1(bii), we deduce E supβ∈Q

∣∣∣Rn1,β(1)
∣∣∣p ≤ C/n,∀p ≥ 2 .

Using that b has bounded derivatives and that supβ∈Q sup0≤s≤1
Un,βs

Un,β1

is bounded, the remainder terms

Rn2,β(1), Rn3,β(1) satisfy the upper bound

sup
β∈Q
|Rn2,β(1)| ≤ C

n
, sup

β∈Q
|Rn3,β(1)| ≤ C

n
,

where C is some deterministic constant.

4.2 Proof of Theorem 2.1

We first prove that n1/α(Y
n,β,x0
1 − ςn,θ,x01 ) is close to a stable Lévy process.

Lemma 4.1. Let (ςn,θ,x0t ) be the solution to the ordinary differential equation (2.1), then

n1/α(Y
n,βn,x0
1 − ςn,θn,x01 )

n→∞−−−→
a.s.

σLα1 , (4.14)

for any sequence (βn) converging to β, and this convergence is uniform with respect to x0.

Proof. Using (3.8) and the boundedness of b′, we have for t ∈ [0, 1]∣∣∣n1/α
(
Y
n,βn,x0
t − ςn,θn,x0t

)
− σLαt

∣∣∣ =

∣∣∣∣ 1n
∫ t

0
n1/α

[
b(Y

n,βn,x0
s , θn)− b(ςn,θn,x0s , θn)

]
ds+ [σnL

n
t − σLαt ]

∣∣∣∣
≤ 1

n

∫ t

0
||b′||∞

[∣∣∣n1/α
(
Y
n,βn,x0
s − ςn,θn,x0s

)
− σLαs

∣∣∣] ds+
σ||b′||∞

n

∫ 1

0
|Lαs | ds+ sup

t∈[0,1]
|σnLnt − σLαt | ,

where ||b′||∞ = supx,θ |b′(x, θ)|. Applying Gronwall’s Lemma, we get

sup
x0

∣∣∣n1/α
(
Y
n,βn,x0
1 − ςn,θn,x01

)
− σLα1

∣∣∣ ≤ C [σ
n

∫ 1

0
|Lαs |ds+ sup

t∈[0,1]
|σnLnt − σLαt |

]
, (4.15)

where C is a positive constant.
From Lemma 3.1, we have supt∈[0,1] |Lnt −Lαt |

a.s.−−→ 0 and we deduce supt∈[0,1] |σnLnt − σLαt |
a.s.−−→ 0.

Since t 7→ Lαt is càdlàg, we get
∫ 1

0 |L
α
s |ds < ∞ a.s., then σ

n

∫ 1
0 |L

α
s |ds

a.s.−−→ 0 and we get the result of
Lemma 4.1.
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We now proceed to the proof of Theorem 2.1. From (3.9) and Theorem 3.1, we have the represen-
tation

σn

n1/α
pβn1
n

(x0,
uσn

n1/α
+ςn,θn,x01 ) =

σn

n1/α
qn,β,x0(

uσn

n1/α
+ςn,θn,x01 ) = E

(
1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,θn,x0
1 }

σn

n1/α
H
Y
n,βn,x0
1

(1)

)
,

(4.16)
where σn

n1/αHY n,βn,x01

(1) = Ĥn1,βn(1) + Ĥn2,βn(1) + σn
n1/αRn1,βn(1) + σn

n1/αRn2,βn(1) + σn
n1/αRn3,βn(1), with

Ĥn1,βn(1), Ĥn2,βn(1) given by (3.14), (3.15) and Rn1,βn(1), Rn2,βn(1), Rn3,βn(1) satisfy the bounds (3.16).
Since b′ is bounded and ρn(z) ≥ 0, we deduce the upper bounds

∣∣∣Ĥn1,βn(1)
∣∣∣ ≤ C∗

∫ 1
0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2

 , (4.17)

∣∣∣Ĥn2,βn(1)
∣∣∣ ≤ C∗

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

 , (4.18)

for some constant C∗ > 0.
We now show that supn

∣∣∣Ĥn1,βn(1)
∣∣∣p and supn

∣∣∣Ĥn2,βn(1)
∣∣∣p are integrable ∀p ≥ 1. The proof will be

divided into the two following steps.
Step 1: We show that the right-hand side of (4.17) is bounded by a random variable independent
of n and belonging to ∩p≥1L

p. In fact, since the measures µ(n) and µ coincide on the set {(s, z)|s ∈
[0, 1], |z| ≤ n1/α}, and ρn(z) = ρ(z) on the support of the Poisson measure µ(n), we have

∫ 1
0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 ≤

∫ 1
0

∫
|z|≤2 |ρ

′(z)| ρ(z)µ(ds, dz)(∫ 1
0

∫
|z|≤2 ρ(z)µ(ds, dz)

)2 +

∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2

 .

(4.19)
We first consider the first term in the right-hand side of (4.19). Using that ρ, ρ′ belongs to ∩p≥1L

p(1|z|≤2|z|−1−αdz),
we get

E

[(∫ 1

0

∫
|z|≤2

|ρ′(z)|ρ(z)µ(ds, dz)

)p]
<∞, ∀p ≥ 1. (4.20)

On the other hand, since ρ satisfies the non degeneracy assumption (6.6), [
∫ 1

0

∫
|z|≤2 ρ(z)µ(ds, dz)]−1

belongs to ∩p≥1L
p [see [5, Theorem 4 p.2323]], we deduce that the first term of (4.19) belongs to

∩p≥1L
p, moreover, it does not depend on n .

Turning to the second term in the right-hand side of (4.19), since υ(n)({(t, z)|0 ≤ t ≤ 1, |z| > 2}) <∞,
we have the following representation [see Chapter VI in [4]]∫ 1

0

∫
|z|>2

2|z|3µ(n)(ds, dz) =

N1∑
i=1

2|Zi|3 a.s.,

∫ 1

0

∫
|z|>2

z2µ(n)(ds, dz) =

N1∑
i=1

Z2
i a.s.,

(4.21)
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where N = (Nt)1≥t≥0 is a Poisson process with intensity λn =
∫
|z|>2 Fn(z)dz < ∞, and (Zi)i≥0 are

i.i.d. random variables independent of N with probability measure
Fn(z)1|z|>2dz

λn
. Thus,∫ 1

0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2 =

∑N1
i=1 2|Zi|3(∑N1
i=1 Z

2
i

)2 ≤
∑N1

i=1 2|Zi|3∑N1
i=1 Z

4
i

≤ 1.

where we used Z2
i ≥ 0 and |Zi| > 2. We deduce that supn

∣∣∣Ĥn1,βn(1)
∣∣∣p is integrable ∀p ≥ 1.

Step 2: We show that supn

∣∣∣Ĥn2,βn(1)
∣∣∣p is integrable.

Using the definitions of ρn (recall (3.11)), ρ (recall (3.17)) and ρn = ρ on the support of the Poisson
measure µ(n) (see Section 3.2), we have

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

≤

∫ 1
0

∫
|z|≤2

(
|ρ(z)′|+ ρ(z)1+α

|z|

)
µ(ds, dz)∫ 1

0

∫
|z|≤2 ρ(z)µ(ds, dz)

+

∫ 1
0

∫
|z|>2(3 + α)|z|µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
(4.22)

where we used
∫ 1

0

∫
|z|≤2 ρ(z)µ(ds, dz) ≥ 0,

∫ 1
0

∫
|z|>2 ρ

n(z)µ(n)(ds, dz) ≥ 0, and the equality of µ(n) and

µ on the set {(s, z)|s ∈ [0, 1], |z| ≤ n1/α}.
Proceeding as for the first term in the right-hand side of (4.19), we also get that the first term of
(4.22) belongs to ∩p≥1L

p.
On the other hand, for the second term of (4.22) we have:∫ 1

0

∫
|z|>2(3 + α)|z|µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
≤

∫ 1
0

∫
|z|>2(3 + α)z2µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
= 3 + α.

This completes the proof of Step 2.
We finally deduce (with additionally some uniformity with respect to x0)

∀p ≥ 1, E( sup
n,β,x0

∣∣∣Ĥn1,β(1)
∣∣∣p + sup

n,β,x0

∣∣∣Ĥn2,β(1)
∣∣∣p) <∞. (4.23)

Recalling the almost sure convergences (3.18) and (3.19), we get from the dominated convergence
theorem the Lp-convergences

Ĥn1,βn(1)
n→∞−−−→
Lp

H1,Lα(1), ∀p ≥ 1. (4.24)

Ĥn2,βn(1)
n→∞−−−→
Lp

H2,Lα(1), ∀p ≥ 1, (4.25)

where H1,Lα(1) and H2,Lα(1) are defined respectively by (3.20) and (3.21).
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On the other hand, Lemma 4.1 implies that n1/α(Y
n,βn,x0
1 − ςn,θn,x01 ) converges almost surely to

σLα1 . Then, using P (Lα1 = u) = 0, we deduce the almost sure convergence

1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,θn,x0
1 } = 1[u,∞)

(
n1/α(Y

n,βn,x0
1 − ςn,θn,x01 )

σn

)
n→∞−−−→
a.s.

1[u,∞)(L
α
1 ). (4.26)

Applying the dominated convergence theorem, we get the latter convergence in Lp, ∀p ≥ 1. This gives
finally :

σn

n1/α
qn,βn,x0(

uσn

n1/α
+ ςn,θn,x01 )

n→∞−−−→ E[1[u,∞)(L
α
1 )HLα(1)], (4.27)

where HLα(1) = H1,Lα(1) +H2,Lα(1) and H1,Lα(1),H2,Lα(1) are given by (3.20), (3.21), respectively.
Remark that, we also get from (3.12), (3.13), (3.16) and (4.24), (4.25)

sup
u∈R

sup
n

σn

n1/α
qn,βn,x0(

uσn

n1/α
+ ςn,θn,x01 ) <∞. (4.28)

To finish the proof of the convergence, it remains to show that

ϕα(u) = E[1[u,∞)(L
α
1 )HLα(1)]. (4.29)

Let us denote by ϕn(u) the density of the variable Ln1 . We consider the situation where the drift

function b ≡ 0 and x0 = 0 for which n1/αY
n,β,x0
1 = σLn1 . Then (4.27), (4.28) yield

ϕn (u)
n→∞−−−→ E[1[u,∞)(L

α
1 )HLα(1)] := ψ(u), (4.30)

sup
u∈R

sup
n
ϕn (u) <∞. (4.31)

Assume by contradiction that, for some u, we have ψ(u) 6= ϕα(u). Since P (Lα1 = u) = 0, it can be
seen that ψ is continuous at the point u. Hence, one can find a continuous, compactly supported,
function f such that ∫

f(x)ψ(x)dx 6=
∫
f(x)ϕα(x)dx. (4.32)

On the one hand we have, E[f(Ln1 )] =
∫
f(x)ϕn(x)dx

n→∞−−−→
∫
f(x)ψ(x)dx where we have used the

dominated convergence theorem with (4.30)-(4.31). On the other hand, we can write

E[f(Ln1 )] = E[f(Ln1 )1{Ln1 =Lα1 }] + E[f(Ln1 )1{Ln1 6=Lα1 }]. (4.33)

By Lemma 3.1, we have P(Ln1 = Lα1 )
n→∞−−−→ 1. We deduce that,

E[f(Ln1 )]
n→∞−−−→ E[f(Lα1 )] =

∫
f(x)ϕα(x)dx. (4.34)

This last convergence result clearly contradicts (4.32) and we get (4.29).
Combining the preceding results with (4.27), we can get the results of Theorem 2.1.
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5 Proof of Theorem 2.2

The proof is divided into three steps. We first give a representation of the derivative of the density
and explicit the iterated Malliavin weights based on the calculus given in Section 6. We then study
the convergence of these weights and proceed to the proof of Theorem 2.2.

5.1 Representation of ∇βp
βn
1
n

and computation of the iterated Malliavin weights

We intensively use the results of Section 6. From Theorem 6.3, we have the representation

∇βpβn1
n

(x0,
uσn

n1/α
+ ςn,θn,x01 ) = ∇βqn,βn,x0(

uσn

n1/α
+ ςn,θn,x01 )

= E
[
1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,θn,x0
1 }HY n,βn,x01

(H
Y
n,βn,x0
1

(∇βY
n,βn,x0
1 ))

]
. (5.1)

Using (6.7), (6.14) and (6.18), (6.19), by some simple calculus, we get the explicit formula for the
iterated Malliavin weight

H
Y
n,β,x0
1

(H
Y
n,β,x0
1

(∇βY
n,β,x0
1 ))

=

∂θY n,β,x0
1

∂σY
n,β,x0
1

H
Y
n,β,x0
1

(1)2 −

(
V n,θ

1

V n,σ
1

)
2H

Y
n,β,x0
1

(1)

Un,β1

+

∂θY n,β,x0
1

∂σY
n,β,x0
1

 HY n,β,x01

(1)Wn,β
1

(Un,β1 )2
+

∂θY n,β,x0
1

∂σY
n,β,x0
1

 (Wn,β
1 )2

(Un,β1 )4

−

(
V n,θ

1

V n,σ
1

)
Wn,β

1

(Un,β1 )3
+

∂θY n,β,x0
1

∂σY
n,β,x0
1

 2Dn,β
1

(Un,β1 )2
−

∂θY n,β,x0
1

∂σY
n,β,x0
1

 Qn,β1

(Un,β1 )3
+

(
Tn,θ1

Tn,σ1

)
1

(Un,β1 )2
.

(5.2)

where Hn
Y
n,β,x0
1

(1), Un,β1 ,Wn,β
1 are given by (3.13), (4.3), (4.5), respectively.

Moreover the processes (∂θY
n,β,x0
t )t and (∂σY

n,β,x0
t )t are respectively solution to

∂θY
n,β,x0
t =

1

n

∫ t

0
b′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s ds+

1

n

∫ t

0
∂θb(Y

n,β,x0
s , θ)ds, (5.3)

∂σY
n,β,x0
t =

1

n

∫ t

0
b′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s ds+

Lnt
n1/α

. (5.4)

For the computations of V n,θ
1 = Γ(Y

n,β,x0
1 , ∂θY

n,β,x0
1 ) and V n,σ

1 = Γ(Y
n,β,x0
1 , ∂σY

n,β,x0
1 ), using (6.15),

(6.16) we have

V n,θ
1 =

1

n
(εn1 )2

∫ 1

0
(εns )−2

(
Un,βs

[
(∂θb)

′(Y
n,β,x0
s , θ) + b′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s

])
ds, (5.5)

V n,σ
1 =

1

n
(εn1 )2

∫ 1

0
(εns )−2

(
b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Un,βs

)
ds+

σ

n2/α
(εn1 )2

∫ t

0

∫
R

(εns )−2ρn(z)µ(n)(ds, dz).

(5.6)
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Finally from ((6.20) - (6.23)) we compute explicitlyDn,β
1 = Γ(Y

n,β,x0
1 , LY

n,β,x0
1 ), Qn,β1 = Γ(Y

n,β,x0
1 ,Wn,β

1 ),

Tn,θ1 = Γ(Y
n,β,x0
1 , V n,θ

1 ) and Tn,σ1 = Γ(Y
n,β,x0
1 , V n,σ

1 ). We get:

Dn,β
1 =

(εn1 )2

n

∫ 1

0
(εns )−2b′′(Y

n,β,x0
s , θ)LY

n,β,x0
s Un,βs ds+

(εn1 )2

2n

∫ 1

0
(εns )−2b′′(Y

n,β,x0
s , θ)Wn,β

s ds

+
(εn1 )2

2n

∫ 1

0
(εns )−2b′′′(Y

n,β,x0
s , θ)(Un,βs )2ds+

σ2(εn1 )2

2n2/α

∫ 1

0

∫
R

(εns )−2ρn(z)

(
(ρn)′(z) + ρn(z)

F ′n(z)

Fn(z)

)′
µ(n)(ds, dz),

(5.7)

Qn,β1 =
7(εn1 )4

n

∫ 1

0
(εn1 )−4b′′(Y

n,β,x0
s , θ)Wn,β

s Un,βs ds+
2(εn1 )4

n

∫ 1

0
(εn1 )−4b′′′(Y

n,β,x0
s , θ)(Un,βs )3ds

+
σ4(εn1 )4

n4/α

∫ 1

0

∫
R

(εn1 )−4ρn(z)
[(

(ρn)′(z)
)2

+ ρn(z)(ρn)′′(z)
]
µ(n)(ds, dz),

(5.8)

Tn,θ1 =
3(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)V n,θ

s Un,βs ds+
(εn1 )3

n

∫ 1

0
(εn1 )−3(∂θb)

′(Y
n,β,x0
s , θ)Wn,β

s ds

+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s Wn,β

s ds+
(εn1 )3

n

∫ 1

0
(εn1 )−3(∂θb)

′′(Y
n,β,x0
s , θ)(Un,βs )2ds

+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s (Un,βs )2ds,

(5.9)

Tn,σ1 =
3(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)V n,σ

s Un,βs ds+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Wn,β

s ds

+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s (Un,βs )2ds+

σ2(εn1 )3

n3/α

∫ 1

0

∫
R

(εn1 )−3ρn(z)(ρn)′(z)µ(n)(ds, dz).

(5.10)

From the above calculus and combining with (5.1) and (5.2) we have an explicit representation for the
derivative of the density with respect to parameter β that allows to analyze its asymptotic behavior
in small time. To obtain the results of Theorem 2.2, we will study the convergence of each term
appearing in the decompostion (5.2). This is based on the preceding explicit expressions that permit
to identify some main terms and some remainder terms.

In the sequel, we prove that all the terms involving the derivatives of b with respect to x are
remainder terms.

5.2 Convergence of the iterated weights

In this section, we study the convergence of the iterated Malliavin weightH
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∇βY
n,βn,x0
1 ))

which is the cornerstone of the proof for the convergence of ∇βpβn1
n

later. Firstly, we state some tech-

nical lemmas useful for our aim. The proofs of these lemmas are postponed to the end of the section.

We recall that (∂θY
n,β,x0
t )t and (∂σY

n,β,x0
t )t are respectively solution to (5.3) and (5.4).

Lemma 5.1. We have for all compact subset Q ⊂ R× (0,∞)
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i) supβ∈Q |∂θY
n,β,x0
1 | ≤ C

n , where C is some deterministic constant.

ii) supβ∈Q sups∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣ n→∞−−−→
Lp

0, ∀p ≥ 1.

Lemma 5.2. Let (βn) be a sequence converging to β and Q be a compact subset of R × (0,∞), the
following decompositions and estimates hold,

i) 1
n1/α

Dn,β1(
Un,β1

)2 = n1/α

2σ2 Ĥn3,β(1) +Rn4,β(1) +Rn5,β(1) +Rn6,β(1).

ii) 1
n1/α

Qn,β1(
Un,β1

)3 = n1/α

σ2 Ĥn4,β(1) +Rn7,β(1) +Rn8,β(1).

iii) supβ∈Q
1

n1/α+1

sups∈[0,1] |∂σY
n,β,x0
s Wn,β

s |(
Un,β1

)2

n→∞−−−→
Lp

0, ∀p ≥ 1.

The main terms Ĥn3,β(1), Ĥn4,β(1) are given by

Ĥn3,β(1) =

∫ 1
0

∫
R(εns )−2ρn(z)

[
(ρn)′′(z)− (ρn)′(z) (1+α)

z + ρn(z) (1+α)
z2

]
µ(n)(ds, dz)

(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 , (5.11)

Ĥn4,β(1) =

∫ 1
0

∫
R(εn1 )−4ρn(z)

[
((ρn)′(z))2 + ρn(z)(ρn)′′(z)

]
µ(n)(ds, dz)

(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)3 . (5.12)

where (εns )s∈[0,1] is given by (3.10). Moreover we have for p ≥ 1and some deterministic constant C

Ĥn3,βn(1)
n→∞−−−→
Lp

H3,Lα(1), Ĥn4,βn(1)
n→∞−−−→
Lp

H4,Lα(1), (5.13)

sup
β∈Q
|Rn4,β(1)| n→∞−−−→

Lp
0, sup

β∈Q
|Rn5,β(1)| n→∞−−−→

Lp
0, sup

β∈Q
|Rn6,β(1)| ≤ C

2n1+1/α
, (5.14)

sup
β∈Q
|Rn7,β(1)| n→∞−−−→

Lp
0, sup

β∈Q
|Rn8,β(1)| ≤ C

n1+1/α
, (5.15)

where

H3,Lα(1) =

∫ 1
0

∫
R

(
ρ(z)ρ′′(z)− ρ(z)ρ′(z) (1+α)

z + (ρ(z))2 (1+α)
z2

)
µ(ds, dz)(∫ 1

0

∫
R ρ(z)µ(ds, dz)

)2 , (5.16)

H4,Lα(1) =

∫ 1
0

∫
R ρ(z)

[
(ρ′(z))2 + ρ(z)ρ′′(z)

]
µ(ds, dz)(∫ 1

0

∫
R ρ(z)µ(ds, dz)

)3 . (5.17)
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Lemma 5.3. Let (βn) be a sequence converging to β and Q be a compact subset of R × (0,∞), the
following estimates hold:

i) supβ∈Q

∣∣∣∣V n,θ1

Un,β1

∣∣∣∣ ≤ C
n ,

ii) supβ∈Q
1

n2/α−1

|Tn,θ1 |(
Un,β1

)2

n→∞−−−→
Lp

0, ∀p ≥ 1,

iii)
V n,σ1

Un,β1

= 1
σ +Rn9,β(1),

iv) 1
n1/α

Tn,σ1(
Un,β1

)2 = 1
σ2 Ĥn5,β(1) +Rn10,β(1) +Rn11,β(1) +Rn12,β(1),

where C is some deterministic constant. The main term Ĥn5,β(1) is given by

Ĥn5,β(1) =

∫ 1
0

∫
R(εn1 )−3ρn(z)(ρn)′(z)µ(n)(ds, dz)

εn1

(∫ 1
0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 (5.18)

with (εns ) given by (3.10). Moreover, (supβ∈Q |Rni,β(1)|)9≤i≤12 converge to zero as n→∞ in Lp, ∀p ≥ 1

and Ĥn5,βn(1)
n→∞−−−−−→

Lp,∀p≥1
H5,Lα(1), with

H5,Lα(1) =

∫ 1
0

∫
R ρ(z)ρ′(z)µ(ds, dz)(∫ 1

0

∫
R ρ(z)µ(ds, dz)

)2 . (5.19)

Lemma 5.4. Let (βn) be a sequence converging to β. For all p ≥ 1, the following convergences hold
uniformly with respect to x0:

n∂θY
n,βn,x0
1

(
Ĥnβn(1)

)q n→∞−−−→
Lp

∂θb(x0, θ) (HLα(1))q , ∀q ≥ 1,

(5.20)

n∂θY
n,βn,x0
1 Ĥnβn(1)Ĥn1,βn(1)

n→∞−−−→
Lp

∂θb(x0, θ)HLα(1)H1,Lα(1),

(5.21)

n1/α∂σY
n,βn,x0
1

(
Ĥnβn(1)

)q n→∞−−−→
Lp

Lα1 (HLα(1))q , ∀q ≥ 1,

(5.22)

n1/α∂σY
n,βn,x0
1 Ĥnβn(1)Ĥn1,βn(1)

n→∞−−−→
Lp

Lα1HLα(1)H1,Lα(1),

(5.23)
where Ĥnβ(1) = Ĥn1,β(1) + Ĥn2,β(1) with Ĥn1,β(1), Ĥn2,β(1) given by (3.14), (3.15); HLα(1) = H1,Lα(1) +
H2,Lα(1) where H1,Lα(1),H2,Lα(1) are defined by (3.20), (3.21).

Lemma 5.5. Let (βn) be a sequence converging to β. For all p ≥ 1 the following convergences hold
uniformly with respect to x0:
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i) n∂θY
n,βn,x0
1 Ĥn3,βn(1)

n→∞−−−→
Lp

∂θb(x0, θ)H3,Lα(1),

ii) n∂θY
n,βn,x0
1 Ĥn4,βn(1)

n→∞−−−→
Lp

∂θb(x0, θ)H4,Lα(1),

iii) n1/α∂σY
n,βn,x0
1 Ĥn3,βn(1)

n→∞−−−→
Lp

Lα1H3,Lα(1),

iv) n1/α∂σY
n,βn,x0
1 Ĥn4,βn(1)

n→∞−−−→
Lp

Lα1H4,Lα(1),

where Ĥn3,β(1), Ĥn4,β(1) are given by (5.11), (5.12), and H3,Lα(1),H4,Lα(1), are defined by (5.16),
(5.17).

The uniform convergence with respect to x0 is not required in this paper but will be useful in [6].

Remark 5.1. We observe that although Lα1 does not belong to Lp, the choice of the auxiliary function
ρ permits to prove that Lα1 (HLα(1))2, Lα1H3,Lα(1) and Lα1H4,Lα(1) belong to Lp,∀p ≥ 1.

Based on the preceding lemmas, we can prove the following convergence result.

Proposition 5.1. Let (βn)n≥1 be a sequence such that βn
n→∞−−−→ β then for all p ≥ 1

σ2
n

n1/α
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂σY
n,βn,x0
1 ))

n→∞−−−→
Lp

H(2), (5.24)

σ2
n

n2/α−1
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂θY
n,βn,x0
1 ))

n→∞−−−→
Lp

∂θb(x0, θ)H(2)
1 , (5.25)

where H(2) and H(2)
1 are some random variables whose expressions do not depend on β and b.

Proof. From the equation (5.2), we have σ2
n

n2/α−1HY n,βn,x01

(H
Y
n,βn,x0
1

(∂θY
n,βn,x0
1 ))

σ2
n

n1/αHY n,βn,x01

(H
Y
n,βn,x0
1

(∂σY
n,βn,x0
1 ))

 =

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
H
Y
n,βn,x0
1

(1)2 −

(
σ2
n

n2/α−1V
n,θn

1
σ2
n

n1/αV
n,σn

1

)
2H

Y
n,βn,x0
1

(1)

(Un,βn1 )

+

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

) H
Y
n,βn,x0
1

(1)Wn,βn
1

(Un,βn1 )2
+

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
(Wn,βn

1 )2

(Un,βn1 )4
−

(
σ2
n

n2/α−1V
n,θn

1
σ2
n

n1/αV
n,σn

1

)
Wn,βn

1

(Un,βn1 )3

+

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
2Dn,βn

1

(Un,βn1 )2
−

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
Qn,βn1

(Un,βn1 )3
+

(
σ2
n

n2/α−1T
n,θn
1

σ2
n

n1/αT
n,σn
1

)
1

(Un,βn1 )2
.

(5.26)
We will prove the convergence of each term in the right-hand side of (5.26)

Term 1: Recall (3.13) and set Ĥnβn(1) = Ĥn1,βn(1) + Ĥn2,βn(1), Rnβn(1) = Rn2,βn(1) + Rn3,βn(1).

Remark that by (3.16), we have
∣∣∣Rnβn(1)

∣∣∣ ≤ C
n where C is some deterministic constant. Moreover, we
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can rewrite the first term as(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)[
H
Y
n,βn,x0
1

(1)
]2

=

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)[
n1/α

σn

[
Ĥn1,βn(1) + Ĥn2,βn(1)

]
+Rn1,βn(1) +Rn2,βn(1) +Rn3,βn(1)

]2

=

(
n∂θY

n,βn,x0
1

n1/α∂σY
n,βn,x0
1

)
Ĥnβn(1)

2
+

(
2σn

n1/α−1∂θY
n,βn,x0
1

2σn∂σY
n,βn,x0
1

)
Ĥnβn(1)Rnβn(1) +

(
2σn

n1/α−1∂θY
n,βn,x0
1

2σn∂σY
n,βn,x0
1

)
Ĥnβn(1)Rn1,βn(1)

+

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
Rn1,βn(1)2 +

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)(
Rnβn(1)

)2
+

(
2σ2
n

n2/α−1∂θY
n,βn,x0
1

2σ2
n

n1/α∂σY
n,βn,x0
1

)
Rn1,βn(1)Rnβn(1).

(5.27)
where Rn1,βn(1) is given by (4.6). We can deduce from (3.16), (4.24), (4.25), Lemma 5.4 and Lemma
5.1 that (

σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)(
H
Y
n,βn,x0
1

(1)
)2 n→∞−−−−−→

Lp,∀p≥1

(
∂θb(x0, θ)

Lα1

)
(HLα(1))2 .

Term 2: From (3.13) and Lemma 5.3 part i) and part iii), we can estimate the second term as(
σ2
n

n2/α−1V
n,θn

1
σ2
n

n1/αV
n,σn

1

) 2Hn
Y
n,βn,x0
1

(1)

(Un,βn1 )
=

(
O( 1

n2/α )
2σ2
n

n1/α

[
Rn9,βn(1) + 1

σn

])[ 1

σn
n1/αĤnβn(1) +Rn1,βn(1) +Rnβn(1)

]

=

 O( 1
n1/α )Ĥnβn(1) +O( 1

n2/α )Rn1,βn(1) +O( 1
n2/α )Rnβn(1)

2Ĥnβn(1) +
2σnRn1,βn (1)

n1/α +
2σnRnβn (1)

n1/α + 2σnRn9,βn(1)Ĥnβn(1) +
2σ2
nRn1,βn (1)Rn9,βn (1)

n1/α +
2σ2
nRnβn (1)Rn9,βn (1)

n1/α


where C is some deterministic constant and O( 1

n2/α ) is a random variable bounded by C
n2/α . From

(3.16), (4.24), (4.25) and Lemma 5.3, we also conclude that(
σ2
n

n2/α−1V
n,θn

1
σ2
n

n1/αV
n,σn

1

)
2H

Y
n,βn,x0
1

(1)

(Un,βn1 )

n→∞−−−−−→
Lp,∀p≥1

(
0

2HLα(1)

)

Term 3: From (3.13) and
Wn,βn

1

(Un,βn1 )2
= n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1) where Ĥn1,βn(1) and Rn2,βn(1) are given
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by (3.14) and (4.7), we have(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

) H
Y
n,βn,x0
1

(1)Wn,βn
1

(Un,βn1 )2

=

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)[
n1/αĤnβn(1)

σn
+Rn1,βn(1) +Rnβn(1)

][
n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1)

]

=

(
n∂θY

n,βn,x0
1

n1/α∂σY
n,βn,x0
1

)
Ĥnβn(1)Ĥn1,βn(1) +

(
σn

n1/α−1∂θY
n,βn,x0
1

σn∂σY
n,βn,x0
1

)
Ĥnβn(1)Rn2,βn(1)

+

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
Rn1,βn(1)Rn2,βn(1) +

(
σn

n1/α−1∂θY
n,βn,x0
1

σn∂σY
n,βn,x0
1

)
Rn1,βn(1)Ĥn1,βn(1)

+

(
σn

n1/α−1∂θY
n,βn,x0
1

σn∂σY
n,βn,x0
1

)
Rnβn(1)Ĥn1,βn(1) +

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
Rnβn(1)Rn2,βn(1).

From (3.16), (4.24), (4.25), Lemma 5.1 and Lemma 5.4, we also conclude that(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

) H
Y
n,βn,x0
1

(1)Wn,βn
1

(Un,βn1 )2

n→∞−−−−−→
Lp,∀p≥1

(
∂θb(x0, θ)H1,Lα(1)HLα(1)

Lα1H1,Lα(1)HLα(1).

)

Term 4: Using
Wn,βn

1

(Un,βn1 )2
= n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1) again, we can rewrite

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
(Wn,βn

1 )2

(Un,βn1 )4
=

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)[
n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1)

]2

=

(
n∂θY

n,βn,x0
1

n1/α∂σY
n,βn,x0
1

)
(Ĥn1,βn(1))2 +

(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
(Rn2,βn(1))2 +

(
2σn

n1/α−1∂θY
n,βn,x0
1

2σn∂σY
n,βn,x0
1

)
Rn2,βn(1)Ĥn1,βn(1).

From (3.16), (4.24), (4.25), Lemma 5.4 and Lemma 5.1, we also conclude that(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
(Wn,βn

1 )2

(Un,βn1 )4

n→∞−−−−−→
Lp,∀p≥1

(
∂θb(x0, θ) (H1,Lα(1))2

Lα1 (H1,Lα(1))2

)

Term 5: From Lemma 5.3 we can estimate the fifth term as(
σ2
n

n2/α−1V
n,θn

1
σ2
n

n1/αV
n,σn

1

)
Wn,βn

1

(Un,βn1 )3
=

(
O( 1

n2/α )

σ2
n

n1/α

(
Rn9,βn(1) + 1

σn

))(n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1)

)

=

(
O( 1

n1/α )Ĥn1,βn(1) +O( 1
n2/α )Rn2,βn(1)

σnRn9,βn(1)Ĥn1,βn(1) + σ2
n

n1/αRn9,βn(1)Rn2,βn(1) + Ĥn1,βn(1) + σn
n1/αRn2,βn(1)

)
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where C is some deterministic constant. From (3.16), (4.24), Lemma 5.3, we also conclude that(
σ2
n

n2/α−1V
n,θn

1
σ2
n

n1/αV
n,σn

1

)
Wn,βn

1

(Un,βn1 )3

n→∞−−−−−→
Lp,∀p≥1

(
0

H1,Lα(1)

)
Term 6: Using Lemma 5.2 we write the sixth term as(

σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
Dn,βn

1

(Un,βn1 )2

=

(
n
2∂θY

n,βn,x0
1

n1/α

2 ∂σY
n,βn,x0
1

)
Ĥn3,βn(1) +

(
σ2
n

n1/α−1∂θY
n,βn,x0
1

σ2
n∂σY

n,βn,x0
1

)(
Rn4,βn(1) +Rn5,βn(1) +Rn6,βn(1)

)
.

Applying Lemma 5.2, Lemma 5.5 and Lemma 5.1 we obtain that(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
2Dn,βn

1

(Un,βn1 )2

n→∞−−−−−→
Lp,∀p≥1

(
∂θb(x0, θ)H3,Lα(1)

Lα1H3,Lα(1)

)

where H3,Lα(1) is defined in Lemma 5.2.
Term 7: From Lemma 5.2, we can rewrite the seventh term as(

σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
Qn,βn1

(Un,βn1 )3

=

(
n∂θY

n,βn,x0
1

n1/α∂σY
n,βn,x0
1

)
Ĥn4,βn(1) +

(
σ2
n

n1/α−1∂θY
n,βn,x0
1

σ2
n∂σY

n,βn,x0
1

)(
Rn7,βn(1) +Rn8,βn(1)

)
.

Applying Lemma 5.2, Lemma 5.5 and Lemma 5.1 we obtain that(
σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

)
Qn,βn1

(Un,βn1 )3

n→∞−−−−−→
Lp,∀p≥1

(
∂θb(x0, θ)H4,Lα(1)

Lα1H4,Lα(1)

)

where H4,Lα(1) is defined in Lemma 5.2.
Term 8: From Lemma 5.3, we have(

σ2
n

n2/α−1T
n,θn
1

σ2
n

n1/αT
n,σn
1

)
1

(Un,βn1 )2
=

 σ2
n

n2/α−1

Tn,θn1

(Un,βn1 )2

Ĥn5,βn(1) + σ2
nRn10,βn

(1) + σ2
nRn11,βn

(1) + σ2
nRn12,βn

(1)


Using the results of Lemma 5.3, we easily deduce that(

σ2
n

n2/α−1T
n,θn
1

σ2
n

n1/αT
n,σn
1

)
1

(Un,βn1 )2

n→∞−−−−−→
Lp,∀p≥1

(
0

H5,Lα(1)

)
where H5,Lα(1) is defined in Lemma 5.3.
Finally from the above convergences, we can deduce the result of Proposition 5.1.
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5.3 Proof of Theorem 2.2

We will first prove part ii) and then give a proof for part i).
ii) Remark that from (5.24), (5.25)

sup
u∈R

sup
n

E
∣∣∣∣1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,θn,x0
1 }

σ2
n

n2/α−1
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂θY
n,βn,x0
1 ))

∣∣∣∣ <∞
and

sup
u∈R

sup
n

E
∣∣∣∣1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,θn,x0
1 }

σ2
n

n1/α
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂σY
n,βn,x0
1 ))

∣∣∣∣ <∞.
By representation (5.1) this leads to

sup
u∈R

sup
n

∣∣∣∣ σ2
n

n
2
α
−1
∂θp

βn
1
n

(x0,
uσn

n1/α
+ ςn,θn,x01 )

∣∣∣∣ <∞ and sup
u∈R

sup
n

∣∣∣∣ σ2
n

n1/α
∂σp

βn
1
n

(x0,
uσn

n1/α
+ ςn,θn,x01 )

∣∣∣∣ <∞.
i) From (5.1), (4.26) and Proposition 5.1, we easily deduce that

σ2
n

n1/α
∂σp

βn
1
n

(x0,
uσn

n1/α
+ ςn,θn,x01 ) =

σ2
n

n1/α
∂σq

n,βn,x0(
uσn

n1/α
+ ςn,θn,x01 )

n→∞−−−→ E[1[u,∞)(L
α
1 )H(2)], (5.28)

σ2
n

n
2
α
−1
∂θp

βn
1
n

(x0,
uσn

n1/α
+ςn,θn,x01 ) =

σ2
n

n
2
α
−1
∂θq

n,βn,x0(
uσn

n1/α
+ςn,θn,x01 )

n→∞−−−→ ∂θb(x0, θ)×E[1[u,∞)(L
α
1 )H(2)

1 ],

(5.29)

where H(2) and H(2)
1 are defined in Proposition 5.1.

To finish the proof of Theorem 2.2, it remains to show that E[1[u,∞)(L
α
1 )H(2)

1 ] = −ϕ′α(u) and E[1[u,∞)(L
α
1 )H(2)] =

− [ϕα(u) + uϕα
′(u)]. This is done in Lemma 5.6 below.

Lemma 5.6. We have

ϕ′α(u) = −E[1[u,∞)(L
α
1 )H(2)

1 ],

−
[
ϕα(u) + uϕα

′(u)
]

= E[1[u,∞)(L
α
1 )H(2)],

where ϕα is the density of Lα1 and H(2) and H(2)
1 are defined in Proposition 5.1.

Proof. Let us consider the situation where b(x, θ) = θ and x0 = 0. In that case, we have Y1
n,β,x0 =

θ
n + σ

n1/αL
n
1 and thus the density of Y1

n,β,x0 is related to the density of Ln1 by the relation,

qn,β,x0(u) =
n1/α

σ
ϕn

(
n1/α

σ

(
u− θ

n

))
.

Then,

∂θq
n,β,x0(u) = −n

2/α−1

σ2
(ϕn)′

(
n1/α

σ

(
u− θ

n

))
,

∂σq
n,β,x0(u) = −n

1/α

σ2
ϕn

(
n1/α

σ

(
u− θ

n

))
− (n1/α)2

σ3

(
u− θ

n

)
(ϕn)′

(
n1/α

σ

(
u− θ

n

))
,
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By a change of variables, we get

∂θq
n,β,x0

(
uσ

n1/α
+
θ

n

)
= −n

2/α−1

σ2
(ϕn)′ (u)

∂σq
n,β,x0(

uσ

n1/α
+
θ

n
) = −n

1/α

σ2

[
ϕn(u) + u(ϕn)′(u)

]
.

Hence, we can apply the results of part ii) of Theorem 2.2 and (5.28), (5.29) in this specific setting.
This yields

∀u, (ϕn)′(u)
n→∞−−−→ −E[1[u,∞)(L

α
1 )H(2)

1 ], (5.30)

∀u,
[
ϕn(u) + u(ϕn)′(u)

] n→∞−−−→ −E[1[u,∞)(L
α
1 )H(2)], (5.31)

sup
u,n
|(ϕn)′(u)| <∞, (5.32)

sup
u,n

∣∣ϕn(u) + u(ϕn)′(u)
∣∣ <∞. (5.33)

Let us denote X (u) = −E[1[u,∞)(L
α
1 )H(2)

1 ] and assume by contradiction that X 6= ϕ′α. Using the conti-
nuity of u 7→ X (u), there exists a smooth, compactly supported function f , such that

∫
X (u)f(u)du 6=∫

ϕ′α(u)f(u)du. Now, on the one hand we have∫
(ϕn)′(u)f(u)du

n→∞−−−→
∫
X (u)f(u)du, (5.34)

where we have used the dominated convergence theorem, together with (5.30), (5.32).
On the other hand, we can write,∫

(ϕn)′(u)f(u)du = −
∫
ϕn(u)f ′(u)du

= −E[f ′(Ln1 )]
n→∞−−−→ −E[f ′(Lα1 )] (5.35)

= −
∫
ϕα(u)f ′(u)du =

∫
ϕ′α(u)f(u)du (5.36)

where the convergence (5.35) is obtained in the same way as (4.34). Clearly (5.36) contradicts (5.34),

and we get E[1[u,∞)(L
α
1 )H(2)

1 ] = −ϕ′α(u).

By the same method, let us denote X1(u) = −E[1[u,∞)(L
α
1 )H(2)] and assume by contradiction that

u 7→ X1(u) is different from u 7→
[
ϕα(u) + u(ϕα)′(u)

]
. Using the continuity of u 7→ X1(u), there exists

a smooth, compactly supported function f , such that
∫
X1(u)f(u)du 6=

∫ [
ϕα(u) + u(ϕα)′(u)

]
f(u)du.

Now, we have ∫ [
ϕn(u) + u(ϕn)′(u)

]
f(u)du

n→∞−−−→
∫
X1(u)f(u)du, (5.37)

where we have used the dominated convergence theorem, together with (5.31), (5.33).
On the other hand, letting g(u) = uf(u) and using the integration by parts formula, we can write,∫ [

ϕn(u) + u(ϕn)′(u)
]
f(u)du =

∫
ϕn(u)f(u)du+

∫
(ϕn)′(u)g(u)du
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= E[f(Ln1 )]−
∫
ϕn(u)g′(u)du = E[f(Ln1 )]− E[g′(Ln1 )]

n→∞−−−→ E[f(Lα1 )]− E[g′(Lα1 )] (5.38)

=

∫
ϕα(u)f(u)du−

∫
ϕα(u)g′(u)du =

∫
ϕα(u)f(u)du+

∫
ϕ′α(u)g(u)du (5.39)

where the convergence (5.38) is obtained in the same way as (4.34). Clearly (5.39) contradicts (5.37),
and the lemma is proved.

5.4 Proofs of the intermediate lemmas

In this subsection, we give the proofs of Lemmas 5.1 - 5.5 of Section 5.2.

Proof of Lemma 5.1: i) Since b has bounded derivatives, we obtain from (5.3)

sup
β∈Q
|∂θY

n,β,x0
1 | ≤ C

n
.

ii) From (5.4) and Gronwall’s Lemma, we get

sup
β∈Q

sup
s∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣ ≤ C

n1/α
sup
s∈[0,1]

|Lns |

≤ C

n1/α
sup
s∈[0,1]

∣∣∣∣∣
∫ s

0

∫
|z|≤1

zµ̃(du, dz)

∣∣∣∣∣+
C

n1/α

∫ 1

0

∫
|z|>1

|z|µ(n)(du, dz) (5.40)

We now consider the first term of (5.40).

Using Kunita’s first inequality (see Theorem 4.4.23 in [1]) ∀p ≥ 2, we have E sups∈[0,1]

∣∣∣∫ s0 ∫|z|≤1 zµ̃(du, dz)
∣∣∣p <

∞, and the first term of (5.40) converges to zero in Lp, ∀p ≥ 1.
We now consider the second term of (5.40).
From µ(n)(ds, dz) = µ̃(n)(ds, dz) + υ(n)(ds, dz) then for C2(p) a positive constant, we have

1

np/α
E

(∫ 1

0

∫
|z|>1

|z|µ(n)(du, dz)

)p

≤ C2(p)

np/α

[
E

(∫ 1

0

∫
|z|>1

|z|µ̃(n)(du, dz)

)p
+ E

(∫ 1

0

∫
|z|>1

|z|υ(n)(du, dz)

)p]
.

Using again Kunita’s first inequality (see Theorem 4.4.23 in [1]), for p ≥ 2, there exists a positive
constant C3(p) such that

1

np/α
E

[∣∣∣∣∣
∫ 1

0

∫
|z|>1

|z|µ̃(n)(ds, dz)

∣∣∣∣∣
]p
≤ C3(p)

np/α

(∫ 1

0

∫
|z|>1

z2υ(n)(ds, dz)

)p/2
+

(∫ 1

0

∫
|z|>1

|z|pυ(n)(ds, dz)

)
=
C3(p)

np/α

(∫ 1

0

∫
|z|>1

z2 1

|z|1+α
τ(z/n1/α)dzds

)p/2
+
C3(p)

np/α

[∫ 1

0

∫
|z|>1

|z|p 1

|z|1+α
τ(z/n1/α)dzds

]

≤ 2C3(p)

np/α

[∫ 1

0

∫ 2n1/α

1

1

zα−1
dzds

]p/2
+

[
2C3(p)

np/α

∫ 1

0

∫ 2n1/α

1

1

zα+1−pdzds

]
n→∞−−−→ 0,

(5.41)
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where we used that 0 ≤ τ ≤ 1 and τ = 0 on [−2, 2]c. Hence, we get that the second term of (5.40)
also converges to zero in Lp, ∀p ≥ 1. This finishes the proof of ii).

Proof of Lemma 5.2: Recall that Dn,β
1 and Un,β1 are given by (5.7) and (4.3). The part i) is proved

by decomposing
Dn,β1

(Un,β1 )
2 , then we obtain that the main term is (5.11) and the remainder terms are

Rn4,β(1) =

∫ 1
0

∫
|z|>2(εns )−2ρn(z)ρn′(z) τ

′(z/n1/α)

τ(z/n1/α)
µ(n)(ds, dz)

2σ2n1/α(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 +

+

∫ 1
0

∫
|z|>2(εns )−2 (ρn(z))2

[
τ ′′(z/n1/α)

τ(z/n1/α)
−
(
τ ′(z/n1/α)

τ(z/n1/α)

)2
]
µ(n)(ds, dz)

2σ2n1/α(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 ,

Rn5,β(1) =
(εn1 )2

∫ 1
0 (εns )−2b′′(Y

n,β,x0
s , θ)

(
2LY

n,β,x0
s Un,βs +Wn,β

s

)
ds

2n1+1/α
(
Un,β1

)2 ,

Rn6,β(1) =
(εn1 )2

∫ 1
0 (εns )−2b′′′(Y

n,β,x0
s , θ)(Un,βs )2ds

2n1+1/α
(
Un,β1

)2 .

The part ii) is proved by decomposing
Qn,β1

(Un,β1 )
3 , then we obtain that the main term is (5.12) and the

remainder terms are

Rn7,β(1) =
7(εn1 )4

∫ 1
0 (εn1 )−4b′′(Y

n,β,x0
s , θ)Wn,β

s Un,βs ds

n1+1/α
(
Un,β1

)3

Rn8,β(1) =
2(εn1 )4

∫ 1
0 (εn1 )−4b′′′((Y

n,β,x0
s , θ)(Un,βs )3ds

n1+1/α
(
Un,β1

)3 .

We now study the convergence of the main terms.
From (3.10), the boundedness of b′ and Lemma 3.1, it is clear that Ĥn3,βn(1) converges almost surely to
H3,Lα(1). Moreover, using again the boundedness of b′, the upper and lower bounds of (εns )s∈[0,1] and
the fact that ρn(z) is a non negative function, we deduce the upper bound, for some constant C > 0,

∣∣∣Ĥn3,β(1)
∣∣∣ ≤ C


∫ 1

0

∫
R

(
ρn(z)

∣∣(ρn)′′(z)
∣∣+ ρn(z) |ρn′(z)| (1+α)

|z| + (ρn(z))2 (1+α)
z2

)
µ(n)(ds, dz)(∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)
)2

 .
(5.42)
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Proceeding as in Step 1 in the proof of Theorem 2.1, we show that supn

∣∣∣Ĥn3,βn(1)
∣∣∣p is integrable.

Then applying the dominated convergence theorem, we get Ĥn3,βn(1)
n→∞−−−−−→

Lp,∀p≥1
H3,Lα(1). In the same

way we prove that Ĥn4,βn(1)
n→∞−−−−−→

Lp,∀p≥1
H4,Lα(1).

Turning to the remainder terms, since b has bounded derivatives and supβ sups
Un,βs

Un,β1

is bounded, we

obtain

sup
β∈Q
|Rn5,β(1)| ≤ C sup

β∈Q

[
sups∈[0,1] |LY

n,β,x0
s |

n1+1/αUn,β1

+
sups∈[0,1] |W

n,β
s |

n1+1/α(Un,β1 )2

]
, sup

β∈Q
|Rn6,β(1)| ≤ C

2n1+1/α
, (5.43)

sup
β∈Q
|Rn7,β(1)| ≤ C sup

β∈Q

[
sups∈[0,1] |W

n,β
s |

n1+1/α(Un,β1 )2

]
, sup

β∈Q
|Rn8,β(1)| ≤ C

n1+1/α
. (5.44)

Moreover from (4.3), (4.4) and (4.5), we get that

sup
β∈Q

sups∈[0,1] |LY
n,β,x0
s |

n1+1/αUn,β1

≤ C

 1

n2+1/α
+

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)

n
∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)


+ C

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)

n1+1/α
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)

 ,

sup
β∈Q

sups∈[0,1] |W
n,β
s |

n1+1/α(Un,β1 )2
≤ C

 1

n2+1/α
+

∫ 1
0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)

n
[∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)
]2

 . (5.45)

From the results of Step 1, Step 2 in the proof of Theorem 2.1, and the control given in the proof of

Theorem 3.1 for (4.11) we can deduce that supβ∈Q
sups∈[0,1] |LY

n,β,x0
s |

n1+1/αUn,β1

and supβ∈Q
sups∈[0,1] |W

n,β
s |

n1+1/α(Un,β1 )2
converge

to zero in Lp,∀p ≥ 1 and we deduce the convergence of supβ∈Q |Rn5,β(1)| and supβ∈Q |Rn7,β(1)|.
It remains to study the convergence of supβ∈Q |Rn4,β(1)|.
From the boundedness of (εnt )t∈[0,1], the definition of ρn (see (3.11)), and since µ(n) is a positive
measure, we have

sup
β∈Q

∣∣Rn4,β(1)
∣∣ ≤ C


∫ 1

0

∫
|z|>2

[
|z|3
n1/α

∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣+ z4

n1/α

(∣∣∣ τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣+
(
τ ′(z/n1/α)

τ(z/n1/α)

)2
)]

µ(n)(ds, dz)(∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
)2


(5.46)

≤ C


∫ 1

0

∫
|z|>2

[
|z|3
n1/α

∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣+ z4

n1/α

(∣∣∣ τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣+
(
τ ′(z/n1/α)

τ(z/n1/α)

)2
)]

µ(n)(ds, dz)

n4/α


(5.47)
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where we used
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz) > n2/α, if there exists a jump of the Lévy process in [−2n1/α,−n1/α)∪
(n1/α, 2n1/α]. If there are no jumps in [−2n1/α,−n1/α)∪(n1/α, 2n1/α], since τ(z/n1/α) = 1 if |z| ≤ n1/α,
we have τ ′(z/n1/α) = 0 and τ ′′(z/n1/α) = 0. Thus for M(p) a positive constant we have

E sup
β∈Q
|Rn4,β(1)|p ≤ Cp

np/α
E

 ∫ 1

0

∫
|z|>2

 1

n1/α

(∣∣∣ z

n1/α

∣∣∣)3
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
+
( z

n1/α

)4

∣∣∣∣∣τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣+

(
τ ′(z/n1/α)

τ(z/n1/α)

)2
 µ(n)(ds, dz)

p

≤ M(p)

np/α

 E

 ∫ 1

0

∫
|z|>2

1

n1/α

(∣∣∣ z

n1/α

∣∣∣)3
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

p +

E

 ∫ 1

0

∫
|z|>2

( z

n1/α

)4
∣∣∣∣∣τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

p + E

 ∫ 1

0

∫
|z|>2

( z

n1/α

)4
(
τ ′(z/n1/α)

τ(z/n1/α)

)2

µ(n)(ds, dz)

p 
Similarly to the proof of Theorem 3.1, we show that under assumption H1(bii), supβ∈Q |Rn4,β(1)|
converges to zero as n→∞ in Lp for all p ≥ 1 and this completes the proof of ii).
The result of iii) follows from Lemma 5.1 ii) and the estimation (5.45).

Proof of Lemma 5.3: i) From (5.5), the fact that b has bounded derivatives, supβ sup0≤s≤1
Un,βs

Un,β1

is bounded, the upper and lower bounds of ((εnt ))t∈[0,1], we deduce i).
ii) From (4.3), (5.9) we have

Tn,θ1

n
2
α
−1
(
Un,β1

)2 =
3(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)V n,θ

s Un,βs ds

n
2
α

(
Un,β1

)2 +
(εn1 )3

∫ 1
0 (εn1 )−3(∂θb)

′(Y
n,β,x0
s , θ)Wn,β

s ds

n
2
α

(
Un,β1

)2

+
(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s Wn,β

s ds

n
2
α

(
Un,β1

)2 +
(εn1 )3

∫ 1
0 (εn1 )−3(∂θb)

′′(Y
n,β,x0
s , θ)(Un,βs )2ds

n
2
α

(
Un,β1

)2

+
(εn1 )3

∫ 1
0 (εn1 )−3b′′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s (Un,βs )2ds

n
2
α

(
Un,β1

)2 .

We deduce, using Lemma 5.1 i) and Lemma 5.3 i) that

sup
β∈Q

∣∣∣∣∣∣∣
Tn,θ1

n
2
α
−1
(
Un,β1

)2

∣∣∣∣∣∣∣ ≤
C1

n
2
α

+ C2 sup
β∈Q

sups∈(0,1] |W
n,β
s |

n
2
α (Un,β1 )2

, (5.48)

where C1, C2 are some deterministic constants. Now from the estimation (5.45), we easily deduce that

supβ∈Q
sups∈(0,1] |W

n,β
s |

n
2
α (Un,β1 )2

tends to zero as n→∞ and then we get ii).
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iii) and iv) From (4.3), (5.6), (5.10), an easy computation shows the decomposition of
V n,σ1

Un,β1

and

1
n1/α

Tn,σ1(
Un,β1

)2 , where the leading term is (5.18) and the remainder terms are given by

Rn9,β(1) =
(εn1 )2

∫ 1
0 (εns )−2

(
b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Un,βs

)
ds

nUn,β1

,

Rn10,β(1) =
3(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)V n,σ

s Un,βs ds

n1+1/α
(
Un,β1

)2 ,

Rn11,β(1) =
(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Wn,β

s ds

n1+1/α
(
Un,β1

)2 ,

Rn12,β(1) =
(εn1 )3

∫ 1
0 (εn1 )−3b′′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s (Un,βs )2ds

n1+1/α
(
Un,β1

)2 .

Moreover, using that b has bounded derivatives and supβ sup0≤s≤1
Un,βs

Un,β1

is bounded, the remainder

terms satisfy the upper bounds

sup
β∈Q

∣∣Rn9,β(1)
∣∣ ≤ C

n
sup
β∈Q

sup
s∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣ , sup
β∈Q

∣∣Rn10,β(1)
∣∣ ≤ C1

n1+1/α
sup
β∈Q

[
sups∈[0,1] |V

n,σ
s |

Un,β1

]
,

sup
β∈Q
|Rn11,β(1)| ≤ C2

n1+1/α
sup
β∈Q

sups∈[0,1] |∂σY
n,β,x0
s Wn,β

s |(
Un,β1

)2

 , sup
β∈Q
|Rn12,β(1)| ≤ C3

n1+1/α
sup
β∈Q

sup
s∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣
where C,C1, C2, C3 are deterministic constants.
We observe that from Lemma 5.1 and Lemma 5.2 iii), we can deduce immediately the convergences to
zero in Lp, ∀p ≥ 1 of the remainder terms supβ∈Q |Rn9,β(1)|, supβ∈Q |Rn11,β(1)| and supβ∈Q |Rn12,β(1)|.
For supβ∈Q |Rn10,β(1)|, the proof follows from Lemma 5.1 ii), (5.6), (4.3), the boundedness of (εns ), the

fact that b has bounded derivatives and supβ sups
Un,βs

Un,β1

is bounded.

The convergence of Ĥn5,βn(1) is proved as the convergence of Ĥn3,βn(1) in the proof of Lemma 3.3. This
completes the proof Lemma 5.3.

Proof of Lemma 5.4: We first prove (5.20). From (5.3) we have (we omit the details)

sup
x0
|n∂θY

n,βn,x0
1 − ∂θb(x0, θ)|

n→∞−−−→
a.s

0.

From the expressions (3.14), (3.15), using supx0 sups∈[0,1] |εns − 1| → 0 and Lemma 3.1, it can be seen
that

sup
x0
|Ĥnβn(1)q −HLα(1)q| n→∞−−−→

a.s
0, ∀q ≥ 1. (5.49)
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We deduce that almost surely, one has the convergence

∀q ≥ 1, sup
x0

∣∣∣n∂θY n,βn,x0
1

(
Ĥnβn(1)

)q
− ∂θb(x0, θ) (HLα(1))q

∣∣∣ n→∞−−−→ 0. (5.50)

Using (4.23) and supβ,x0 |∂θY
n,β,x0
1 | ≤ C

n , we can apply the dominated convergence theorem and see
that the convergence (5.50) holds in Lp-norm for all p ≥ 1.
For (5.21): the proof is similar to (5.20).
For (5.22): using (5.4), Gronwall’s Lemma and Lemma 3.1, we can prove

sup
x0
|n1/α∂σY

n,βn,x0
1 − Lα1 |

n→∞−−−→
a.s

0,

and from (5.49) we deduce

∀q ≥ 1, sup
x0

∣∣∣n1/α∂σY
n,βn,x0
1

(
Ĥnβn(1)

)q
− Lα1 (HLα(1))q

∣∣∣ n→∞−−−→ 0.

Consequently, to prove the convergence in Lp-norm, it remains to check

∀p, q ≥ 1, E sup
n,β,x0

∣∣∣n1/α∂σY
n,βn,x0
1

(
Ĥnβ(1)

)q∣∣∣p <∞. (5.51)

Using again (5.4) and Gronwall’s Lemma, we have

sup
x0,β
|n1/α∂σY

n,β,x0
1 | ≤ C sup

t∈[0,1]
|Lnt |,

and (5.51) reduces to

∀p, q ≥ 1, E sup
n,β,x0

∣∣∣∣∣ sup
t∈[0,1]

|Lnt |
(
Ĥnβ(1)

)q∣∣∣∣∣
p

<∞. (5.52)

Let us recall that Lnt =
∫ t

0

∫
|z|≤1 zµ̃(ds, dz) +

∫ t
0

∫
|z|>1 zµ

(n)(ds, dz). Then we have

sup
t∈[0,1]

|Lnt | ≤ sup
t∈[0,1]

|
∫ t

0

∫
|z|≤1

zµ̃(ds, dz)|+
∫ 1

0

∫
|z|>1

|z|µ(n)(ds, dz).

From this decomposition and since supt∈[0,1] |
∫ t

0

∫
|z|≤1 zµ̃(ds, dz)|p is integrable, for all p ≥ 1, we see

that (5.52) is a consequence of (4.23) and the following bound

∀p ≥ 1, E sup
n,β,x0

∣∣∣∣∣Ĥnβ(1)

∫ 1

0

∫
|z|>1

|z|µ(n)(ds, dz)

∣∣∣∣∣
p

<∞. (5.53)
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To prove (5.53), we first remark from (4.17) that for C a positive constant,∣∣∣∣∣Ĥnβ(1)

∫ 1

0

∫
|z|>1

|z|µ(n)(ds, dz)

∣∣∣∣∣
≤ C


∫ 1

0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 +

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

∫ 1

0

∫
2≥|z|>1

|z|µ(ds, dz)


+C


∫ 1

0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 +

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(ds, dz)


(5.54)

Considering the first term in the right-hand side of (5.54), from the proofs of Step 1 and Step 2
in Theorem 2.1, we deduce that it is bounded by a random variable independent of n, β and x0 and
belonging to ∩p≥1L

p.
We now consider the second term in the right-hand side of (5.54). From (3.11), we have∣∣∣∣∣∣∣
∫ 1

0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 +

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(ds, dz)

∣∣∣∣∣∣∣
≤

∫ 1
0

∫
|z|≤2 ρ(z) |ρ′(z)|µ(ds, dz)(∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
)2 +

∫ 1
0

∫
|z|≤2

(
|ρ′(z)|+ ρ(z)1+α

|z|

)
µ(ds, dz)∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)

+

 ∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2 +

∫ 1
0

∫
|z|>2 (3 + α) |z|µ(n)(ds, dz)∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz) (5.55)

Using the Cauchy-Schwarz inequality
∫ 1

0

∫
|z|>2 µ

n(dt, dz)×
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz) ≥
(∫ 1

0

∫
|z|>2 |z|µ

n(dt, dz)
)2

we get:∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz) ≤

∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 |z|µ(n)(dt, dz)

)3

(∫ 1

0

∫
|z|>2

µ(n)(dt, dz)

)2

=

∑N1
i=1 2|Zi|3(∑N1
i=1 |Zi|

)3

(∫ 1

0

∫
|z|>2

µ(n)(dt, dz)

)2

≤ 2

(∫ 1

0

∫
|z|>2

µ(dt, dz)

)2

(5.56)
and∫ 1

0

∫
|z|>2(3 + α)|z|µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µn(dt, dz) ≤ (3 + α)

∫ 1

0

∫
|z|>2

µ(dt, dz). (5.57)
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Combining (5.56), (5.57) with (5.55), it follows that the second term in the right-hand side of (5.54) is
also bounded by a random variable independent of n, β and x0 and belonging to ∩p≥1L

p. Consequently,
we get (5.53) and this achieves the proof of (5.22).
For (5.23), the proof is similar to (5.22).

Proof of Lemma 5.5: From (5.13), we prove i) and ii) proceeding as in the proof of (5.20), and
iii) and iv) proceeding as in the proof of (5.22).

6 Appendix. Representation of the transition density via Malliavin
calculus

The aim of this section is to represent the density of a pure jump Lévy process as well as its derivative
and its logarithm derivative as an expectation, using the Malliavin calculus for jump processes devel-
oped by Bichteler, Gravereaux and Jacod [2] and used by Clément-Gloter [5]. We are not exactly in
the context of [2], where the compensator of the Poisson measure is uniform on [0, 1]× E. In fact, in
our context the compensator of the Poisson measure is dt× g(z)dz, where g is the density of the Lévy
measure and we need to adapt slightly the definitions of Malliavin operators given in [2]. We recall
here the appropriate integration by parts setting developed in [5] for the reader convenience.

6.1 Integration by parts setting

We consider a filtered probability space (Ω,G, (Gt)t∈[0,1],P) endowed with a Poisson random measure µ
on [0, 1]×E, where E is an open subset of R, with compensator υ on [0, 1]×E and with compensated

measure µ̃ = µ− υ. We now consider the process (Y β
t )t∈[0,1], the solution of

Y β
t = y0 +

∫ t

0
a(Y β

s , θ)ds+ cσ

∫ t

0

∫
E
zµ̃(ds, dz), (6.1)

where the parameter β = (θ, σ)T belongs to R× (0,∞), a is a real valued function and c is a constant.
This is the framework of Clément-Gloter [5] and our aim is to give some explicit representation formulas

for the density of Y β
1 and its derivative with respect to β.

We assume that the following assumptions are fulfilled.
H: (a) The function a has bounded derivatives up to order five with respect to both variables.
(b) The compensator of the Poisson random measure µ is given by υ(dt, dz) = dt× g(z)dz with g ≥ 0
on E, C1 on E and such that

∀p ≥ 2,

∫
E
|z|pg(z)dz <∞.

We now recall the Malliavin operators L and Γ and their basic properties (see Bichteler, Gravereaux,
Jacod [2], Chapter IV, Section 8-9-10). For a test function f : [0, 1] × E 7→ R ( f is measurable,
C2 with respect to the second variable, with bounded derivative, and f ∈ ∩p≥1L

p(ν)) we set µ(f) =∫ 1
0

∫
E f(t, z)µ(dt, dz). We introduce an auxiliary function ρ : E 7→ (0,∞) such that ρ admits a
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derivative and ρ, ρ′ and ρg
′

g belong to ∩p≥1L
p(g(z)dz). With these notations, we define the Malliavin

operator L, on a simple functional µ(f), in the same way as in [5] by the following equations :

L(µ(f)) =
1

2
µ

(
ρ′f ′ + ρ

g′

g
f ′ + ρf ′′

)
,

where f ′ and f ′′ are the derivatives with respect to the second variable. For Φ = F (µ(f1), .., µ(fk)),
with F of class C2, we set

LΦ =
k∑
i=1

∂F

∂xi
(µ(f1), ..., µ(fk))L(µ(fi)) +

1

2

k∑
i,j=1

∂2F

∂xi∂xj
(µ(f1), ..., µ(fk))µ(ρf ′if

′
j).

These definitions permit to construct a linear operator L on a space D ⊂ ∩p≥1L
p with the same basic

properties as in [5, equations (i)-(iii), p.2322].
We associate to L, the symmetric bilinear operator Γ:

Γ(Φ,Ψ) = L(ΦΨ)− ΦLΨ−ΨLΦ.

Moreover, if f and h are two test functions, we have:

Γ(µ(f), µ(h)) = µ(ρf ′h′).

These operators satisfy the following properties (see [2, equation (8-3)])

LF (Φ) = F ′(Φ)LΦ +
1

2
F ′′(Φ)Γ(Φ,Φ),

Γ(F (Φ),Ψ) = F ′(Φ)Γ(Φ,Ψ),

Γ(F (Φ1,Φ2),Ψ) = ∂Φ1F (Φ1,Φ2)Γ(Φ1,Ψ) + ∂Φ2F (Φ1,Φ2)Γ(Φ2,Ψ). (6.2)

The operator L and the operator Γ permit to establish the following integration by parts formula (see
[2, Propositions 8-10, p.103]).

Proposition 6.1. For Φ and Ψ in D, and f bounded with bounded derivatives up to order two, we
have

Ef ′(Φ)ΨΓ(Φ,Φ) = Ef(Φ)(−2ΨLΦ− Γ(Φ,Ψ)).

Morover, if Γ(Φ,Φ) is invertible and Γ−1(Φ,Φ) ∈ ∩p≥1L
p, we have

Ef ′(Φ)Ψ = Ef(Φ)HΦ(Ψ), (6.3)

with

HΦ(Ψ) = −2ΨΓ−1(Φ,Φ)LΦ− Γ(Φ,ΨΓ−1(Φ,Φ)) (6.4)

= −2ΨΓ−1(Φ,Φ)LΦ− 1

Γ(Φ,Φ)
Γ(Φ,Ψ) +

Ψ

Γ(Φ,Φ)2
Γ(Φ,Γ(Φ,Φ)). (6.5)
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6.2 Representation of the density of Y β
1 and its derivative

The integration by parts setting of the preceding section permits to derive the existence of the density
of Y β

1 given by (6.1), and gives a representation of this density as an expectation. From Bichteler,

Gravereaux, Jacod [2, Section 10, p.130], we know that ∀t > 0, the variable Y β
t , the solution of (6.1),

belongs to the domain of the operator L, and we can compute LY β
t and Γ(Y β

t , Y
β
t ) as in [5]. We recall

the representation formula for the density of Y β
1 (see [5]).

Theorem 6.1. [Clément-Gloter [5]]: Let us denote by qβ the density of Y β
1 . We assume that H holds

and that the auxiliary function ρ satisfies:

lim inf
u→∞

1

lnu

∫
E

1{ρ(z)≥1/u}g(z)dz = +∞. (6.6)

Then,
qβ(u) = E(1{Y β1 ≥u}

H
Y β1

(1)),

with,

H
Y β1

(1) =
Γ(Y β

1 ,Γ(Y β
1 , Y

β
1 ))

Γ(Y β
1 , Y

β
1 )2

− 2
LY β

1

Γ(Y β
1 , Y

β
1 )

=
W β

1

(Uβ1 )2
− 2

LY β
1

Uβ1
, (6.7)

where the processes (LY β
t ) and (Uβt ) = Γ(Y β

t , Y
β
t ) are solutions of the linear equations:

LY β
t =

∫ t

0
a′(Y β

s , θ)LY
β
s ds+

1

2

∫ t

0
a′′(Y β

s , θ)U
β
s ds+

cσ

2

∫ t

0

∫
E

(
ρ′(z) + ρ(z)

g′(z)

g(z)

)
µ(ds, dz), (6.8)

Uβt = 2

∫ t

0
a′(Y β

s , θ)U
β
s ds+ c2σ2

∫ 1

0

∫
E
ρ(z)µ(ds, dz). (6.9)

The process (W β
t ) = Γ(Y β

t , U
β
t ) is the solution of the linear equation:

W β
t = 3

∫ t

0
a′(Y β

s , θ)W
β
s ds+ 2

∫ t

0
a′′(Y β

s , θ)(U
β
s )2ds+ c3σ3

∫ t

0

∫
E
ρ(z)ρ′(z)µ(ds, dz). (6.10)

In [5], the authors studied the derivative of qβ with respect to the drift parameter θ only. Here,
we intend to study the derivative of qβ with respect to both parameters θ and σ. We first remark that
(Y β
t )t admits derivatives with respect to θ and σ (see [2, Theorem 5.24 p.51 ]), denoted by (∂θY

β
t )t

and (∂σY
β
t )t respectively. Moreover, (∂θY

β
t )t, (∂σY

β
t )t are respectively the unique solutions of

∂θY
β
t =

∫ t

0
a′(Y β

s , θ)∂θY
β
s ds+

∫ t

0
∂θa(Y β

s , θ)ds, (6.11)

∂σY
β
t =

∫ t

0
a′(Y β

s , θ)∂σY
β
s ds+ c

∫ t

0

∫
E
zµ̃(ds, dz). (6.12)

By iterating the integration by parts formula, since Y β
1 admits derivatives with respect to θ and σ,

one can prove, under the assumption H, the existence and the continuity in β of ∇βqβ (see Theorem
4-21 in [2]), moreover, we will represent it as an expectation in Theorem 6.3. The next result extends
the result of Theorem 5 in [5], by giving an expression for the logarithm derivatives of the density
w.r.t. (θ, σ) in terms of a conditional expectation.
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Theorem 6.2. Under the assumptions of Theorem 6.1,

∇βqβ

qβ
(u) =

 ∂θq
β

qβ
(u)

∂σqβ

qβ
(u)

 = E(H
Y β1

(∇βY β
1 )|Y β

1 = u), (6.13)

where

H
Y β1

(∇βY β
1 ) :=

(
H
Y β1

(∂θY
β

1 )

H
Y β1

(∂σY
β

1 )

)
= −2

(
∂θY

β
1

∂σY
β

1

)
LY β

1

Uβ1
+

(
∂θY

β
1

∂σY
β

1

)
W β

1

(Uβ1 )2
− 1

Uβ1

(
Γ(Y β

1 , ∂θY
β

1 )

Γ(Y β
1 , ∂σY

β
1 )

)
, (6.14)

LY β
1 , Uβ1 and W β

1 are given in Theorem 6.1, the process (V θ
t ) = Γ(Y β

t , ∂θY
β
t ) is the solution of

V θ
t = 2

∫ t

0
a′(Y β

s , θ)V
θ
s ds+

∫ t

0
Uβs

[
(∂θa)′(Y β

s , θ) + a′′(Y β
s , θ)∂θY

β
s

]
ds, (6.15)

and the process (V σ
t ) = Γ(Y β

t , ∂σY
β
t ) is the solution of

V σ
t = 2

∫ t

0
a′(Y β

s , θ)V
σ
s ds+

∫ t

0
a′′(Y β

s , θ)∂σY
β
s U

β
s ds+ c2σ

∫ t

0

∫
E
ρ(z)µ(ds, dz). (6.16)

Proof. Theorem 6.2 is an extension of Theorem 5 in [5] where the main novelty is the expression

for ∂σqβ

qβ
. For the computation of the new term H

Y β1
(∂σY

β
1 ), we apply Theorem 10-3 in [2] to the

stochastic differential equation satisfied by the vector (Y β
t , U

β
t , ∂σY

β
t )T , this gives the above expression

for (V σ
t ).

We end this subsection with an explicit representation of ∇βqβ(u) which gives a computation of

the iterated Malliavin weight H
Y β1

(H
Y β1

(∇βY β
1 )).

Theorem 6.3. Under the assumptions of Theorem 6.1,

∇βqβ(u) =

(
∂θq

β(u)

∂σq
β(u)

)
= E

[
1{Y β1 ≥u}

H
Y β1

(H
Y β1

(∇βY β
1 ))
]
, (6.17)

where

H
Y β1

(H
Y β1

(∇βY β
1 )) = −2H

Y β1
(∇βY β

1 )
LY β

1

Uβ1
+H

Y β1
(∇βY β

1 )
W β

1

(Uβ1 )2
−

Γ(Y β
1 ,HY β1 (∂θY

β
1 ))

Γ(Y β
1 ,HY β1 (∂σY

β
1 ))

 1

Uβ1
,

(6.18)

where ∂θY
β

1 , ∂σY
β

1 are respectively given by equations (6.11), (6.12) and Uβ1 ,W
β
1 are computed in

Theorem 6.1, H
Y β1

(∇βY β
1 ) is given in Theorem 6.2.

36



Proof. Let f be a smooth functions with compact support. Then,

∇βE
[
f(Y β

1 )
]

=

∫
R
du∇βqβ(u)f(u).

On the other hand, using the integration by parts formula of the Malliavin calculus, we have

∇βE
[
f(Y β

1 )
]

= E
[
f ′(Y β

1 )∇βY β
1

]
= E

[
f(Y β

1 )H
Y β1

(∇βY β
1 )
]

= E
[
F (Y β

1 )H
Y β1

(
H
Y β1

(∇βY β
1 )
)]

where F denotes a primitive function of f . If f converges to Dirac mass at some point u, from the
estimates above, we can deduce (6.17). Moreover, from (6.5) we also get (6.18).

To complete the result of Theorem 6.3, we give the expressions for Γ(Y β
1 ,HY β1 (∂θY

β
1 )) and Γ(Y β

1 ,HY β1 (∂σY
β

1 )).

Lemma 6.1. Under the assumptions of Theorem 6.1,Γ(Y β
1 ,HY β1 (∂θY

β
1 ))

Γ(Y β
1 ,HY β1 (∂σY

β
1 ))

 =

(
V θ

1

V σ
1

)
H
Y β1

(1)−

(
∂θY

β
1

∂σY
β

1

)
2Dβ

1

Uβ1
−

(
∂θY

β
1

∂σY
β

1

)
H
Y β1

(1)W β
1

Uβ1
+

(
∂θY

β
1

∂σY
β

1

)
Qβ1

(Uβ1 )2
−

−

(
T θ1
T σ1

)
1

Uβ1
+

(
V θ

1

V σ
1

)
W β

1

(Uβ1 )2
, (6.19)

where ∂θY
β

1 , ∂σY
β

1 are respectively given in (6.11), (6.12), Uβ1 ,W
β
1 are computed in Theorem 6.1,

V θ
1 , V

σ
1 are computed in Theorem 6.2, H

Y β1
(1) is given in (6.7) and Dβ

1 = Γ(Y β
1 , LY

β
1 ), Qβ1 =

Γ(Y β
1 ,W

β
1 ), T θ1 = Γ(Y β

1 , V
θ

1 ) and T σ1 = Γ(Y β
1 , V

σ
1 ).

Proof. From the basic properties of the operators L and Γ (linearity and the chain rule property)
stated in Section 6.1, we get that

Γ(Y β
1 ,HY β1 (∂θY

β
1 )) = Γ

[
Y β

1 ,−2∂θY
β

1

LY β
1

Uβ1

]
+ Γ

[
Y β

1 , ∂θY
β

1

W β
1

(Uβ1 )2

]
+ Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂θY
β

1 )

Uβ1

]
,

Γ(Y β
1 ,HY β1 (∂σY

β
1 )) = Γ

[
Y β

1 ,−2∂σY
β

1

LY β
1

Uβ1

]
+ Γ

[
Y β

1 , ∂σY
β

1

W β
1

(Uβ1 )2

]
+ Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂σY
β

1 )

Uβ1

]
,

where

Γ

[
Y β

1 ,−2∂θY
β

1

LY β
1

Uβ1

]
= −2

LY β
1

Uβ1
Γ(Y β

1 , ∂θY
β

1 )− 2
∂θY

β
1

Uβ1
Γ(Y β

1 , LY
β

1 ) + 2∂θY
β

1

LY β
1

(Uβ1 )2
Γ(Y β

1 , U
β
1 )

= −2
LY β

1

Uβ1
V θ

1 − 2
∂θY

β
1

Uβ1
Dβ

1 + 2∂θY
β

1

LY β
1

(Uβ1 )2
W β

1 .
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Γ

[
Y β

1 , ∂θY
β

1

W β
1

(Uβ1 )2

]
=

W β
1

(Uβ1 )2
Γ(Y β

1 , ∂θY
β

1 ) +
∂θY

β
1

(Uβ1 )2
Γ(Y β

1 ,W
β
1 )− 2∂θY

β
1 W

β
1

(Uβ1 )3
Γ(Y β

1 , U
β
1 )

=
W β

1

(Uβ1 )2
V θ

1 +
∂θY

β
1

(Uβ1 )2
Qβ1 −

2∂θY
β

1 W
β
1

(Uβ1 )3
W β

1 .

Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂θY
β

1 )

Uβ1

]
= −Γ(Y β

1 ,Γ(Y β
1 , ∂θY

β
1 ))

Uβ1
+

Γ(Y β
1 , ∂θY

β
1 )

(Uβ1 )2
Γ(Y β

1 , U
β
1 ) = − T

θ
1

Uβ1
+

V θ
1

(Uβ1 )2
W β

1 .

Similarly, we have

Γ

[
Y β

1 ,−2∂σY
β

1

LY β
1

Uβ1

]
= −2

LY β
1

Uβ1
V σ

1 − 2
∂σY

β
1

Uβ1
Dβ

1 + 2∂σY
β

1

LY β
1

(Uβ1 )2
W β

1 .

Γ

[
Y β

1 , ∂σY
β

1

W β
1

(Uβ1 )2

]
=

W β
1

(Uβ1 )2
V σ

1 +
∂σY

β
1

(Uβ1 )2
Qβ1 −

2∂σY
β

1 W
β
1

(Uβ1 )3
W β

1 .

Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂σY
β

1 )

Uβ1

]
= −T

σ
1

Uβ1
+

V σ
1

(Uβ1 )2
W β

1 .

Then, from (6.7) and the above estimates, we get the formula (6.19), after some calculus and the proof
is complete.

Lemma 6.2. Under the assumptions of Theorem 6.1, there are versions of the processes (Dβ
t ) =

(Γ(Y β
t , LY

β
t ))t, (Qβt ) = Γ(Y β

t ,W
β
t )t, (T θt )t = (Γ(Y β

t , V
θ
t ))t and (T σt )t = (Γ(Y β

t , V
σ
t ))t that are solutions

of the linear equations:

Dβ
t = 2

∫ t

0
a′(Y β

s , θ)D
β
s ds+

∫ t

0
a′′(Y β

s , θ)LY
β
s U

β
s ds+

1

2

∫ t

0
a′′(Y β

s , θ)W
β
s ds+

1

2

∫ t

0
a′′′(Y β

s , θ)(U
β
s )2ds

+
c2σ2

2

∫ t

0

∫
E
ρ(z)

(
ρ′(z) + ρ(z)

g′(z)

g(z)

)′
µ(ds, dz),

(6.20)

Qβt = 4

∫ t

0
a′(Y β

s , θ)Q
β
s ds+ 7

∫ t

0
a′′(Y β

s , θ)W
β
s U

β
s ds+ 2

∫ t

0
a′′′(Y β

s , θ)(U
β
s )3ds

+ c4σ4

∫ t

0

∫
E
ρ(z)

[
(ρ(z)′)2 + ρ(z)ρ(z)′′

]
µ(ds, dz),

(6.21)

T θt = 3

∫ t

0
a′(Y β

s , θ)T
θ
s ds+ 3

∫ t

0
a′′(Y β

s , θ)V
θ
s U

β
s ds+

∫ t

0
(∂θa)′(Y β

s , θ)W
β
s ds+

∫ t

0
a′′(Y β

s , θ)∂θY
β
s W

β
s ds

+

∫ t

0
(∂θa)′′(Y β

s , θ)(U
β
s )2 +

∫ t

0
a′′′(Y β

s , θ)∂θY
β
s (Uβs )2ds,

(6.22)
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T σt = 3

∫ t

0
a′(Y β

s , θ)T
β
s ds+ 3

∫ t

0
a′′(Y β

s , θ)V
σ
s U

β
s ds+

∫ t

0
a′′(Y β

s , θ)∂σY
β
s W

β
s ds

+

∫ t

0
a′′′(Y β

s , θ)∂σY
β
s (Uβs )2ds+ c3σ2

∫ t

0

∫
E
ρ(z)ρ(z)′µ(ds, dz).

(6.23)

Proof. The proof of Lemma 6.2 is a direct consequence of Theorem 10-3 in [2]. Indeed, considering the

stochastic differential equation satisfied by the vector
(
Y β
t , LY

β
t , U

β
t ,W

β
t , V

θ
t , V

σ
t , ∂θY

β
t , ∂σY

β
t

)T
and

using Theorem 10-3 in [2], we prove that the processes (Dβ
t ) = (Γ(Y β

t , LY
β
t ))t, (Qβt ) = Γ(Y β

t ,W
β
t )t,

(T θt )t = (Γ(Y β
t , V

θ
t ))t and (T σt )t = (Γ(Y β

t , V
σ
t ))t are solutions of linear equations, respectively, given

by (6.20)-(6.23).
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Process. Appl., 125(6):2316–2352, 2015.

[6] Emmanuelle Clément, Arnaud Gloter, and Huong Nguyen. LAMN property for the drift and
volatility parameters of a SDE driven by a stable Lévy process. Preprint hal-01472749v2, 2017.
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