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ASYMPTOTICS IN SMALL TIME FOR THE DENSITY OF A
STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE
LEVY PROCESS

Emmanuelle Clément * Arnaud Gloter Huong Nguyen?

November, 06 2017

Abstract

This work focuses on the asymptotic behavior of the density in small time of a stochastic differ-
ential equation driven by a truncated a-stable process with index a € (0,2). We assume that the
process depends on a parameter 3 = (6,0)7 and we study the sensitivity of the density with respect
to this parameter. This extends the results of [5] which was restricted to the index a € (1,2) and
considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus,
we obtain the representation of the density and its derivative as an expectation and a conditional
expectation. This permits to analyze the asymptotic behavior in small time of the density, using
the time rescaling property of the stable process.

MSC2010: 60G51; 60G52; 60HO7; 60H20; 60H10; 60J75.
Keywords. Lévy process, Density in small time, Stable process, Malliavin calculus for jump processes.

1 Introduction

We consider the following stochastic differential equation (SDE)
t
Xf ::L‘O—I—/ b(XP,0)ds + oLy (1.1)
0

for ¢ € [0,1], where (L¢);c(o,1) is a truncated a-stable process with exponent 0 < av < 2 and our aim

is to study the asymptotic behavior, in small time, of the density of (Xf ), the solution of (1.1), as
well as its derivative with respect to the parameter 3 = (6, ). This problem plays an important role
in asymptotic statistics based on high frequency observations. Indeed, considering the estimation of
B from the discrete time observations (X iﬁ/n)ﬂéiﬁm and denoting by pf /n(x, y) the transition density
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of the discrete time process, the estimation rate of the parameter 8 strongly relies on the asymptotic
behavior of the derivative Vﬁp’f /n(az, y), as n goes to infinity. Based on the results established in the
present paper, we derive, in [6], an asymptotic expansion of the log-likelihood ratio and we prove the
LAMN property for the parameter 5.

In the last decades, a large literature has been devoted to the existence and regularity of the
density to the solution (X3), for ¢ > 0, of a general stochastic equation driven by pure jump Lévy
processes. We can mention the works of Bichteler, Gravereaux and Jacod [2], Picard [14], Denis [8],
Ishikawa-Kunita [10], Fournier-Printems [9] and more recently the works of Debussche-Fournier [7]
and Kulik [13], under Hélder continuity assumptions on the coefficients of the equation and assuming
that the equation is driven by an a-stable process.

In this paper, the main contributions are obtained by using the Malliavin calculus for jump pro-
cesses developed by Bichteler, Gravereaux and Jacod [2] and adapted to the particular case of equation
(1.1) by Clément-Gloter [5]. Although it requires some strong derivability assumptions on the coeffi-
cients of the equation, it leads to some explicit representation formulas for the density and its derivative
(see also Ivanenko - Kulik [11]). Let us mention that alternative representations for the density can be
obtained by other methods, for example the method proposed by Bouleau-Denis [3] based on Dirichlet
forms or the parametrix method used by Kulik [13].

To study the asymptotic behavior of the transition density of Xf and its derivative, in small time,
we establish some representation formulas. This extends the results of Clément-Gloter [5] where only
the derivative with respect to the drift parameter # was considered, with the restriction a > 1. These
representation formulas involve some Malliavin weights whose expressions are given explicitly. This
permits first to identify in the Malliavin weights a main part and a negligible part in small time
asymptotics and then to derive the asymptotics for the density stated in Theorem 2.1 and Theorem
2.2. In contrast to [5], the exposition now involves the solution of the ordinary differential equation
defined by the deterministic part of (1.1). Moreover, the study of each terms appearing in the Malliavin
weights is complicated by the non integrability of the a-stable process as a < 1.

The present paper is organized as follows. Section 2 contains the main results (Theorem 2.1 and
Theorem 2.2). Section 3 presents the methodology consisting first in a representation of the density by
Malliavin calculus where the Malliavin weights can be decomposed into a main part and a negligible
part and then in the study of their asymptotic behavior. We prove our main results in Sections 4 and
5. Finally, in Section 6, we recall the Malliavin integration by parts setting developed by [2] and used
in [5], and give some representations of the transition density, its derivative, as well as its logarithm
derivative. We also explicit the iterated Malliavin weights appearing in the expression of the derivative
of the density.

2 Asymptotics for the density and its derivative

We consider the process (Xtﬁ )te[o,1] solution to the stochastic equation (1.1) where (L¢).(o1) is a pure
jump Lévy process defined on a filtered probability space (€2, G, (Gt)se[o,1), P), b is a real valued function
and the parameter 8 = (0,0)7 belongs to R x (0,00). We assume that the following assumptions are
fulfilled.

H;: (a) The function b has bounded derivatives up to order five with respect to both variables.

(bi) The Lévy process (Li)ie[o,1) is given by L; = fg f[—Ll} 2{n(ds, dz)—v(ds, dz)}+f0t f[—l,l]c zfi(ds, dz)



where 71 is a Poisson random measure, with compensator U(dt,dz) = dt x F(z)dz where F(z) is given
on R* by F(z) = IZF%_HT(Z), a € (0,2). Moreover, we assume that 7 is a non negative smooth function

equal to 1 on [-1,1], vanishing on [—2,2]¢ such that 0 < 7 < 1.

(bi;) We assume that Vp > 1, [p :’((5)) 3 TT”( 5:0))

Under these assumptions, Xtﬁ admits a smooth density for ¢ > 0 (see Section 6), and we denote

8 T(u)du < oo.

T(u)du < 00, [p

by pf (x,y) the transition density of the Markov process (Xtﬂ ).

Throughout the paper, we will use the following notation. For a vector h € R?, hT denotes the
transpose of h, and |h| denotes the euclidean norm. For a function f defined on R x R? depending on
both variables (z, 3), here 3 = (0,0)T € R x (0, +00), we denote by f’ the derivative of f with respect
to the variable x, by 0y f the derivative of f with respect to the parameter 0, by 9, f the derivative of

O f
of)

The regularity assumption Hj(a) on the drift coefficient b is a sufficient condition to obtain the
representations of the density and its derivative. This assumption could be weakened but our method-
ology is based on the Malliavin calculus developed in [2] that requires strong regularity assumptions on
the coefficients. From Theorem 10-3 in [2], the computation of the Malliavin operators for a stochastic
differential equation needs coefficients with derivatives up to order three. As we iterate the Malliavin
operators we need derivatives up to order five (see Lemma 6.2). Note that we relax the boundedness
assumption on b assumed in [5].

f with respect to the parameter o, and Vg f =

Remark 2.1. The assumptions on the Lévy measure are restrictive and one may expect that our
results hold with a more general Lévy measure F(z) = W%Hg(z), where g satisfies (b;;) and g(0) = 1.
However in our approach the integrability assumptions for the tails of the Lévy process are crucial
to ensure that our process belongs to the Malliavin space. Moreover, the exact a-stable behavior of
the Lévy measure around zero is also largely used (see Lemma 3.1) to study the Malliavin weights
asymptotics. The truncation function T ensures both the integrability of |Li|P,Vp > 1, and the exact
a-stable behavior around zero (T = 1). It permits the careful study of each Malliavin terms appearing
in the representation formulas (3.12) and (5.1). All these terms are not yet being in control without
these restrictions on the Lévy measure.

Our aim is to study the asymptotic behavior of pﬁl (zo,u) (the density of X E ) and its derivative

with respect to the parameter 5. To this end, we introduce the solution to thenordinary differential
equation

1 t
0 = gt /0 b0 B)ds t € [0,1]. (2.1)

Heuristically, n'/ O‘(Xlﬁ n G070y s close to on'/*L, /n and from assumption Hi(b;), the rescaled

process (nl/aLt/n)te[Ojl] converges in distribution to an a-stable process (L{')c[o,1] (see Section 3.1).
Our first result shows that the density of #(Xf n s ,G,mo) converges to the density of L{, as n goes
to infinity.

In what follows, we denote by ¢, the density of L{ where (LY) is an a-stable process with Lévy
measure v(dz) = W%le;éodz-

With these notations, we can state our main results. In view of statistical applications, we need
some uniformity with respect to the parameter around the true value 8 = (#,0)” and consequently



we study the asymptotic behavior of pi" where (8,)n>1 = ((6n, Un)T)nzl is a sequence converging to
5.
Theorem 2.1. Let (s nem) be the solution to the ordinary differential equation (2.1) and let (Bn)n>1

n—oo

be a sequence such that 3, ——> 3. For all (z¢,u) € R?,

Bn

1' nl/apl (Q:O, “

e T

1Ty FE g (u),

B n,60n, T
2. SUp,cg SUpP, 1/ap1"(a;0, L e ) < oo,

where @, is the density of L.

If the solution to the ordinary equation (1.1) is not given explicitly, we can approximate it by a
numerical scheme. The previous convergence will be preserved if the order of the numerical scheme is
sufficiently high. This is explain in the next remark.

Remark 2.2. If we assume that the function b is of class C'T* with respect to x (k > 0) and setting
A(f) =bf" (and A°(f) = f) such that f(g nhzo @) = f(sy nro ) —|—f0 Af) (2970 9)ds, we obtain

g@°=m+/fm®@MW@@

t(A%) t Ab
_ iy 4 (ATO)(@0,60) / / ("0, ) dtadty
t1 tr
k),n,0 9
= mhee 4 TR / / (A"B) (53", 0)dtgr1...dty,
w,l/th gt(k)7n’97m0 = Iy + t(AOb)(a:O79) _'_ ( )(1}07 ) + + k,'lek); x07 , fO,r, k > 1 and g( )nvezxo = xp.
Assuming moreover that the function b has bounded derivatives, we deduce that |c;" O _ gt(k)’n’em <

nk—(il. Then from the proof of Theorem 2.1, if n'/®/n*+1 goes to zero, we can replace Sh On,o by
(k),m,0n,x0

S in the statement of the theorem and we obtain
On_ B, uo k);n,0n,x0\ 00 . 1
1/(110/61)( )nli/z_’_gf)n xo)—)tpa(u), ’Lf k>a—1
In particular, if o > 1, the choice gl(o)’"’gn’xo =z is convenient as established in [5].

Remark 2.3. The results of Theorem 2.1 have been obtained by Kulik [13], using the parametriz
method.

The next result gives the asymptotic behavior of the derivatives of the density with respect to the
parameters 6 and o.

n—oo

Theorem 2.2. Let (3,)n>1 be a sequence such that B, —— (. For all (xo,u) € R?,

. 0.
i) ,"_139191 (o, 17 + 1 "0) T2 —b(x0,0) x @ (),

naoa

0.2 n—o0

9”7
maapi (w0, 27 + 67" 0) = —pa(u) — upy, (u),




.. o2 1 n,0n
i1) SUp,cg SUpP, 72[18917@ (zo, ;:10/7; +q )| < oo,
nao n
0721 Bn n n,0n,%0
SUPyeR SUPy |1/ dop 1" (wo, #f‘/a +< )| < oo.

Considering the statistical experiment (R™, By, P5) corresponding to the observation of (X” i/n )i<i<n,
Theorems 2.1 and 2.2 permit to prove in [6] the L2-regularity property of the transition density
B8 (z,9):
Py (@, y):
2

n—oo

)1/2 1, 7 Vﬁp1( i 1>y)

n 1/2
E / prt (X?_l,y> -’ (Xi_l,y Shrn dy| ——0,
ZE T ) TR ) G
1y
n2 o
with rate r,, = ( 1>. In this application, the sequence (8, = (0,,0,)7) is (8 + rph). The
0 n-2

L?-regularity property (related to the L2-differentiability of 8+ (p )1/ 2) is the first step to obtain an

+rnh "
asymptotic expansion of the log-likelihood ratio log P

(Xlﬁ/m . XB) (see Theorem 2.1 in [6]) and
to deduce the Local Asymptotic Mixed Normality property (see Jeganathan [12]). We proved that the
LAMN property holds (Corollary 2.4 in [6]) for the parameter 8 with rate r,, and information matrix

T 0 ,
=" where Ty = & f) pb(XZ,0)2ds [, % du and Tpp = L [, Celbtueall g, - Ag
0 122 Pa P

a consequence, we df:duce that the estimation rate for 6 is n3~a and that the estimation rate for o
is the usual one n~2. Moreover, the best asymptotic variance of any regular estimator of 8 (that
converges in distribution with rate r,) is the inverse of the information matrix Z.

The proofs of Theorems 2.1 and 2.2 are based on the representations of the density and its derivative
obtained by using Malliavin calculus and on the study of the asymptotic behavior of the Malliavin
weights. This is given in the next sections.

3 Rescaling and representation of the density in small time

In this section, we give a representation of the density and identify in this representation the main
terms and the remainder terms. This decomposition is a key step for the convergence study and is
mainly based on the rescaling described in the next subsection.

3.1 Rescaling

We can observe that the process (nl/ “Ly/p) equals in law to a centered Lévy process with Lévy measure

1 z

Fn(z) = |Z|1+O‘T(W)'

(3.1)

As mentioned previously, this clearly suggests that when n grows, the process (nl/ L /n) converges
to an a-stable process. In the sequel, it will be convenient to construct a family of Lévy processes



(LP)p>1 with the same law as (n'/*L, /n); on a common probability space where the limiting a-stable
process exists as well, and where the convergence holds true in a path-wise sense, as done in [5].

Let us consider uf(dt,dz,du) a Poisson measure on [0,00) x R* x [0, 1] with compensating measure
ve(dt,dz, du) = dt‘zﬁﬁdu and we denote by ué(dt,dz,du) = pc(dt,dz,du) — v¢(dt,dz,du) the com-
pensated Poisson random measure. This measure corresponds to the jump measure of an a-stable
process, where each jump is marked with an uniform variable on [0, 1].

We define the Poisson measures p(™, for all n > 1, and u by setting :

VA C [O’OO) xR, /J’(N)(A) :/ / / lA(taz)l{u<T( y )}Ne(dt,dz,dU),
[0700) R [071] B

nl/a

WA C [0,00) x R, M(A):/ // 1a(t, ) (dt, dz, du).
[0,00) /R J[0,1]

By simple computation, one can check that the compensator of the measure ;™ (dt, dz) is v (dt, dz) =
dt x T(ﬁ)pﬁ% = dt x F,,(z)dz and the compensator of u(dt,dz) is v(dt,dz) = dt x kflﬁ. Moreover,
we note 1™ (dt,dz) = p\"™ (dt,dz) — v (dt,dz) and fi(dt,dz) = p(dt,dz) — v(dt,dz) the compensated
Poisson random measures. Remark that since 7(z) = 1 for |z| < 1, the measures pu(™ (dt,dz) and
p(dt, dz) coincide on the set {(,z)[t € [0,1],]z] < n'/*}.

Now we define the stochastic processes associated to these random measures,

t t
LY = / / zfi(ds, dz) —|—/ / zu(ds, dz), (3.2)
0 J[-1,1] 0 J[-1,1]¢

t t
L} :/ / 2™ (ds, dz) +/ / 2™ (ds, dz). (3:3)
0 [_nl/a’nl/a} 0 [—nl/a,nl/a]c

By construction, the process (L§') is a centered a-stable process and the process (L}') is equal in law

to the process (nl/ L, /n)tE[O,l]a since they are based on random measures with the same compensator.
/e exactly coincide with the jumps of L* with
1/«

Remark that the jumps of L} with size smaller than n
size smaller than n'/®. On the other hand, the process L" has no jump with a size greater than 2n
Using that the measures p and p(™ coincide on the subsets of {(t, 2);|z| < n'/®}, and the function

z 11 : 1 .
T(nl/a)|z|1+a = /v s symmetric on |z < n'/*, we can rewrite:

t t t
L} :/ / zfi(ds, dz) +/ / zu(ds, dz) +/ / 2™ (ds, dz). (3.4)
0 J[-1,1] 0 Ji<|z|<nl/a 0 Jnl/e<|z|<2nl/

The following simple lemma gives a connection between L™ and the stable process L.

Lemma 3.1. On the event A, = {u({(t,2)[0 <t < 1,]z| > n'/*}) =0}, we have

/"(n) =u, Ly=L7, (3.5)

and
P(A,) =14+ 0(1/n). (3.6)



Furthermore, let (fn)nen and f be measurable functions from Q x [0,1] xR to R such that there exists
C with P(C) =1 and Yw € C, ¥s € [0,1],V|2] > 1 fa(w,s,2) = f(w, s, z). Then

1
(n) n—>oo
/O/|Z>1fn(W,S,Z)M (ds,dz) —— //|z|>1 w, s, z)p(ds, dz). (3.7)

Moreover, we have sup,¢(g 1) |L} — L] 2% 0.

Proof. We know that the measures p(™ and p coincide on the set {(s, z)|s € [0,1], |z| < n'/®}, and by
comparison of the representations (3.2) and (3.4), it is clear that equation (3.5) holds true on the event
that the supports of the random measure p and p(™ do not intersect {(¢,2)|0 <t < 1,|z| > n'/*}.
On the other hand, the support of ,u(") is included in the support of u, and thus (3.5) is true on the
event A, = {u({(t,2)|0 <t < 1,|z| > n'/*}) = 0}. The probability of the latter event is e~/*" which
converges to 1 at rate 1/n as stated. Then we also get (3.6).

Let A =52, Ay, we get that P(A) = 1 since 4,, C Ap4+1 for each n € N and (3.6) holds. Thus, for
all w e Aﬂ C Ing(w) > 1,Vn > ng(w), u™ = p and f,(w,s,2) = f(w,s,2)¥s € [0,1],V|z] > 1. Then

we deduce that
1
/ falw, s, 2)p™ (ds, dz) 2= / / (w, s, z)p(ds,dz).
0 J|z|>1 |z]>1

We also get sup;c(o ) |L7 — Li'] 0. O

3.2 Representation of the density in small time and first approximation

We introduce the process (??’B’wo)te[m] given by

T Ir telo1], (3.8)

n,8,20 L[ 71.8,Z0
Y} =x0 + ”/0 b(Y ", 0)ds + —a

where (L}') is defined by (3.4)

L_(L}) equals in law to (L; /n)- By construction,

the process (Xﬂ)te[o 1] equals in law (Y yh Io)te[o - Let g0 be the density of Yl’ﬂ’ then the
connection between the densities of X'/ 5 and Yl"B " is given by
Py (0, 7) = 070 (). (3.9)

Using the Malliavin calculus for jump processes recalled in Section 6, we get a representation of the
density of X% 1 involving some random variable ’an 820 (1) (Malliavin weight). Moreover, we obtain

an asymptotlc expansion of this weight that leads to the decomposition of the density into a main
part and a remainder part.
To state our next result we define (€y)gc(o,1) by

1 .
€ = exp (n/ b (Y 0)du> (3.10)
0

7



and the function p"
2t if |z] <1
p'(z) =4 ¢(2) i 1< s <2 (3.11)
i) i |2l >2,

where 7 is defined in assumption Hj(b;), and ¢ is a non negative function belonging to C* such
that p™ belongs to C°°. The function p” is an auxiliary function related the the Malliavin calculus
developed in [2]. In our setting, the above choice (not unique) is convenient (see Remark 4.1).

Theorem 3.1. Under the assumption Hy, we have

P (2o, u) = qnﬁl‘o( ) = E(l{??,,@%z“}%??,g,zo(1)), (3.12)

3= @

with
1 « n n n n
Hynsn (1) = —nt/ [ 5(1) + 78 5 ()] + RY5(1) + RE 5(1) + RE 5(1). (3.13)

The main terms 7:[\’1"‘,6(1),71375(1) are given by

1 n -3 n ny/ (n)
. )3 <p > (2)u™ (ds, d2)
o) = | Joda , 314
I €} UO Sz (e)=2pm( w(™ (ds, dz)]
") ") 10, 1+70f n (n)
S (Z) p"(2)] p'™ (ds, dz)
Hy 5(1) = [ Jo Sl [(p o n , (3.15)
I €l fo Jg (er 2)p(")(ds, dz)
and the remainder terms satisfy for any compact subset Q C R x (0, 00)
C C C
Vp > 2, Esup |R} < — sup |R. < —, sup |[R < = 3.16
wp [RE () < 0 swp RE()I< L spRE,MI< (310

where C is some deterministic constant.

Let us heuristically explain how this decomposition permits to establish the result of Theorem 2.1.
Let (B,) be a sequence converging to 8. First, from Lemma 4.1, n'/®(Y] yonto g{l’en’xo)

almost surely to oL{', this permits to check that 1{n1/a(?111,ﬁn,107(;1,9»,1,10)20”‘@}
Bn

From Theorem 3.1, we deduce that 1/a;zo " (o, n‘{%uqtg?’e”’xo) is close to El{pa> [’;Q? 5, (1)+3Q§ 5, (1]
and it remains to study the limit of the main terms.
We can see from the definition of p™ that p"(z) = p(z) where

converges
converges to lyras,y.

2 if |zl <1
p2)=19¢(z) i 1< o] <2, (3.17)
22 i |z > 2.

Combining this with Lemma 3.1, it permits to establish the almost sure convergence of the main
terms:



Y 5, (1) 7% Ha o (1), (3.18)

H5 5, (1) “7% Ha pa (1), (3.19)

where Hj 1o (1), Ha (1) are given by

Hize(1) = Jo Jup(C)e/ (s, dz), (3.20)
it

Jo Jo [0(2) = H2p(2)] u(ds, dz)
fo fR wu(ds,dz)

Moreover, the limit weight H1 ra (1) + Ha2 (1) can be interpreted as a Malliavin weight (see (4.29))
and we have the following representation for the density of L{

Pa(u) = Elpy o) (L) [H1,Le (1) + Ha ra(1)].

Ha,Le(1) = — (3.21)

This suggests that, as n goes to infinity, l/apli" (20, Phzu + Sh bn.o0

) is close to @q.

This is rigorously established in the next section.

4 Proof of Theorems 3.1 and 2.1

4.1 Proof of Theorem 3.1

The proof is based on the Malliavin calculus developed in Section 6. We recall that g0 is the density

of Y7 6 ** and that the connection between the densities of X f and 7?”8 "™ is given by pf /n(xo, x) =

q”’ﬁ”ﬂO x).
We( u)se the framework of Sections 6.1 and 6.2, with g(z) := F,(z) = W%T(ﬁ) and with the
auxiliary function p" defined by (3.11) such that it satisfies all conditions of Section 6.1. From the
]2 it 2< 7] < onl/e
)= 0 if |z]>4nl/e
Moreover, we recall that p™(z) =% p(z) where p is defined by (3.17). Note that from the definitions
of p™ and p, we can easily see that p(z) = p(z) if |z| < 2n!/e.

assumptions on 7, we can easily deduce that 227'(2nf 7a

Remark 4.1. The choice of the auziliary function p™ for |z| < 1 ensures that the non-degeneracy
condition (6.6) is satisfied. It will appear later that the choice of the auxiliary function p™ for |z| > 2
permits to obtain Malliavin weights sufficiently integrable to compensate the lack of integrability of L§
(see Remark 5.1 below).

The equation (3.8) (defining (Y?ﬁ’xo)) is a particular case of (6.1) with the function a and the

constant ¢ given explicitly as
1

T (4.1)

a(z,0) = lb(ac,@), c=
n



Under the assumptions Hj, we can apply the results of Theorem 6.1 to Yn im0 he non-degeneracy

assumption is verified by the choice of p™(z) near zero (see (3.11)). Let us denote by U}’ =

XN

F[??’B’xo, Y, ”B’mo} and W = I‘[??’ﬁ’wo, U], then we obtain:

p

3= @

(w0, u) = 770 (w) = E(Lgnsao g Homoo (1));

with
W{l,ﬁ B 2L?T/7/B7x0

n 2 n,
Uy Uy’

iz (1) = (4.2)

Applying the results of Theorem 6.1 and solving the linear equations (6.8)-(6.10) (with a and ¢ given
by (4.1)) we get,

U{‘ﬂ_ n% / / 1™ (ds, dz), (4.3)

p@te) = & [y owro e as

2n Jq
7€1 )( Fi(2) o (n)
Mm// W)+ G s ), (4)
n\3

Wi = D (ds,dz) + ZDL [y gy o sas

1 n3/a ) n . N s .
(4.5)
Recalling that F,(z) = M%T(nl%) (see (3.1)), then %8 = —1te 4 %ﬁ if |2] < 2nl/e.

Based on these expressions and (4.2) we deduce, after some calculus, the decomposition (3.13), where
the remainder terms are given by,

1 n _ n T/ z/nt/e n
fo f]R ! Wﬂ( )(dS,dZ)

15(1) = et T o (e0) 2 (e (s, d2) (4.6)
// ”/on n,ﬁ €n -3 s

RO “

R GO LY ”ﬁx°excf #)(en)tds

3(1) = (U ) : (4.8)

We can establish the following bounds for the remainder terms.
For RY 5(1), since (€y) is lower and upper bounded uniformly with respect to § (recall (3.10)), and

S
since 7/(z) = 0 on [—1,1] then for M a positive constant we have
7/ (z/n/ )

fl fz 2 o miley) u(")(ds, dz)
sup |[RY (1)) < M | = s e
BEQ Ih f|z|>2 22" (ds, dz)

(4.9)

10



Assume that there exists a jump of the Lévy process LT in [—2n1/a7 —nl/o‘) U (nl/a, 2n1/0‘], then we
get fol f|z|>2 22p™ (ds, dz) > n?. Thus,

' (z/nt/
L e M / / rle/n?) 1™ (ds, dz) (4.10)
fO f|z\>2 22:“( )(dS dz) |2]>2 1/‘1 (z/nl/a) ) .

Assume that there are no jumps in [—2n!/®*, —n/®) U (n¥/®, 2n1/?], since 7(z/n"/®) = 1 if |z| < n'/®,
then 7/(z/n'/®) = 0 and as a consequence, the right-hand side of (4.9) equals zero in this case.
In both cases, for any p > 1

1 ' (z/nlt/e
Jo Sz r<(z//n1/a)) ") (ds, d2) (/0| ’
E <E l/a Tay | (ds,dz) | .
Jo Jiojmo 220 (ds, dz) |z\>2 7(z/nt/*)
(4.11)
Now from p(™ (ds, dz) = (™ (ds, dz)+v™ (ds, dz), by convexity inequality, we have for C(p) a positive
constant X . T/(Z/nl/a) )
E ds,d
I G [ [
! z \2|7'(z/nt/?) P
E i (ds, d 4.12
/ /Z|>2 <n1/a) 7(z/nl/) p(ds, dz) (4.12)
7 (z/nt/®)

co| [ [, Giw)
|2>2 nl/o‘

Using Kunita’s first inequality (see Theorem 4.4.23 in [1]) for p > 2, there exists a constant D(p) > 0
such that

’ /01 /|z>2 <nlz/a)2
/ol /|z>2 (TLIZ/O‘)4
' (z/nt/®) P

‘*l“p)l£1/;>2(n5a>mj7«z/nva> 1”n“d&dz4
- pT(u)> duds] |

%ﬁMT@L%fmwmwwyff@Lp

T(u
where we have used that v(n)(ds, dz) = dSw%T(Z/nl/o‘)dz and the change of variable u = -

7(z/nt/e) o (ds, dz)]

7'(z/n'/®)
7(z/n/)

p
Wmﬂ

' (z/nt/®) ?

= (/o)

p/2
0™ (ds, dz)]

'(u)

7(u)

11



Moreover, we have

LG

1
‘Z‘H—a

(z/nl/a
7(z/nt/®)

' (z/nt/®)
7(z/nt/)

(n)(ds,dz)r = [/01 /|Z>2 (nlz/a>2
S

p
Under the assumption Hy(b;;), we deduce Esupgeq ‘R?ﬁ(l)’ <C/n,¥p>2.

T(z/nl/o‘)dzds]

) T(u)duds} ’ . (4.13)

.8
Using that b has bounded derivatives and that supgeg supp<s<q % is bounded, the remainder terms
- 1

5 5(1), Ry 5(1) satisfy the upper bound

Q

C
sup |R5 5(1)] < —, sup [R5 (1) < —,
BEQ 2h no e 3’5 n

where C' is some deterministic constant.

4.2 Proof of Theorem 2.1

We first prove that n!/*(Y7 yir gf"a’zo) is close to a stable Lévy process.

Lemma 4.1. Let (/' 0, *0) be the solution to the ordinary differential equation (2.1), then
pt/e (70 _ sy o0, e (4.14)
a.s

for any sequence (By,) converging to B, and this convergence is uniform with respect to x.

Proof. Using (3.8) and the boundedness of &, we have for ¢ € [0, 1]

’nl/a <??”B"’x0 _ §?79n7$0> La

_ ]' ! 1/a 1 6n,T0 n,0n,T0 a
AL b(Y, ,0n) — (s ,0n)| ds + [0 L} — o LY
0

»Bn, On,
< 2 [ Wl [t (7250 — ponm) o1

b/
}ds—i—aHHoo/ |LS|ds + sup |op Ly — oLy,
n

t€[0,1]
where ||0'||cc = sup, g [V'(2,0)|. Applying Gronwall’s Lemma, we get
nt/e <?§L’Bn’x° - g{"en’xo) — UL?‘ <C |L |ds + sup |on, Ly — o L], (4.15)
n t€[0,1]

where C is a positive constant.
From Lemma 3.1, we have sup;¢(o 1) [L{ — L{| 2% 0 and we deduce Supyeo,1] lon Ly — o L{'| £550.

Since t — LY is cadlag, we get fol |L%¥ds < oo a.s., then %fol |L%|ds %25 0 and we get the result of
Lemma 4.1. O
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We now proceed to the proof of Theorem 2.1. From (3.9) and Theorem 3.1, we have the represen-
tation

~ Uop, n,0n, On  n.Bxos YO nGn,x . On
1/ap€ (@0, a1 0)_W‘1 o i TSl 0)_E< R 2 /e Tty ”’3“0(1)>’

R (4.16)
where n‘{%?{ﬁ,@n,zo(l) 5, (1) +Hy 5 (1) + S5RY 5 (1) + -F2Ry 5 (1) + -F2R3 5 (1), with
HY g, (1), Hy 5 (1) given by (3 14), (3.15) and RY 5 (1), Ry 5 (1), Ry 5 (1) satisfy the bounds (3.16).

Since b is bounded and p™(z) > 0, we deduce the upper bounds

~ ") (ds,d
i, )| < [ ( Ids )| (417

i [fo fRP p™ (ds dz)]
. o Je |0 (2) i%”( )| 10 (ds, dz)

s ()] < 0" | 2= | () , (4.18)

I pr u") (s, dz)

for some constant C* > 0. »
We now show that supn‘ 1 ﬁn(l)‘ and sup,,

Agﬂn(l)’p are integrable Vp > 1. The proof will be

divided into the two following steps.

Step 1: We show that the right-hand side of (4.17) is bounded by a random variable independent
of n and belonging to N,>1LP. In fact, since the measures (™ and p coincide on the set {(s, z)|s €
0,1],]2] < n'/®}, and p™(z) = p(z) on the support of the Poisson measure u(™), we have

fo JeP"(z ( )‘N(n (ds,dz) < fol f\z|g2 1P (2)| p(2)pu(ds, dz) fo f‘ |>2 2|22 (ds, dz)
[fo pr 1) (ds dz)] - <f01 fIZ\SQ p(z)u(ds,dz))2 (fo f\2|>22 M(”)(ds,dz))

(4.19)
We first consider the first term in the right-hand side of (4.19). Using that p, o’ belongs to Np>1LP(1),<2 |z| 717 dz),

we get »
( [ ] e dz>)

On the other hand, since p satisfies the non degeneracy assumption (6.6), fo le<2 p(2)p(ds, dz)] ™1

belongs to N,>1L* [see [5, Theorem 4 p.2323]], we deduce that the first term of (4.19) belongs to
Np>1L*, moreover, it does not depend on 7 .

Turning to the second term in the right-hand side of (4.19), since v ({(t,2)|0 <t < 1,]z| > 2}) < 00
we have the following representation [see Chapter VI in [4]]

1 N1
/ / 2]2\3u(”)(ds,dz):22]2i]3 a.s.,
0 J|z|>2 —1
/ / )(ds, dz) = ZZE a.s.,
| |>2 =

13

<oo, Vp>1. (4.20)

(4.21)



where N = (N¢)1>+>0 is a Poisson process with intensity A, = fl 52 Fo(z)dz < oo, and (Z;)i>0 are

i.i.d. random variables independent of N with probability measure M. Thus,

folf ‘>22|z|3 " (ds, dz) B ZlZV:llz‘Zi‘:s . z 217 |3
2 — N1 >~
(B fope s an)” (S zt) T

where we used Z2 > 0 and |Z;| > 2. We deduce that sup,,

~ p
H’llﬁn(l)‘ is integrable Vp > 1.

~ p
Step 2: We show that sup,, ‘7—[3 Bn(l)’ is integrable.

Using the definitions of p" (recall (3.11)), p (recall (3.17)) and p™ = p on the support of the Poisson
measure ;™ (see Section 3.2), we have

Jy Ji [l ) 1|+,apn< 2)] w) (ds, d2)

fo Jer" )(ds, dz)
fo f |2|<2 (\,0 )| + p(2) 1\;&) p(ds, dz) fol f|z|>2(3 + a)|z| ™ (ds, dz) (422)
I Jizj<2 P(2)1(ds, dz) Iy Jiojmo 220 (ds, dz) '

where we used fol fIZ\SQ p(z)pu(ds,dz) >0, fol f‘z|>2 p"(2)p™ (ds, dz) > 0, and the equality of x(™) and

p on the set {(s,2)|s € [0,1],]2] < n'/*}.

Proceeding as for the first term in the right-hand side of (4.19), we also get that the first term of
(4.22) belongs to Ny>1LP.

On the other hand, for the second term of (4.22) we have:

fo fz|>2 (3 4 a)|z|u™ (ds, dz) fo f ‘>2 (3 + a)22u™ (ds, dz)
Iy Jizs2 % pm(ds,dz) T fy Jg>2 22u(m)(ds, dz)

This completes the proof of Step 2.
We finally deduce (with additionally some uniformity with respect to zg)

=3+ a.

~

Vp>1, E(sup ’H;ﬁ(l)‘p) < 0. (4.23)

n?ﬂzxo

-~ p
At 5(1)] + sup

Tl,ﬁ,IO

Recalling the almost sure convergences (3.18) and (3.19), we get from the dominated convergence
theorem the LP-convergences

n n—o0

16, (1) /= Hire (1), Vp=>1. (4.24)
3 ,(1) 7275 Hare (1), Vp 21, (4.25)

where Hy (1) and Hg (1) are defined respectively by (3.20) and (3.21).
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On the other hand, Lemma 4.1 implies that n'/ a(??’ﬁ"’xo — ¢ T0) converges almost surely to

oL{. Then, using P(L{ = u) = 0, we deduce the almost sure convergence

1/a(Y”«76n7$0 _n,0n,T0
n 1 S1 ) n—00 .
{Yn \Bn, z0> ulcr/,,& +o] n,0n, IO} 1[u,oo) ( o os 1[u,oo) (Ll ) (426)
Applying the dominated convergence theorem, we get the latter convergence in LP, ¥p > 1. This gives

finally :
On

nl/a
where Hro (1) = Hi,re (1) + Ha,ro(1) and Hy e (1), Ho,ro (1) are given by (3.20), (3.21), respectively.
Remark that, we also get from (3.12), (3.13), (3.16) and (4.24), (4.25)

n—o0

n,ﬂn,zo( +¢ 1 n,a?o) —)]E[l[u oo)(Ll )”HLQ( )] (4.27)

q l/a

o uao. On,
ngmP *’*’0(”1/’; + ¢ ®0) < oo, (4.28)

To finish the proof of the convergence, it remains to show that
Lpa(u) = E[l[u,oo)(L?)HLa(l)] (429)

Let us denote by ¢™(u) the density of the variable L. We consider the situation where the drift
function b = 0 and xg = 0 for which n!/*Y7}" o oL}. Then (4.27), (4.28) yield

" (1) “=2 Bl o) (L) Mo (1] = (u), (4.30)
Slel%lg Slrle " (u) < 0. (4.31)

Assume by contradiction that, for some u, we have ¥(u) # ¢q(u). Since P(L{ = u) = 0, it can be
seen that 1 is continuous at the point u. Hence, one can find a continuous, compactly supported,

function f such that
/ F(@)(w)ds £ / F(@)galx)dz. (4.32)

On the one hand we have, E[f = [ flx)p™(x)de =225 [ f(x)ib(z)dz where we have used the
dominated convergence theorem Wlth (4.30)-(4.31). On the other hand we can write

E[f(LY)] = E[f(LY)1{rn=rey] + E[f (L) 1{zn2L0y]- (4.33)

n—oo

By Lemma 3.1, we have P(L} = L{) —— 1. We deduce that,

E[f(LY)] 2% E[f(L9)] / F(@)¢ala (4.34)

This last convergence result clearly contradicts (4.32) and we get (4.29).
Combining the preceding results with (4.27), we can get the results of Theorem 2.1.
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5 Proof of Theorem 2.2

The proof is divided into three steps. We first give a representation of the derivative of the density
and explicit the iterated Malliavin weights based on the calculus given in Section 6. We then study
the convergence of these weights and proceed to the proof of Theorem 2.2.

5.1 Representation of Vgp" and computation of the iterated Malliavin weights

We intensively use the results of Section 6. From Theorem 6.3, we have the representation

n On, n On,
Viapy (xo,n/ + ? ) = Vﬁqnﬁ o ( 1/a+ gmfnsoy

RVa 767“
= E |: {Yn B, IO> ug‘/n +§n ,0n, zO}HY'n Bn,x( (H??,Bn,zo (VBY? ‘TO)) . (51)

Using (6.7), (6.14) and (6.18), (6.19), by some simple calculus, we get the explicit formula for the
iterated Malliavin weight

nﬁmo
agy ,
= (e | Hrpens 0 (

B <V1n’0> Wln”B Op ?n,ﬁ,mo QD?’/; Op ?n,ﬂ,xo Q?ﬁ (T{Lﬁ) 1

Vln’e 27'[771%5@0 (1) Oy Yn’ﬁ’mo Hy?yﬁvzo (1>W1n”8 39ﬂ o
— + +
Vln,o Uf’ﬂ 0,Y N ﬁ,xo (U?’B)Q aayl,ﬂ,xo

v ) Oy e vt ) i \a, vt | opfyE s \ape ) oty
(5.2)
where Hﬁn g (1), UM WP are given by (3.13), (4.3), (4.5), respectively.
Moreover the processes (9pY, o ®)¢ and (8,Y 5’ %); are respectively solution to
BT0 1 [t 1 (1850 106,20 I 106,20
ath = — b (Ys ,(9)(99}/5 ds + — ng(Ys ,H)ds, (5.3)
nJo nJo
-1 x €T ﬂ@ x Ln
aUYt 75) 0 — / b/( 18 0 0)80 6 Ud + 1 (54)
n Jo [a’

For the computations of V™! = T(Y]" YT 9,y ’B’IO) and V"7 =T(Y, v, Yy o %), using (6.15),
(6.16) we have

1
v = %(af)? /0 ()72 (U2 [(@ob) (7277, 0) + 1" (V2770 0)0yY 7| ) ds, (5.5)
n,o 1 n ! WBI 3P T n n n
i _n(61)2/0( 07 (BT 00,V IR ) ds + () // “2p"(2)u (ds, d).
(5.6)
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Finally from ((6.20) - (6.23)) we compute explicitly D% = T(¥17% LYV7*0), @8 = n (¥, wiP),
70 = (77", Vi) and T = DYy, V7). We get:

n\2 1 2 1
DP = (&)’ / ()2 (Y™ gy Ly unB s + (61) / (€)~2" (Y™ gywnBds
0

n

en 2 1 0 ’ "2 !
D) /0 @ oy s + S [ / ) (07 "G ) ),

1

n

=3
Q
N
/\
3
~—
'
\

( ny- 4b//( nﬁwo Q)WnﬁUn,Bd L 24 (61)4 /1( ny- 4b///( nﬁmo 9)(Un5) ds
0

A / / RV (<p">’<z>>2+p"<z><p”>”<z>} W™ (ds, d-),

(5.8)
n 0 n
n\3 1 n
+ (6711) / ( ) 3b//( nﬁzo e)ay »ﬁxOWn,Bds+ 1 / 8bl/4nﬁ$0 0)(Unﬁ)2d8
0
n\3 1
i (6711) / GOl 3b///( 718,70 ,0)0g Ynﬁ’xO(Un’B) ds,
0
(5.9)
n\3 1 €n 3 1
rpe = 25 [y gvrevztas +(;) / (@) ST, 000,70 W
0
n\3 1 2
+(€1) /( ) 3b///( n,on 9)8 ﬁxo(Unﬁ) ds + // )’(z),u,(n)(dS,dZ).
0

(5.10)

From the above calculus and combining with (5.1) and (5.2) we have an explicit representation for the
derivative of the density with respect to parameter 8 that allows to analyze its asymptotic behavior
in small time. To obtain the results of Theorem 2.2, we will study the convergence of each term
appearing in the decompostion (5.2). This is based on the preceding explicit expressions that permit
to identify some main terms and some remainder terms.

In the sequel, we prove that all the terms involving the derivatives of b with respect to = are
remainder terms.

5.2 Convergence of the iterated weights

In this section, we study the convergence of the iterated Malliavin weight an B .zo (H—n Brzo (V 5Y1 B"’xo))

which is the cornerstone of the proof for the convergence of Vgp'" later. Flrstly, we state some tech-

nical lemmas useful for our aim. The proofs of these lemmas are postponed to the end of the section.
We recall that (9pY,” b "), and (9,Y} o %); are respectively solution to (5.3) and (5.4).

Lemma 5.1. We have for all compact subset Q C R x (0,00)
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i) Supgeq 10pY ) ”B’IO] < % where C' is some deterministic constant.

i) s

Lemma 5.2. Let (3,) be a sequence converging to B and Q be a compact subset of R x (0,00), the
following decompositions and estimates hold,

7n7ﬁ’1‘0

n—o0
S

LP

0, Vp>1.

. 1 DM /e n n n
i) = o Hy 5(1) + R (1) + RE 5(1) + R 5(1).

")

1 o _ nlog; n n
i/ (U{‘l’5>3 = 52 Hy ( )+R775(1) +R8,5(1)-

sup, |0 YnﬁchWn*B| Nn—00
iii) Supgeq n1/£+1 <ol (UI" ﬂ) I 0, Vp>1.
The main terms ﬁgyﬁ(l),ﬁzﬂ(l) are given by
- Iy fR(eZ)*Qp"(z) [(pn>”<z> — (') %a’ + 0 (2) 2 ) (ds, d2)
Hyp(1) = 5 , (5.11)
(fo Jg(er p(m) (ds, dz))
_ Jo Jelet) =0 [((p”>’<z>>2 + pﬂ(z)(p“y'(z)} u (ds, d2)
Hipg(l) = : (5.12)

(fo Sz (er ™ (ds, dz))3

where (€3)sep0,1) %5 given by (3.10). Moreover we have for p > land some deterministic constant C

Hy s (1 )TH—°°>H3LQ(1), Hig (1 )TH—OO>H4LQ( 1), (5.13)
C
n—oo n—oo
Zlelg R (1) — 0 ;‘elg RS 5(1)] — 0 Elelgmg,ﬁ(l)’ < PWSEEyPE (5.14)
C
H
Z’lelg IR7 5(1)] nL—:O> 0, [S;elg RS 5(1)| < T ija’ (5.15)

where

Jo J= (p(Z)p”(Z) - p(z)p’(z) “j“) + (p(z))2 (”“)) pu(ds, dz)

Hsre(1) = : (5.16)

Jo Jar(2) [(p’(z)) i ] (ds.dz)
(fo Je p(2)lds dz))3

Hapo(1) = (5.17)
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Lemma 5.3. Let (5,) be a sequence converging to 5 and Q be a compact subset of R x (0,00), the
following estimates hold:

Vn,G c
i) SUPgeQ Ulf’ﬁ <7,
.. 0
i1) 7] nmee 0, Vp=>1,

iii) Loz =1+ R (1),
1

i) e = LHE (1) + Ry 5(1) + Ry 5(1) + Rl 5(1),

")

where C' is some deterministic constant. The main term ﬁgﬁ(l) s given by

fo fR )7 p"( (Pn)/( )z (n)(dS dz)
€t (fo fR u(™ (ds, dz))

with (e3) given by (3.10). Moreover, (supgcq [R7 5(1)|)o<i<12 converge to zero as n — oo in LP,Vp > 1

and HY 5 (1) L::O; Hs.pa (1), with

HY 5(1) = (5.18)

Jo S (=)0l (2)p(ds, d=)

(i otmonao]

Lemma 5.4. Let (8,) be a sequence converging to 3. For all p > 1, the following convergences hold
uniformly with respect to xq:

Hs, (1) =

(5.19)

n0g Vo (H5,(1))" 22 Byb(o, 0) (Hpe (1), ¥g > 1,

(5.20)
ndpYy " Hy (D 5, (1) T2 Opb(o, O H e (1) M, 1 (1),

(5.21)
l/a ,ﬁn,mo 1 nooo ra

0,V (13, (1) "% L (e (), Vg 2 1,

(5.22)
V@0,V (Y 5 (1) ”:—‘Xs LiH e (1)Hi,10(1),

(5.23)

where H3(1) = HY 5(1) + Hj 5(1) with HY 5(1), H5 5(1) given by (3.14), (3.15); Hpe(1) = Hyre(1) +
Mo ra(1) where Hi (1), Ha (1) are defined by (3.20), (3.21).

Lemma 5.5. Let (3,) be a sequence converging to 3. For all p > 1 the following convergences hold
uniformly with respect to xq:
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i) nopYy " "H 5 (1) 5 0pb(o, 6) Mo (1),
1, 8n,20 75 n— 00
'L'L) T'Lagyl 45 (1) 7} aeb(x(h 9)H4,LO‘(1)7
iii) nl/eg, Y o gy 35 (1) TH—OO> LYHs3 1o (1),
) ni/ay Ylyﬁn,xo " (1) H_O% LYHy ra(1),

where ﬁ;ﬂl),ﬁffﬁ(l) are given by (5.11), (5.12), and Hs3 (1), Hare(1), are defined by (5.16),
(5.17).

The uniform convergence with respect to ¢ is not required in this paper but will be useful in [6].

Remark 5.1. We observe that although L$ does not belong to LP, the choice of the auziliary function
p permits to prove that LS (Hra(1))%, LSHs,1a(1) and L¢Ha (1) belong to LP,Vp > 1.
Based on the preceding lemmas, we can prove the following convergence result.

n—o0

Proposition 5.1. Let (8,)n>1 be a sequence such that 8, —— [ then for allp > 1

o2
In 377,0n,T0\\ 00 4 /(2)
nl/aH 781,50 (%?;Lw@nwo (0,Y1 ) 0 HE) (5.24)
0121 TBn,To\\ n—o0 (2)
n2/a—1 HY;‘vﬁ"v’CO (Hy?ﬁn»xo (0pY ) _> Opb(xo, 9)H1 ) (5.25)

where H?) and ”H§2) are some random variables whose expressions do not depend on B and b.

Proof. From the equation (5.2), we have

n n,on
v |4

nl/a

2 n,Bn, o2 M0,

nzc/f;fﬂ /H?nﬁn»m (Hynﬁnwo (89Y1 IO)) ﬁaeyl Pnszo 9 o5 Vo On 27'[?;1,,3“,10 (1)
1 == ?n B,z (1) — 5
Y,

2/a 171
2 6717 mn " Hn
2 Hn oo (Hm e (057 1)) < /aa oo (P

n/B’rHIO —n . Wn’ﬂn TLBn,IO »sPn en Pn
. <n2/°‘ _9Y ] >HY1737L7 o (W] +< 2/a c0pY | ) (Wlnﬁ )2 - (nQ/“ LV ) Wlnﬁ

1/a a Yn ,Bn,T0 (Ui%ﬁn)Z nl/a a Ylﬁn,a:o (U{Lﬁn>4 n17a Vn ,On (U{L’Bn)?’
+ "2/ 0y Y] 2p m T 0pY T e + gu i 1
rmBane - 2 _.
nl?ﬂ o, Yn ,Bn,xo (Ulnﬁn)z nl% B, Yn ,Bn,xo (Ulnﬁn):), nf?/a T{%Un (Uln,ﬁn)z

(5.26)
We will prove the convergence of each term in the right-hand side of (5.26)

Term 1: Recall (3.13) and set H% (1) = HJ 5 (1) + H 5 (1), R (1) =

55, (1) + Ry g (1).
Remark that by (3.16), we have ’Rgn(l)

< % where C is some deterministic constant. Moreover, we
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can rewrite the first term as
\Bn,
(ng/a oYL IO) [H 8 (1)}2
76" Yy Pm®o
1/o¢a Yl 0 Yl

Y Pnto\ [ptfo - 7 2
= (”f 0,7 ) [Un i, () + T, (1] + R 5, (1) + R, (1) + Réﬁﬂn(l)]

71%8n,%0 20 n Bn,Zo 20 71:5n,%0

,Bn,To Bn,To 20’ T148n,%0
39Yn 3 139Y o | =1 0pY
i nz/a 1 R™ (1)2 +ln /O‘ R (1) + n2/a ! ! RY (1)Rn (1)
( 17a a Yn ,Br,xo 1,8n nl/a a Yl,ﬂn,wo ( Bn ) 310'/,,; 8 Yn \Br,xo 1,8n Bn
(5.27)

where RY 5 (1) is given by (4.6). We can deduce from (3.16), (4.24), (4.25), Lemma 5.4 and Lemma
5.1 that
B0
DYy 2 Dab(z0,0)
ng/a T ( EN 1) n—00 (] 05 o(1 2'
( 17&@ Yn ,Bn,T0 ) ,Hylvﬁnv 0( ) prle; L(f (HL ( ))

Term 2: From (3.13) and Lemma 5.3 part i) and part i), we can estimate the second term as

o2 Q/an z (1) @) _1
- V P20 ( 2/04)
el ) ! Ve (1) + Ry s, (1) +Rj, (1
( oy 0n ) D ( i [R” (1 )+—1n] [an (1) +Rip, (1) +RE, (1)

nl/a o

O(=)H3, (1) + O(m)RY 5, (1) + O(g=) R, (1)

- ~ 20, RY 5 (1) | 20nRE (1) ~ 207 RY 5 (DRy 5 (1) 20271"”( JRE 5, (1)
2Hj (1) + 11/,2 nl/ch + QU"RS,Bn(l),Hgn(l) 1, Bnl/a 9.8n B A 9.8

where C is some deterministic constant and O( — /a) is a random variable bounded by 712% From
(3.16), (4.24), (4.25) and Lemma 5.3, we also conclude that

o2 7,” T
n2/g 1 ‘/1 2H Bn 0 (1) n—00 0
on Vn On (UIL ﬁn) LP ¥p>1 27‘[]104(1)

nl/cx
wyon o 55 o .
Term 3: From (3.13) and e 2—H g (1) + Ry 5 (1) where Hi 5 (1) and R 5 (1) are given
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by (3.14) and (4.7), we have

n2/a 18 YTL ,Br,xo H?;‘vﬁnvxo (1)W{Lw8n
n _9, Yn ,Bn,xo (U{%ﬂn)z

n n nl/a n n
+Rig, (1) + Rﬁn(l)] [U L, (1) + Ry (1)

n a Yn Bn,To On,

2/2 laeyn,ﬁn,xo> [nl/a'Hgn(l)

nl/a

n
wgnny ’VL Bn o
- < l/agy ;nﬁnﬂ?o) Hgn(l) ?ﬁn(l) + ( 1; 81 Yn ﬂn xo ) Hgn(l)Rg,,@n(l)
n ot 1 n
o2 7%8n,%0 Bn,T0
- 89Y1 89Y ’ ~
v (P >7z ()R <>—%< O ) Ri, (DA, (1)
[ RV 757“ 17[3” 26” Bn 17/811 17/871
( L0, Y 00, Y0
»Bn,T0 100,50
2 0pYy - e 0pY 1
+ < 1; alY B0 )Rgn(l) 16,(1) + (n ) prmn Rj, (RS 5, (1).
n 1 1/

From (3.16), (4.24), (4.25), Lemma 5.1 and Lemma 5.4, we also conclude that

3PN, T n’ﬁn
(w« 9,7 o) Hegrn n s (1) W] oo (agb(xo,9)7{1,%(1)%%(1))

a0, Y (U2 L? Vp>1 LYH1 L, (D) HL, (1)
n «@

wPn Vo 55 . .
Term 4: Using W =" —H 5 (1) + Ry 5 (1) again, we can rewrite

0'2 N HHPn, 0’2 N HHPn, 2
AR OVTT W2 (SR [t R
ﬁmxo UTL,Bn 4 - ﬁmxo o 16”( )+ QBW( )
1/048 Yl ( 1 ) 1/a8 Yl n

T Bn,T0 37180, T0 B, To
_ nang e~ 2 n2/a 180Y n 2 l/a 189Y n ) in
- <n1/aaaﬂfvﬁn,zo> <H1ﬁn(1)) + nl/aa ﬂ Bn,xo (RQﬁn(l)) + n20n8 Yn \Br,xo RQ,ﬂn(l)%l,Bn(l)'
From (3.16), (4.24), (4.25), Lemma 5.4 and Lemma 5.1, we also conclude that

o2 N, Bn,T n
i L0V TN (B (Bgb(ao, 0) (Hype (1))
a Yn \Bn,To (U{Z’ﬂn)4 LP Vp>1 L? (H17La(1))2

nl/cx

Term 5: From Lemma 5.3 we can estimate the fifth term as
v 0n Wn,ﬁn O(
(nQ/Z . nlcrn ) n,6n\3 = on Rn 15n +R25n( )
vl 4] 03 \aile (R,
1 n

= ( nl/a) O( 2/a) 2,8 (1) >
onRY 5 (VHY 5 (1) + -THRE 5 ( ) B (D) HD (1) + 2R 5 (1)
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where C' is some deterministic constant. From (3.16), (4.24), Lemma 5.3, we also conclude that

n2/a 1V1n o Wln,,é’n n—o0 0
SV ) (U vt \Ha e (1)

Term 6: Using Lemma 5.2 we write the sixth term as

2/a 1 aﬁyn o D?’Bn
l/a a Yn ,Bn,To (Un,ﬁn)Q
»Bn,T0
na@Yn »Bn,T0 N 1/a - 89Yn
= ( 1/0‘8 Y1 T1%8n,%0 Hgaﬁn(l) + " %8UY1,6n,x0 ( Zﬁn(l) + Rgvﬁn( ) + RG /Bn( )) .

Applying Lemma 5.2, Lemma 5.5 and Lemma 5.1 we obtain that

2
%89??’6%10 2D s | (Oeb(wo, 0)Hs La (1)
8, Yo | (umBnyz Levp1 LSHs 1o (1)

nl/a

where H3 1o (1) is defined in Lemma 5.2.
Term 7: From Lemma 5.2, we can rewrite the seventh term as

( 2/0 189Yn /BnJO) Q;Lﬁn
1/aa Yn ,Bn,To (U{Lvﬂn)fﬂ
—n ﬁn,.’EQ ﬂl Bn,iﬂo
= < y >H4,ﬁn(1) + ("1/ o ) (R75,(1) + R§ g, (1)) -

aBTM L 3
1/aaUY71”L zo 721001/1 B zo

Applying Lemma 5.2, Lemma 5.5 and Lemma 5.1 we obtain that

o2 "N, 0n,T n
(maeylﬁ ) Q" vse (0b(x0,0)Ha Lo (1)
(

1/a(9 Yl Bn,To Ulnﬁn):i LP Vp>1 LMy a(1)

where H4 1o (1) is defined in Lemma 5.2.
Term 8: From Lemma 5.3, we have

On o2 T
2/a 1T1n 1 _ WETa=T TmBne
erl ) L T 2
(o) 5,(1)+o 2RY 5, (1) +0nRY 5 (1) +0:RYy 5 (1)

Using the results of Lemma 5.3, we easily deduce that

2
nzi’s R NS S 0
oi o | (U2 w1 \ Mg pe(1)

where Hs 1o (1) is defined in Lemma 5.3.
Finally from the above convergences, we can deduce the result of Proposition 5.1.
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5.3 Proof of Theorem 2.2

We will first prove part i) and then give a proof for part 7).
i1) Remark that from (5.24), (5.25)

2

o 77:Bn,T0

n )
SUpSUpE T10N,T0 < uoy n,0n ——H- B :cO(anﬁ zo(agy )) < 00
weR n ' (V02 2240 p2/a1 YT "

and

0'2 —N,Bn,To

n WP,
SUPSUPE 1 —n 8000 woy | nibn.e b (Hen Bz (05 Y 1 )| < oc.
weR n {Y; 0> s yoRalt 0} pl/a 0NV orTe

By representation (5.1) this leads to

2 2

o
30]31 (xo, "’JCO) < oo and supsup
e~ / wek n |nt/e

< oQ.

sup sup
ueR n

i) From (5.1), (4.26) and Proposition 5.1, we easily deduce that

2 s uo
l/a ap1"(5507 1/a+ 1

Bn UOn 1,0n,T0
aO'Z)l (IBO’nl/O‘ +<1 )

2
o
nl?a 3an,ﬁn,ro(

Hnmoy w gty B0 B, G (LOHP),  (5.28)

2 2
n Aoy (@ LS n,HEO) _ _%n ) ,Bn,mo(
2_4 GP% 05 1/a 1 0q

no na_l

P gm0y 120 9ab(wo, 0) X B[y 00 (L) HY),
(5.29)

nl/a

where H? and ’ng) are defined in Proposition 5.1.
To finish the proof of Theorem 2.2, it remains to show that E[1, o) (L‘f‘)?—[,gz)] =~ (u) and E[1}, o) (LYYHP)] =
— [¢a(u) + upy'(w)]. This is done in Lemma 5.6 below.

Lemma 5.6. We have

(1) = —E[Lpy 00y (LA,
— [Palt) + upa’ ()] = E[Lpy00) (LFHP)],

where @, is the density of LY and HP and 7—[52) are defined in Proposition 5.1.

Proof. Let us consider the situation where b(x,6) = 6 and xo = 0. In that case, we have Y; e =

9 4 ﬁ LT and thus the density of Y1 mpo

1/ 1/a
g0 (u) = gt (” <u - 0>> '
g g n

is related to the density of L} by the relation,

Then,




By a change of variables, we get

nBan [ U 0 n2le=t
o5 (74 7)== () ()

n o?
1/«
n,ﬁ,x uo 9 = n " "y
Orq O(W + E) =3 [(p (u) + u(e™) (U)] .

Hence, we can apply the results of part i) of Theorem 2.2 and (5.28), (5.29) in this specific setting.
This yields

v, w")'(u) P22 B0 (L)AL, (5.30)
Vu, [ (u) )/(u)] 7H_OO> E[ [u, oo)(L?)H@)]? (5'31)
S;Lur? 12 )’(u)| < 00, (5.32)
sup " (1) + u(e™) (u)] < oc. (5.33)

Let us denote X'(u) = —E[1, o) (L%)H?)] and assume by contradiction that X' # ¢/,. Using the conti-
nuity of u »—> X (u), there exists a smooth, compactly supported function f, such that [ X(u)f(u)du #
[ @b (u) f(u)du. Now, on the one hand we have

/ (") (w) f(w)dus 222 / X () f (), (5.34)

where we have used the dominated convergence theorem, together with (5.30), (5.32).
On the other hand, we can write,

E[f/(L7)] 2% E[f(L9) (5.35)
_ / o (1) () = / o (u) f(u)du (5.36)

where the convergence (5.35) is obtained in the same way as (4.34). Clearly (5.36) contradicts (5.34),
and we get E[l[um)(L?)HEQ)] = —¢l (u).

By the same method, let us denote X (u) = —E[l[um)(ﬂf‘)%@)] and assume by contradiction that
u — Xy (u) is different from u — [pq(u) + u(pa) (u)] . Using the continuity of u — X (u), there exists

a smooth, compactly supported function f, such that [ X (u)f(u)du # [ [goa +u(pa) (u )] f(u)du.
Now, we have

/ (0" (1) + (™) (w)] F(u)du 22 / X4 (u) f(u)d, (5.37)

where we have used the dominated convergence theorem, together with (5.31), (5.33).
On the other hand, letting g(u) = uf(u) and using the integration by parts formula, we can write,

/ [o"(w) + u(g™) (w)] f(u)du = / " () f () + / (") (u)g () du
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= E[f(L7)] - /w"(U)g’(U)du = E[f(L})] - Elg'(L})] “== E[f(L$)] - Elg'(L})] (5.38)

= /goa(u)f(u)du - /gpa(u)g'(u)du = /goa(u)f(u)du + / ol (u)g(u)du (5.39)
where the convergence (5.38) is obtained in the same way as (4.34). Clearly (5.39) contradicts (5.37),
and the lemma is proved. O

5.4 Proofs of the intermediate lemmas
In this subsection, we give the proofs of Lemmas 5.1 - 5.5 of Section 5.2.

Proof of Lemma 5.1: i) Since b has bounded derivatives, we obtain from (5.3)

C

sup]@ Ylﬁxo\ < =
BeQ Tl

i7) From (5.4) and Gronwall’s Lemma, we get

sup sup 80?2’5’“ < —— sup |L{]

BeQ s€(0,1] nt/e s€[0,1]
sup / / fa(du, dz) o’ / / z|,u (du,dz) (5.40)
nl/e i | |<1 ni/e 2|51

We now consider the first term of (5.40).
p
Using Kunita’s first inequality (see Theorem 4.4.23 in [1]) Vp > 2, we have Esup,¢(o 1] ‘fos f‘z|<1 zp(du,dz)| <

00, and the first term of (5.40) converges to zero in L, Vp > 1.
We now consider the second term of (5.40).
From (™ (ds,dz) = "™ (ds,dz) + v (ds, dz) then for Cy(p) a positive constant, we have

1 1 .
B[ a)
np/e < 2|51
/ / |22 (du, d2) +IE / / |2|v™ (du dz) .
|z|>1 |z|>1
Using again Kunita’s first inequality (see Theorem 4.4.23 in [1]), for p > 2, there exists a positive
constant C3(p) such that
1 p/2 1
E / / )(ds, dz) + / / |2[Pu(™) (ds, dz)
np/e \ |>1 0 Jz|>1
Cs(p) [ [ 1 o
_ CGs(p / / 2 1/a / / 1/a
= z T(z/n"/%)dzds —|— z/n'%)dzds
vl ( 0 S ey ) ) o o T
203 n e n—>oo
np/a / / onrl ded ’

/ /in/a p 2
26

np/a

p
~(n)
21 (ds, d2)| | < 4P

z|>1

+

np/a

(5.41)



where we used that 0 < 7 <1 and 7 = 0 on [—2,2]°. Hence, we get that the second term of (5.40)
also converges to zero in L”,Vp > 1. This finishes the proof of ii). 0

Proof of Lemma 5.2: Recall that D?”B and Uf’ﬁ are given by (5.7) and (4.3). The part i) is proved
prb
by decomposing o B)Q, then we obtain that the main term is (5.11) and the remainder terms are

—2 n n 7' (z/nl/ n
Jo g€ 20" (2)p '(Z)Wu( )(ds, d=)
Rip(1) = -+
202nt/a(er) (fo Jr(€1)72p7 ()™ (ds, dz))
ny— n 7/ (z/nt/ ' (z/nl/a 2 n
0o a2 ) [Té/nl/af - (Téz/aw;) J s, 2

202n1/o (e (fo Jr(er p(™ (ds, dz))2

_l’_

Y

)2 [1(en) =2 (VP g) (zL?’;’ﬁ’xo e 4 W;ﬂ ds
opltl/a (U"’6>2
2b/// Svald /37550 0)(Un 5)2d8
opl+l/a (Uf’ﬁ)

)

R (1) _ fO

n,8

The part i) is proved by decomposing (Unl,/g)?n
1

then we obtain that the main term is (5.12) and the

remainder terms are

B L (e (Y o)W U ds

n1+1/a(U{z,5>3
. DL ()T 6 U s
8,5(1) 3 .
nl-i-l/a(U{hﬁ)

We now study the convergence of the main terms.

From (3.10), the boundedness of ¥’ and Lemma 3.1, it is clear that ’f-Z 5, (1) converges almost surely to
H3 1 (1). Moreover, using again the boundedness of ¥, the upper and Jower bounds of (€5 )sejo,1) and
the fact that p™(z) is a non negative function, we deduce the upper bound, for some constant C' > 0,

Iy o (0@ (07 )] + 7 (2) 17 (2) % + (p(2))” UL ) ) (ds, d2)
(fo Jr P (2)ut (ds dz))Q

s < ©

(5.42)
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Proceeding as in Step 1 in the proof of Theorem 2.1, we show that sup,,

- p . .
Hgﬁn(l)‘ is integrable.
Hs r(1). In the same

n—oo

Then applying the dominated convergence theorem, we get 7-7? 3 (1) m
e Vp>

way we prove that 7/-[\25 (1) %) Ha ro(1).
o Vp>

Turning to the remainder terms, since b has bounded derivatives and supg sup; % is bounded, we
1

obtain

w".06,%0 n,3
SUPseio) 1LY | supsepoy [Ws™| n C
: , sup|RE (1) < —————, (5.43)
) B0 6,3 opl+l/a

sup |RE 5(1)] < Csup
BEQ’ 5,6( )| 30 n1+1/aU1n,/3 n1+1/a(U1717/3 2
n7/B
n SUPsel0,1] W5 " C
sup |R% 5(1)] < C'sup , sup|Rgz(1)| < ———F. 5.44
sup R (1)) < C s | SRR EEE s R < (5.44)
Moreover from (4.3), (4.4) and (4.5), we get that
SUP,c0,1] |LYn B’m0| <c 1 N fo Jr [\Pn/ 1+|apn( )] 1™ (ds, dz)
BEQ nl“‘l/aUlnB N n?+1/a nfo Jg P (2)u(™) (ds, dz)
7/ (z/nl/e n
fo f \>2Z2 % ) (ds, dz)

nltl/a fo f| 22 21 (ds, dz)

SUPse(0,1] |Wsn’6‘ < 1 fo Jz P (2 )\,u (") (ds, dz)
8eQ nl-‘rl/OA(U{LwB)Z - n2+1/«a [fo fR )(ds dz)

(5.45)

From the results of Step 1, Step 2 in the proof of Theorem 2.1, and the control given in the proof of
SUPsc(0,1] |L?Z’BYZO| SUPs¢(0,1] \wP|

nl+1/o¢U{7-75 n1+1/a(U{z,5)2
to zero in L”, Vp > 1 and we deduce the convergence of supgeq [R5 5(1)| and supgeq [R7 5(1)].
It remains to study the convergence of supgeq R} 5(1)]-

Theorem 3.1 for (4.11) we can deduce that SUPgeQ and supgeq converge

From the boundedness of (ef');co,1), the definition of p" (see (3.11)), and since p™ is a positive

measure, we have
z o (z/nt/*) ) 2 n
fO f ‘>2 |:n1/a + nlja < + (T((Z//nl/a))) >:| IU’( )(ds,dZ)
sup }R475 ‘ <C

geQ (fo Jig52# pl )(ds,dz))2

24
+ nl/a <

7/ (z/nl/ <)
7(z/nl/e)

T"(Z/nl/a)
(z/nt/e)

(5.46)

7/ (z/nlt/e 7 (z/nt/ )\ 2 n i
( / ) + (T((Z//nl/o‘))> >:| ,U‘( )(dS,dZ)

(z/nt/®)

7/ (z/nt/ )
m(z/nl/®)

nd/a

53 Jpn | 5

(5.47)
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where we used fol f‘z|>2 22 (ds, dz) > n?/®, if there exists a jump of the Lévy process in [—2n/, —n/®)U

(n!/e,2n1/®]. If there are no jumps in [—2n'/*, —n/*)U(n!/® 201/ since 7(z/n"/*) = 1if |2| < n!/®,
we have 7/(z/n'/*) = 0 and 7"(z/n'/®) = 0. Thus for M(p) a positive constant we have

Cp I 1 1 2 3 7_/(Z/n]_/oé)
E R < E
228' 45( W= np/e /0 /|z>2 nl/a <‘n1/0“) T(z/nt/«)
1/ _ 1/ay \ 2 b
2 (|| (2em Y o
-~ 7 n d d
! <n1/a) (il | T\ Rl wds, dz)
5] [ ((z/nt/e) '
Mp 1 N TE/MT) )
<
A " /0 /z|>2 nl/e (‘nl/o‘ ) T(Z/nl/a) K (ds’dz) +

7_//(Z/nl/a) i
(= /n/e)

P 2
//||>2 lz/a 4 pds,d2) |+ /ol/|z|>2 <nf/0‘>4 (:((j//;lll//a))> " (ds, dz)

Similarly to the proof of Theorem 3.1, we show that under assumption Hi(bii), supgeq R} 5(1)]
converges to zero as n — oo in L for all p > 1 and this completes the proof of ii).
The result of éii) follows from Lemma 5.1 4¢) and the estimation (5.45). O

n,p
Proof of Lemma 5.3: i) From (5.5), the fact that b has bounded derivatives, supg supy<s<; gn 3

is bounded, the upper and lower bounds of ((€f')):e[0,1], we deduce 7).
i7) From (4.3), (5.9) we have

i’ 0P o () 30" (VL VU s () [ ()2 (0pb) (V3 0) Wi ds
2 2
,_1 n,B ; n,5 % n,B
<U1 ) wi (07) i (U7)
T () B (Y, 000,V T W ds (1) [ (en) B (0pb)" (YT, 0) (USF ) 2ds

na(U’ﬁ) na(U’ﬁ)
D Sy () (VO 00067 (U s
nE (Uln’ﬁ)2 .

We deduce, using Lemma 5.1 i) and Lemma 5.3 ) that

+

7ﬂ
0 C sup wa
sup | ———— | < —21 + C5y su se(0.1] W]

< (5.48)
peQ|ptt (Upd)'| T me e e (U7

9

where C, Cy are some deterministic constants. Now from the estimation (5.45), we easily deduce that

n,B
sup,e(o,1] IWs""|
SupBeQ —;2

Z iy tends to zero as n — oo and then we get 7).
@ 1 ’
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n,o

i7i) and iv) From (4.3), (5.6), (5.10), an easy computation shows the decomposition of R and

11/a<Tn;>2, where the leading term is (5.18) and the remainder terms are given by
n Ul
02 fo (e 2 (00, v U ) ds
no(1) = ,
9,,8( ) nUn’B
0 g2 T oV U s
10, ’
’ nl+l/a (Un,ﬁ)
o (P @) (V00,7 Wi ds
11,5(1) = 2 ’
nl+l/a <Un,ﬁ>
o 1y = P LT 0)0, 7 U ds
12,8 .

pl+l/a (U{lﬁ)

7.6
Moreover, using that b has bounded derivatives and supgsupg<,<; %Sn,g is bounded, the remainder
- 1

terms satisfy the upper bounds

C —n,8,z0 Ci supgefo,] (Vs
Sup‘Rgﬁ ’ < —sup sup , sup‘RlOﬂ )} < —rija SUP o5 ,
Beq N BeQ s€(0,1] peq n BeRQ Uy
18%0 1y
Co SUPsefo,1] [0oY s W~ n Cs —n B o
sup R} 5(1)] < sup , sup|RYy 5(1)] < sup sup ’
hep 1LA nIte geg (Uln,ﬁ) peg P nH/e geq s

where C, C1, Co, C3 are deterministic constants.

We observe that from Lemma 5.1 and Lemma 5.2 iii), we can deduce immediately the convergences to
zero in L”, Vp > 1 of the remainder terms supgeq [Rg 5(1)],supgeq Ry 5(1)] and supgeq IR, 5(1)]-
For supgeq [RY) 5(1)]; the proof follows from Lemma 5.1 i), (5.6), (4.3), the boundedness of (e ), the

n.6
fact that b has bounded derivatives and supg sup, gﬁuﬁ is bounded.
1

The convergence of ’ﬁg 5, (1) is proved as the convergence of ﬁgf 5, (1) in the proof of Lemma 3.3. This
completes the proof Lemma 5.3. O

Proof of Lemma 5.4: We first prove (5.20). From (5.3) we have (we omit the details)

up [n0gY 1" = Bygb(o, 0)] “2 0.
From the expressions (3.14), (3.15), using supg, supsc(o1 les — 1| — 0 and Lemma 3.1, it can be seen
that R
sup |1 (1)? — Hpa (1) TH—°°> 0, Vg>1. (5.49)
o

30




We deduce that almost surely, one has the convergence

Vg>1, sup|ndpy P (ﬁgﬂu))q — Byb(0, 0) (Hre(1))7] 222 0. (5.50)
x0

Using (4.23) and supg ’897711,&960‘ < %, we can apply the dominated convergence theorem and see
that the convergence (5.50) holds in L”-norm for all p > 1.

For (5.21): the proof is similar to (5.20).

For (5.22): using (5.4), Gronwall’s Lemma and Lemma 3.1, we can prove

Evald »L —
sup [n!/*9, Y, — Lg| 250,
o -

and from (5.49) we deduce

~ q
Vg>1, sup |nt/ea, Vim0 (”Hgn(n) ~ L8 (Hpe (1)) 2225 0.
xo
Consequently, to prove the convergence in LP-norm, it remains to check
1/aq 370Bn%0 (4n 1P
Vp,g>1, E sup |[n"/?0,Y, (Hﬂ(1)> ’ < 0. (5.51)
nﬂ@o
Using again (5.4) and Gronwall’s Lemma, we have
Sup|n1/°‘8(,?rf’ﬂ’xo| < C sup |L}|,
0,8 tE[O,l]
and (5.51) reduces to
P
~ q
Vp,q>1, E sup |sup |L}| (’HZ(I)) < 0. (5.52)
nﬁ@o t€[0,1}

Let us recall that L} = fg f|2|<1 zi(ds, dz) + fg fIZ\>1 2™ (ds, dz). Then we have

t 1
swp (27 swp | [ [ aptas,as)|+ [ el asd),
t€(0,1] tefo,1] Jo J|z|<1 0 Jlz|>1

From this decomposition and since sup;¢g 1 \fot f|2\<1 zfi(ds,dz)|P is integrable, for all p > 1, we see
that (5.52) is a consequence of (4.23) and the following bound

1 P
’Hg(l)/ / 2| ™ (ds, dz)| < oco. (5.53)
0 Jlz|>1

Vp>1, E sup

n767$0
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To prove (5.53), we first remark from (4.17) that for C' a positive constant,

1
a5 [ [ s az)
0 Jz|>1

< fO Jg " (2)| ™ (ds, dz) fo Jr [|Pn/ 1—Z|apn( )} ") (ds, dz) / / s, )
B [fo fR #(n ds dz)} fo pr ds ,dz) 2>|z]>1
+C Jo Jep" ( )| (ds, dz) + Jo J ['pnl )|+ (= )] o) / / |2 (ds, dz)
[ Jo fR )(ds dz)} Jo Ja P (2)p (ds, dz) 12>2
(5.54)

Considering the first term in the right-hand side of (5.54), from the proofs of Step 1 and Step 2
in Theorem 2.1, we deduce that it is bounded by a random variable independent of n, 8 and z¢ and
belonging to My,>1 L.

We now consider the second term in the right-hand side of (5.54). From (3.11), we have

Jo Jar" '(2) |t (ds, dZ) Jo Jr ['pn/ ltlapn( )} e, ) / / 2|1 (ds, dz)
[fo fR ,u(" ds dz)} fo pr )(ds, dz) |z]>2

fo f |<2p ()] p(ds, dz) fo f |2|<2 (’P (2)|+ p(z )1|+O‘ (ds,dz) / / Z|M i
(fo f|z‘>2,z ,u(”)(ds,dz))2 fo f| 1527 2u(m) (ds, dz) |2]>2

fol f‘z|>2212!3,u(n)(d3,dz) fo f >2 (3+a)|z|u (n) (ds, d2) / / ’Z’M -
2
(fgl flz|>2 z2,u(n)(ds,dz)) fo f ‘>22 ,u ds dz) |2|>2

2
Using the Cauchy-Schwarz inequality fol f‘z|>2 p(dt, d,z)xfo1 f‘z|>2 2 (ds, dz) > (fol fIZ\>2 ]z|,u”(dt,dz)>
we get:

s 3 1 3,(n) 1 2
Jo f|z\>2 2|22 ™ (ds, dz) / / ol (0, d2) < I f‘z|>22|z] w (ds,dz)3 </ / M(”)(dt’d2)>
<f01 fz|>2 22 (ds, dz I#1>2 (fol le>2 | 2| () (dt, dz)) 0 Jlz|>2

: 7'5,'3 (! /| o) <a([1 [ pan)

and

12 (3 + )|z|pu™ (ds, dz)
Jo Japsa(3+ )] / / 2| (dt, dz) < (3+ ) / / p(dt, dz). (5.57)
Jo S #2000 (ds, dz) |21>2 o>z

(5.56)
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Combining (5.56), (5.57) with (5.55), it follows that the second term in the right-hand side of (5.54) is
also bounded by a random variable independent of n, 5 and xy and belonging to N,>1L”. Consequently,
we get (5.53) and this achieves the proof of (5.22).

For (5.23), the proof is similar to (5.22). O

Proof of Lemma 5.5: From (5.13), we prove i) and ii) proceeding as in the proof of (5.20), and
i71) and iv) proceeding as in the proof of (5.22). O

6 Appendix. Representation of the transition density via Malliavin
calculus

The aim of this section is to represent the density of a pure jump Lévy process as well as its derivative
and its logarithm derivative as an expectation, using the Malliavin calculus for jump processes devel-
oped by Bichteler, Gravereaux and Jacod [2] and used by Clément-Gloter [5]. We are not exactly in
the context of [2], where the compensator of the Poisson measure is uniform on [0, 1] x E. In fact, in
our context the compensator of the Poisson measure is dt x g(z)dz, where g is the density of the Lévy
measure and we need to adapt slightly the definitions of Malliavin operators given in [2]. We recall
here the appropriate integration by parts setting developed in [5] for the reader convenience.

6.1 Integration by parts setting

We consider a filtered probability space (2,3, (Gt):c(0,1), P) endowed with a Poisson random measure p
on [0,1] x E, where E is an open subset of R, with compensator v on [0, 1] x E and with compensated
measure i = @ — v. We now consider the process (Y;ﬁ )te[o,1), the solution of

t t
Y=ot [ a(vi0ds oo [ [ splds, o), (61)
0 0 JE

where the parameter 3 = (0, )7 belongs to R x (0,00), a is a real valued function and c is a constant.
This is the framework of Clément-Gloter [5] and our aim is to give some explicit representation formulas
for the density of Ylﬁ and its derivative with respect to j.

We assume that the following assumptions are fulfilled.

H: (a) The function a has bounded derivatives up to order five with respect to both variables.

(b) The compensator of the Poisson random measure p is given by v(dt, dz) = dt X g(z)dz with g > 0
on E, C' on E and such that

Vp > 2,/ |2[Pg(2)dz < .
E
We now recall the Malliavin operators L and I" and their basic properties (see Bichteler, Gravereaux,
Jacod [2], Chapter IV, Section 8-9-10). For a test function f : [0,1] x E +— R ( f is measurable,

C? with respect to the second variable, with bounded derivative, and f € N,>1LP(v)) we set u(f) =
fol J5 f(t, z)p(dt,dz). We introduce an auxiliary function p : E +— (0,00) such that p admits a
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derivative and p, p’ and p%/ belong to Np>1LP(g(2)dz). With these notations, we define the Malliavin
operator L, on a simple functional u(f), in the same way as in [5] by the following equations :

L(u(f)) = %u (p’f’ + p%f’ + pf”) ,

where f" and f” are the derivatives with respect to the second variable. For ® = F(u(f1), .., u(fx)),
with F of class C2, we set

k 2
L0 = 37 S ). o DL + 5 D2 G )b,
(2 Z7‘7:1 (2

=1

These definitions permit to construct a linear operator L on a space D C Np>1L” with the same basic
properties as in [5, equations (i)-(iii), p.2322].
We associate to L, the symmetric bilinear operator I':

[(®,0)=L(OV) — PLY — VL.
Moreover, if f and h are two test functions, we have:

L(u(f), u(h)) = p(pf'h').
These operators satisfy the following properties (see [2, equation (8-3)])

LF(®) = F'(®)L& + %F”(CI))F(Q), ),

T(F(®),¥) = F'(®)[(D, V),
L(F(®1,®2), ) = g, F(®1, Do) (@1, ) + Op, F (1, Bo)[(Ps, U). (6.2)

The operator L and the operator I" permit to establish the following integration by parts formula (see
[2, Propositions 8-10, p.103]).

Proposition 6.1. For ® and ¥ in D, and f bounded with bounded derivatives up to order two, we
have

Ef'(®)UT(®, ®) = Ef()(—2U LD — I'(®, T)).

Morover, if T'(®, ®) is invertible and T=(®, ®) € Ny>1 LP, we have

Ef'(®)¥ =Ef(2)Ho(T), (6.3)

with
Ho (V) = =20 1(®, &) LO — T(®, UT 1 (D, ®)) (6.4)
= 207 13, ®)L — F(q)l@)r(cb, ) + F(;WF@’F@’ P)). (6.5)
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6.2 Representation of the density of Ylﬁ and its derivative

The integration by parts setting of the preceding section permits to derive the existence of the density
of Ylﬁ given by (6.1), and gives a representation of this density as an expectation. From Bichteler,

Gravereaux, Jacod [2, Section 10, p.130], we know that V¢ > 0, the variable Ytﬁ, the solution of (6.1),
belongs to the domain of the operator L, and we can compute LY}’ and T'(Y,”, Y}) as in [5]. We recall
the representation formula for the density of Ylﬁ (see [5]).

Theorem 6.1. [Clément-Gloter [5]]: Let us denote by ¢° the density of Yf. We assume that H holds
and that the auziliary function p satisfies:

liurgioréf ﬁ /E Lip(x)>1/up9(2)dz = +00. (6.6)
Then,
qﬂ(u) = E(l{ylﬁzu}Hylﬁ(l))v
with,
H(1) = I‘(Yf,F(Yf,Yf)) _9 LYlﬂ _ Wlﬁ _ 2LY16’ (6.7)
1 LYy, yy)? reyy) ooy

where the processes (LYtB) and (Uf) = F(Ytﬁ,Yﬁ) are solutions of the linear equations:

Lyf — /Ota'(y;ﬂ,e) LYPds+ + / "yP 0UPds + < / / < f}g;) u(ds, dz), (6.8)

t
Uf:2/ "Y2,0)UBds + Po // (ds, dz). (6.9)
0

The process (Wtﬂ) = (Ytﬁ, Ut ) is the solution of the linear equation:

t t
szs/ a’(Yf,H)Wsﬁds+2/ (Y2, 0)(UP)2ds + o // u(ds, dz). (6.10)
0 0

In [5], the authors studied the derivative of ¢° with respect to the drift parameter 6 only. Here,
we intend to study the derivative of ¢” with respect to both parameters § and o. We first remark that
(Ytﬁ)t admits derivatives with respect to 6 and o (see [2, Theorem 5.24 p.51 |), denoted by (89Ytﬁ)t

and (80Ytﬁ )+ respectively. Moreover, ((%Ytﬁ )t (80Yt'8 )¢ are respectively the unique solutions of

t t
oY = / a'(YP,0)05Y ds + / dpa(YP,0)ds, (6.11)
0 0

t t
GUY,;B:/ a’(Yf,O)angds—l—c/ /zﬂ(ds,dz). (6.12)
0 0o JE

By iterating the integration by parts formula, since Ylﬁ admits derivatives with respect to 6 and o,
one can prove, under the assumption H, the existence and the continuity in S of ngﬁ (see Theorem
4-21 in [2]), moreover, we will represent it as an expectation in Theorem 6.3. The next result extends
the result of Theorem 5 in [5], by giving an expression for the logarithm derivatives of the density
w.r.t. (6,0) in terms of a conditional expectation.
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Theorem 6.2. Under the assumptions of Theorem 6.1,

99q”
Vsq? i (u)
S = |0 = B (VDI =), (6.13)
q P (u)

where

M, 5(0pY] 8P\ Ly? [(9,vP\ wo LY, 9pY{
Hys (VYY) = i 15) =—2( " LYE s Wﬂl _Lﬁ o)  (6:14)
! Hys(0oYT) .Yl Ul 9.Y ) (UY)? U \r(vy,0,Y))

LYlﬁ, Ulﬁ and Wlﬁ are given in Theorem 6.1, the process (V) = F(Yt’B,@th’B) is the solution of
t t
Ve =2 / a (VP 0)Vids + / U [((99@)'()’55,9) +a”(Yf,9)agxgﬁ] ds, (6.15)
0 0
and the process (V%) = F(Ytﬁ,&,Ytﬁ) is the solution of

t
Ve :2/ (Y 0)V“ds+/ "(YP,0)0,YPUPds + 2 0/ / p(ds, dz). (6.16)
0

Proof. Theorem 6.2 is an extension of Theorem 5 in [5] where the main novelty is the expression

for 8;—2[3. For the computation of the new term ’HYB(OUYlﬁ ), we apply Theorem 10-3 in [2] to the
1

stochastic differential equation satisfied by the vector (Ytﬂ , Uf , (")UYt’B )T this gives the above expression
for (V7). O

We end this subsection with an explicit representation of ngﬁ(u) which gives a computation of
the iterated Malliavin weight H,.s (Hya(v/ngﬂ)).
1 1

Theorem 6.3. Under the assumptions of Theorem 6.1,

99q” (u)
By — _ 8
V50 (u) = (agqﬁ W) ~E [1{Y1ﬁ2u}7{ylﬁ(%ylg(vﬁyl ))], (6.17)
where
8 5
LY Wzﬂ P(Yl ’HYB (89Y1 )) 1
Byy — B B 1 1
Hyp (Hyp (Vo¥1)) = =20y (Vo21) Uy (Vi )(Uﬁ? PV, My (0,Y7)) | UF
1
(6.18)

where 89Y16,80Y16 are respectively given by equations (6.11), (6.12) and Ulﬁ,Wlﬂ are computed in
Theorem 6.1, Hyﬁ(vﬁyf) is given in Theorem 6.2.
1
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Proof. Let f be a smooth functions with compact support. Then,

VAE [£07)] = [ du¥sa st
On the other hand, using the integration by parts formula of the Malliavin calculus, we have
Vel [107)] =B 1)V sY/]
= E £y (V7))
=E [F )My (Hyp (VD))

where F' denotes a primitive function of f. If f converges to Dirac mass at some point u, from the
estimates above, we can deduce (6.17). Moreover, from (6.5) we also get (6.18). O

To complete the result of Theorem 6.3, we give the expressions for I'(Y;, Hys (8Y)) and (Y7, Hys (0, Y7)).
1 1
Lemma 6.1. Under the assumptions of Theorem 6.1,

LY Hys (00Y]))\ (v sy (20 200 _ (o7 HYIB<1>WE+ P\ @
= o B8 — —_— Y -
LY s @oY)) ) V) 0 oY) o oY) uf 9y ) (UT)?

¢\ 1 v\ wf
N o | 5+ 1o | = (6:19)
Ti Uy Vi (U1)2

where 89Y1ﬂ,BUYIB are respectively given in (6.11), (6.12), UiB,Wlﬂ are computed in Theorem 6.1,
VP, Ve are computed in Theorem 6.2, Hys(1) is given in (6.7) and Df = F(Ylﬁ,LYl’B), Q’f =
1

LY wi), T =1y, V{) and Ty = T(Y{, V).

Proof. From the basic properties of the operators L and I' (linearity and the chain rule property)
stated in Section 6.1, we get that

LY{] w? [ T(Y?, 9,77
LY, Hys (0Y]) =T | Y], —200Y] ——- | + T |V, 00Y ——| +T Yf,—(l’iﬂal) :
! Ur | i (Uy)? Uy
LY [ WP [ vy, 0,Y7)
F(Ylﬁ,Hylg(angﬁ)):F Y —20,v{ Ug +T Yf,agylﬁ(Ug)2 +T |vf, - IUB L
1 L 1 1
where
Ly? Ly? vy Ly/
0|vP —200v{ 1| =210, 8Y{) -2 o T, LYL) + 200y — F(Y UP)
Ul Ul 1 (U
LY N vy Ly?
U1 1 (Uy)?
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w? W’ 2pY 7" 20, Y2 W7
UYL a0y —i—| = =T, 00Y]) + 5107 wy) - =L —Lr(y!, uy)
(Uy)? (Uy) (Ur) (Uy)
_ Wlﬁ VG aﬁyl QB 2af?ylﬁvvlﬁ B
- 1 1-
w2 (U7)? (Uy)3
s T o)) o v aey?) v oY) s s T Vs
Iy, 5 = 5 + go L7, U) = ——5 + —5- Wy
Uy Uy (Uy) vy (Uy)
Similarly, we have
i i
r |y’ —20, YBL = —QLYﬁl Vl"—za"};l D +20,Y{ LWy
1 Ul Ul 1)
8 5 WY wy . 0Y s 20,YPW g
r Yl aaaYl B = B 1 B Ql - B 1
(Uy)? (Uy)? (U7)? (Uy)?
plyp, DOTGYD)| | TE L VE
Uy vy (uy)?

Then, from (6.7) and the above estimates, we get the formula (6.19), after some calculus and the proof
is complete. ]

Lemma 6.2. Under the assumptions of Theorem 6.1, there are versions of the processes (Dtﬁ) =
(O LYP), (QF) =T, W), (19) = (LY, V)i and (T9)e = (DY, V7)), that are solutions
of the linear equations:

t t t 1 t
Df =2 [ o (YP,0)DPds+ | o"'(YP,0)LY U ds +1 " (YE,00WPds+ = | o"(YP,0)(UP)%ds
t 0 s s s 2 0 S S 2 0 S S

g’(Z))'
/ Lo (#6401 5 ) s,
(6.20)
t t t
Qf =4 / '(v7,0)Qlds +7 / "(YE,00WJU ds + 2 / a"(Y?,0)(U))*ds
0 0
+ca// P+ p(2)pl=)"] pds, dz).
(6.21)
t t t
Tﬁ_3/ (nﬁ,e)deer:a/ a”(Yf,@)Vfoder/ (aga)’(Yf,e)Wde/ a"(YP,0)9yYPWEds
0 0 0 0
t t
+ [ @y 02 0w+ [ a2 00 ) s,
0 ° (6.22)
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t
17 :3/ a’(YSB,G)des—F?)/
0

t t
"(YE,0)VIUPds + / d"(YP,0)0,YPWFds

t
—l—/ d"(YP,0)0,YL(UP)2ds + o / / wu(ds,dz).
0

(6.23)

Proof. The proof of Lemma 6.2 is a direct consequence of Theorem 10-3 in [2]. Indeed, considering the
T
stochastic differential equation satisfied by the vector (Y;ﬂ , LY;B , Utﬂ , Wtﬂ , Vtg, v;;’,ang ,&,Y;ﬁ ) and

using Theorem 10-3 in [2], we prove that the processes (Df) = (F(ljﬁ,LYtB))t, (Qf) = F(Y;ﬁ, Wtﬁ)t,
(T?); = (F(Ytﬁ V)¢ and (T7); = (F(Yf , Vi7))¢ are solutions of linear equations, respectively, given

by (6.20)-(6.23). O
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