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The question of whether the two-dimensional (2D) magnetohydrodynamic (MHD) equations with only magnetic diffusion can develop a finite time singularity from smooth initial data is a challenging open problem in fluid dynamics and mathematics. In this paper, we derive a regularity criterion less restrictive than the Beale-Kato-Madja (BKM) regularity criterion type, namely any so-

dt < +∞. This regularity criterion may stand as a great improvement over the usual BKM regularity criterion which states that if

 for their L ∞ ill-posedness.

Introduction

Magnetohydrodynamics equations (MHD) describes the evolution of an electrically conducting fluid. Examples of such fluids include plasmas, liquid metals, and salt water or electrolytes. The field of MHD was initiated by Hannes Alfvén [START_REF] Alfvén | Existence of electromagnetic-hydrodynamic waves[END_REF], for which he received the Nobel Prize in Physics in 1970. It addresses laboratory as well as astrophysical plasmas and therefore is extensively used in very different contexts. In astrophysics, its applications range from solar wind [START_REF] Marsch | Non-Gaussian probability distributions of solar wind fluctuations[END_REF], to the Sun [START_REF] Priest | Solar Magnetohydrodynamics[END_REF][START_REF] Priest | Magnetic reconnection, MHD theory and Applications[END_REF], to the interstellar medium [START_REF] Ng | Anisotropic fluid turbulence in the interstellar medium and solar wind[END_REF] and beyond [START_REF] Zweibel | Magnetic Fields in Galaxies and Beyond[END_REF]. At the same time, MHD is also relevant to large-scale motion in nuclear fusion devices such as tokamaks [START_REF] Strauss | Nonlinear three dimensional dynamics of noncircular tokamaks[END_REF]. A tokamak is a toroidal device in which hydrogen isotopes in the form of a plasma reaching a temperature of the order of the hundred of millions of Kelvins is confined thanks to a very strong applied magnetic field. Tokamaks are used to study controlled fusion and are considered as one of the most promising concepts to produce fusion energy in the near future. However the main problem with this approach of confinement is that hydrodynamic instabilities arise. Numerical simulations using the MHD models are therefore of uttermost importance. Nevertheless, without the existence of a unique solution there is no hope of guaranteeing that a numerical approximation is really an approximation in any meaningful sense, since it is not clear what is being approximated. Due to their prominent roles in modeling many phenomena in astrophysics, geophysics and plasma physics, the MHD equations have been studied extensively mathematically. Furthermore, while the differences in behaviour between the two-dimensional (2D) and three-dimensional (3D) hydrodynamical turbulence of neutral fluids are accepted to be important, those of the MHD system in both cases are conventionally believed to be non-significant [START_REF] Biskamp | On two-dimensional magnetohydrodynamic turbulence[END_REF]. Strong statements were made by some authors that 2D simulations can be safely used to model 3D situations because the properties of the 2D and the 3D MHD turbulence are essentially the same [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF][START_REF] Biskamp | On two-dimensional magnetohydrodynamic turbulence[END_REF]. Hence, the mathematical studies on the MHD equations in the two-dimensional case appear highly relevant. However up to now, the question of spontaneous apparition of singularity from a local classical solution of the partially viscous 2D MHD [START_REF] Alfvén | Existence of electromagnetic-hydrodynamic waves[END_REF] or 2D inviscid MHD ((2) without the Laplacian term) remains a challenging open problem in the mathematical fluid mechanics. Thus, in the absence of a well-posedness theory, the development of blowup/non-blowup theory is of major importance for both theoretical and practical purposes. Indeed, for a mathematical or numerical test of the actual finite time blow-up of a given solution, it is important to have a good blow-up criterion. Thus, there have been many computational attempts to find finite-time singularities of the 2D MHD equations (see [START_REF] Brachet | Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries[END_REF][START_REF] Kerr | Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Reconnection[END_REF][START_REF] Tran | Two-dimensional magnetohydrodynamic turbulence in the limits of infinite and vanishing magnetic Prandtl number[END_REF]). Moreover, recent works on the 2D MHD equations developed regularity criteria in terms of the velocity field and deals with the MHD equations with dissipation and magnetic diffusion given by general Fourier multiplier operators such as the fractional Laplacian operators (see [START_REF] Wu | Generalized MHD equations[END_REF][START_REF] Wu | Regularity criteria for the generalized MHD equations[END_REF][START_REF] Wu | Global regularity for a class of generalized magnetohydrodynamic equations[END_REF]13,[START_REF] Tran | On global regularity of 2D generalized magnetodydrodynamics equations[END_REF][START_REF] Jiu | A remark on global regularity of 2D generalized magnetohydrodynamic equations[END_REF][START_REF] Cao | The 2D Incompressible Magnetohydrodynamics Equations with only Magnetic Diffusion[END_REF][START_REF] Yamazaki | Remarks on the global regularity of two-dimensional magnetohydrodynamics system with zero dissipation[END_REF][START_REF] Yamazaki | On the global regularity of two-dimensional generalized magnetohydrodynamics system[END_REF]). Among all the regularity criteria, one of particular interest is the Beale-Kato-Majda's criterion well known for Euler equations, extended in [START_REF] Caflisch | Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD[END_REF] to the inviscid MHD equations, under the assumption on both velocity field and magnetic field: [START_REF] Gala | An improved blow-up criterion for smooth solutions of the two-dimensional MHD equations[END_REF][START_REF] Tran | On global regularity of 2D generalized magnetodydrodynamics equations[END_REF][START_REF] Jiu | A remark on global regularity of 2D generalized magnetohydrodynamic equations[END_REF][START_REF] Yamazaki | Remarks on the global regularity of two-dimensional magnetohydrodynamics system with zero dissipation[END_REF][START_REF] Jiu | Global regularity of 2D generalized MHD equations with magnetic diffusion[END_REF][START_REF] Agélas | Global regularity for logarithmically critical 2D MHD equations with zero viscosity[END_REF][START_REF] Yamazaki | On the global regularity of two-dimensional generalized magnetohydrodynamics system[END_REF][START_REF] Ye | Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system[END_REF][START_REF] Fan | Global Cauchy problem of 2D generalized MHD equations[END_REF]), the global regularity issue of 2D MHD equations [START_REF] Alfvén | Existence of electromagnetic-hydrodynamic waves[END_REF] remains a challenging open problem up to date. The main reason for the unavailability of a proof of global regularity for the system of equations ( 2) is due to the quadratic coupling between u and b which invalidates the vorticity conservation. Indeed, the structure of the vorticity is instantaneously altered due to the effects of the magnetic fields. This fact is the source of the main difficulty connected to the global existence of classical solutions, where no strong global a priori estimates are known till now. This difficulty is revealed through the equations of the 2D inviscid MHD governing the vorticity ω

T 0 ( ω(t) L ∞ + j(t) L ∞ ) dt < ∞,
= ∂ 1 u 2 -∂ 2 u 1 and the current density j = ∂ 1 b 2 -∂ 2 b 1 , ∂ t ω + u • ∇ω = b • ∇j ∂ t j + u • ∇j = b • ∇ω + T (∇u, ∇b), (1) 
where,

T (∇u, ∇b) = 2∂ 1 b 1 (∂ 2 u 1 + ∂ 1 u 2 ) + 2∂ 2 u 2 (∂ 2 b 1 + ∂ 1 b 2 ).
We observe that the magnetic field contributes in the last nonlinear part of the second equation with the quadratic term T (∇u, ∇b). By virtue of this difficulty, no a priori uniform bound for ω L ∞ (R 2 ×[0,T ]) is known for the 2D MHD equations with only magnetic diffusion [START_REF] Alfvén | Existence of electromagnetic-hydrodynamic waves[END_REF]. Further in [START_REF] Fan | Global Cauchy problem of 2D generalized MHD equations[END_REF][START_REF] Jiu | Global regularity of 2D generalized MHD equations with magnetic diffusion[END_REF][START_REF] Agélas | Global regularity for logarithmically critical 2D MHD equations with zero viscosity[END_REF], by considering Fourier multiplier operators magnetic diffusion slightly stronger than the Laplacian magnetic diffusion, the authors were able to obtain an uniform bound of ∇j L 1 ([0,T ];L ∞ (R 2 )) and then from the first equation of (1) obtain an uniform bound of ω L ∞ (R 2 ×[0,T ]) deriving from estimates for transport equations (see for instance Lemma 4.1 in [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF]). However, the approach used in [START_REF] Fan | Global Cauchy problem of 2D generalized MHD equations[END_REF][START_REF] Jiu | Global regularity of 2D generalized MHD equations with magnetic diffusion[END_REF][START_REF] Agélas | Global regularity for logarithmically critical 2D MHD equations with zero viscosity[END_REF] and based on the properties of heat equation by using singular integral representations of equations (2) fails in the case where we have only a laplacian magnetic diffusion. Then, in this paper, we consider the initial-value problem for the 2D incompressible magneto-hydrodynamics equations with Laplacian magnetic diffusion,

   ∂ t u + (u • ∇)u = -∇p + (b • ∇)b ∂ t b + (u • ∇)b -∆b = (b • ∇)u ∇ • u = 0, ∇ • b = 0 (2) with initial conditions u(x, 0) = u 0 (x) for a.e x ∈ R 2 b(x, 0) = b 0 (x) for a.e x ∈ R 2 (3) 
which models many significant phenomena such as the magnetic reconnection in astrophysics and geomagnetic dynamo in geophysics (see [START_REF] Priest | Magnetic reconnection, MHD theory and Applications[END_REF]). The problem of global well-posedness of the 2D MHD equations with partial dissipation and magnetic diffusion has generated considerable interest recently [START_REF] Cao | Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion[END_REF][START_REF] Chae | Nonexistence of self-similar singularities in the viscous magnetohydrodynamics with zero resistivity[END_REF][START_REF] Jiu | Mathematical results related to a two-dimensional magneto-hydrodynamic equations[END_REF][START_REF] Lei | BKM's Criterion and Global Weak Solutions for Magnetohydrodynamics with Zero Viscosity[END_REF][START_REF] Zhou | A regularity criterion for the 2D MHD system with zero magnetic diffusivity[END_REF][START_REF] Cao | Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion[END_REF][START_REF] Jiu | Global regularity of 2D generalized MHD equations with magnetic diffusion[END_REF]. However up-today, the problem of uniqueness and global regularity of 2D MHD system (2) remains widely open.

Let us take a new look at the main obstruction. We start by noting that we can rewrite the equation [START_REF] Fan | Global Cauchy problem of 2D generalized MHD equations[END_REF] satisfied by ω the vorticity of u as follows:

∂ t ω + (u • ∇)ω = F -b 1 b • ∇u 2 + b 2 b • ∇u 1 , (4) 
where

F = b 1 (∆b 2 + b • ∇u 2 ) -b 2 (∆b 1 + b • ∇u 1 )
. Furthermore, it was shown recently in [START_REF] Yuan | Global Regularity of 2D almost resistive MHD Equations[END_REF] an uniform bound of ∆b+(b•∇)u L ∞ (R 2 ×[0,T ]) (in section 4 we give a sketch of the proof). Moreover, we get an uniform bound of b L ∞ (R 2 ×[0,T ]) deriving from some estimates for linear Stokes system (see [START_REF] Giga | Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains[END_REF]), hence we deduce an uniform bound for

F L ∞ (R 2 ×[0,T ])
. Then, we notice that our equation ( 4) fits with the study made in [START_REF] Elgindi | L ∞ Ill-posedness for a class of equations arising in hydrodynamics[END_REF] about L ∞ ill-posedness for a class of equations arising in hydrodynamics. Thus, by virtue of ∇u = R(ω Id), where R is the Riesz transform on 2 × 2 matrix-valued functions (see ( 19)), we understand that the main obstruction comes from the fact that Riesz transforms does not maps L ∞ into itself.

Let us specify the way in which the obstruction is characterized. By using the following logarithmic Sobolev inequality proved in [START_REF] Kozono | Bilinear estimates and critical Sobolev inequality in BMO, with applications to the Navier-Stokes and the Euler equations[END_REF]:

∇f L ∞ (R 2 ) 1 + ∇ × f L ∞ (R 2 ) 1 + log + f W s,p (R 2 ) with p > 1, s > 1 + 2 p , (5) where 
∇ • f = 0, ∇ × f = -∂ 2 f 1 + ∂ 1 f 2 is
the vorticity of f and log + x = max(0, log x) for any x > 0, we infer that for all t ∈ [0, T [,

∇u(t) ∞ r 1 + ω(t) ∞ 1 + log + u(t) H r (6) 
and also

(∇u, ∇b)(t) ∞ r 1 + (ω, j)(t) ∞ 1 + log + (u, b)(t) H r . (7) 
Then thanks to (6) and by using estimates for transport equations (see for instance Lemma 4.1 in [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF]), from (4) we infer that for all t ∈ [0, T [

ω(t) ∞ r ω 0 ∞ + t 0 ( F (s) ∞ + b(s) 2 ∞ ) ds + t 0 b(s) 2 ∞ ω(s) ∞ 1 + log + u(s) H r ds, (8) 
where r > 2. As a consequence of Gronwall Lemma, we deduce

ω(t) ∞ ≤ c r ω 0 ∞ + t 0 ( F (s) ∞ + b(s) 2 ∞ ) ds e cr R t 0 b(s) 2 ∞ (1+log + u(s) H r )ds , (9) 
where c r > 0 is a real depending only on r. Thus, the main obstruction to get global regularity comes from the term in logarithm which appears in [START_REF] Caflisch | Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD[END_REF], namely log + u(s) H r . Nevertheless, thanks to (6), [START_REF] Chemin | Perfect Incompressible Fluids[END_REF] and the following estimate in the Hilbert space H r 

(u, b)(t) H r ≤ (u 0 , b 0 ) H r e κr R t 0 (∇u,∇b)(τ ) ∞dτ , (10) 
T 0 ∇ × u(t) ∞ dt < +∞ then the solution (u, b) of the 2D MHD equations (2)
remains smooth up to time T . Indeed, in virtue of ∇u = R((∇ × u) Id) with R Riesz transform on matrix-valued functions, we get

∇u BMO(R 2 ) ∇ × u BMO(R 2 ) ,
and for any 1

< q < ∞ ∇u L q (R 2 ) q ∇ × u L q (R 2 ) .
Then, we expect that the blow-up rate at a time T of ∇u(t) ∞ behaves like the one of ∇ × u(t) ∞ (log(e + ∇ × u(t) ∞ )) γ for a given γ ≥ 0. Thus, in this case, due to the exponent 1 2 in our regularity criterion, we get a great improvement over the usual BKM regularity criterion.

Then, the paper is organized as follows:

• In section 1, we give some notations and introduce the functional spaces.

• In section 2, we deal with the local well-posedness of the Cauchy problem of the partially viscous magneto-hydrodynamic system (2).

• In section 3, we give two energy estimates and some estimates from the properties of heat equation by using singular integral representations of equations.

• In section 4, we recall and give a sketch of the proof of new estimates obtained in [START_REF] Yuan | Global Regularity of 2D almost resistive MHD Equations[END_REF] related to the term ∆b + (b • ∇)u.

• In section 5, we give a new estimate for ∇u(t) ∞ in Lemma 5.1 and from this estimate, we obtained a new regularity criterion in Theorem 5.1 less restrictive than the BKM regularity criterion.

Some notations

We use X Y to denote the estimate X ≤ CY for an absolute constant C. If we need C to depend on a parameter, we shall indicate this by subscripts, thus for instance X s Y denotes the estimate X ≤ C s Y for some C s depending on s. For any f ∈ L p (R 2 ), with 1 ≤ p ≤ ∞, we denote by f p and f L p , the L p -norm of f . We denote by BMO(R 2 ) the space of functions of bounded mean oscillation equipped with the norm f BMO def = sup

x∈R 2 ,r>0 1 |B x,r | Bx,r
|f (y)f Bx,r |dy, where B x,r is the ball of radius r centered at x, |B x,r | its measure and f Bx,r = 1 |Bx,r| Bx,r f (y) dy. We denote by Id the 2 × 2 identity matrix. Given an absolutely integrable function f ∈ L 1 (R 2 ), we define the Fourier transform f : R 2 -→ C by the formula,

f (ξ) = R 2 e -2πix•ξ f (x) dx,
and extend it to tempered distributions. We will use also the notation F(f ) for the Fourier transform of f . We define also the inverse Fourier transform f : R 2 -→ C by the formula,

f (x) = R 2 e 2πix•ξ f (ξ) dξ. For s ∈ R, we define the Sobolev norm f H s (R 2 ) of a tempered distribution f : R 2 -→ R by, f H s (R 2 ) = R 2 (1 + |ξ| 2 ) s | f (ξ)| 2 dξ 1 2
, and then we denote by H s (R 2 ) the space of tempered distributions with finite H s (R 2 ) norm, which matches when s is a non negative integer with the classical Sobolev space H k (R 2 ), k ∈ N. The Sobolev space H s (R 2 ) can be written as

H s (R 2 ) = J -s L 2 (R 2 ) where J = (1 -∆) 1 2 .
For s > -1, we also define the homogeneous Sobolev norm,

f Ḣs (R 2 ) = R 2 |ξ| 2s | f (ξ)| 2 dξ 1 2 , (11) 
and then we denote by Ḣs (R 2 ) the space of tempered distributions with finite Ḣs (R 2 ) norm. We use the Fourier transform to define the fractional Laplacian operator (-∆) α , -1 < α ≤ 1. We define it as follows,

(-∆) α f (ξ) = |ξ| 2α f (ξ).
We denote by

H s σ (R 2 ) the Sobolev space H s σ (R 2 ) def = {ψ ∈ H s (R 2 ) 2 : divψ = 0}
. We denote by P the projector onto divergence free vector fields given by P = Id -∇∆ -1 div. The operator P, which acts on vector-valued functions, is a projection : P 2 = P, annihilates gradients and maps into solenoidal (divergencefree) vectors; it is a bounded operator from (vector-valued) L q to itself for all 1 < q < ∞ and commutes with translation. We can notice that the operator P can be written under the form,

P = Id -∇∆ -1 div, (12) 
which yields to Helmholtz decomposition, indeed for all v ∈ L q (R 2 ) 2 , 1 < q < ∞,

v = Pv + ∇ψ, with div Pv = 0, ψ = ∆ -1 div v. (13) 

Local regularity of solutions of the 2D MHD equation

This section is devoted to the local well-posedness of the 2D MHD equations. By using P the matrix Leray operator, the first equation of ( 2) can be re-written as follows, ∂u ∂t

+ P((u • ∇)u -(b • ∇)b) = 0. ( 14 
)
For (u, b) solution of (2), let us introduce

ω = ∇ × u = -∂ 2 u 1 + ∂ 1 u 2 the vorticity and j = ∇ × b = -∂ 2 b 1 + ∂ 1 b 2 the current density. Applying ∇× to 50
the equations of (2), we obtain the governing equations for ω and j

∂ t ω + (u • ∇)ω = (b • ∇)j ∂ t j + (u • ∇)j -∆j = (b • ∇)ω + T (∇u, ∇b). ( 15 
)
where,

T (∇u, ∇b) = 2∂ 1 b 1 (∂ 2 u 1 + ∂ 1 u 2 ) + 2∂ 2 u 2 (∂ 2 b 1 + ∂ 1 b 2 ).
In this section we assume that the initial data (u 0 , b 0 ) ∈ H r σ (R 2 ) with r > 2. Then, we introduce ω 0 = ∇ × u 0 the vorticity of u 0 and j 0 = ∇ × b the current density of b 0 .

We assume that (u 0 , b 0 ) ∈ H r σ (R 2 ) with r > 2, thanks to Theorem 5.1 in [START_REF] Caflisch | Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD[END_REF] valid for all integer r ≥ 3 and by using the same arguments as in Proposition 4.3 of [START_REF] Agélas | Global regularity for logarithmically critical 2D MHD equations with zero viscosity[END_REF] valid for all real r > 2, we get that there exists a time of existence T > 0 such that there exists an unique strong solution (u, b) ∈ C([0, T [, H r σ (R 2 )) to the 2D MHD equations ( 2)-(3). Thanks to the Beale-Kato-Madja (BKM) criterion obtained in [START_REF] Caflisch | Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD[END_REF] for any integer r ≥ 3 and extended in Proposition 4.2 of [START_REF] Agélas | Global regularity for logarithmically critical 2D MHD equations with zero viscosity[END_REF] for any real r > 2, we get that if

(u, b) ∈ C([0, T ], H r σ (R 2 )), then we have T 0 (ω, j)(t) L ∞ dt = +∞. ( 16 
)
From the first equation of (2), we can retrieve the pressure p from (u, b) with the formula,

p = -∆ -1 div((u • ∇)u -(b • ∇)b). (17) 
Since ∇ • u = 0 and ∇ • b = 0, then we get (u

• ∇)u = ∇ • (u ⊗ u) and (b • ∇)b = ∇ • (b ⊗ b).
Then from [START_REF] Giga | Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains[END_REF], we get,

p = -∆ -1 div ∇ • (u ⊗ u -b ⊗ b). (18) 
By introducing R

def = ∆ -1 div ∇• (19) 
the Riesz transform on 2 × 2 matrix-valued functions on R 2 , we get

p = -R(u ⊗ u -b ⊗ b). (20) 
Owing to (u, b) ∈ C([0, T [, H r (R 2 )), thanks to the L 2 -boundedness of the Riesz transforms and Lemma X4 in [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF], from [START_REF] Jiu | Global regularity of 2D generalized MHD equations with magnetic diffusion[END_REF] we infer that p ∈ C([0, T [, H r (R 2 )).

Similarly as Proposition 4.1 in [START_REF] Agélas | Global regularity for logarithmically critical 2D MHD equations with zero viscosity[END_REF], we get the following local estimates in the higher Sobolev norm H r : there exists a real κ r > 0 depending only on r such that for all t ∈ [0, T [

(u, b)(t) H r ≤ (u 0 , b 0 ) H r e κr R t 0 (∇u,∇b)(τ ) ∞ dτ . (21) 

Some estimates

In this section, we give some estimates related to the solutions of the 2D MHD equations 2.

Energy estimates

In this subsection, we recall some energies estimates. We give here the two following energy estimates given in [START_REF] Tran | On global regularity of 2D generalized magnetodydrodynamics equations[END_REF][START_REF] Lei | BKM's Criterion and Global Weak Solutions for Magnetohydrodynamics with Zero Viscosity[END_REF][START_REF] Agélas | Global regularity for logarithmically critical 2D MHD equations with zero viscosity[END_REF]:

for all t ∈ [0, T * [ u(t) 2 2 + b(t) 2 2 + 2 t 0 ∇b(τ ) 2 2 dτ = u 0 2 2 + b 0 2 2 (22) 
and we get also that for all t ∈ [0, T * [

ω(t) 2 2 + j(t) 2 2 + t 0 ∇j(τ ) 2 2 dτ ≤ ( ω 0 2 2 + j 0 2 
2 )e C( u0

2 2 + b0 2 2 ) , (23) 
where C > 0 is an absolute constant.

Some estimates deriving from heat equation

In this subsection, in the Lemma just below, we give the details (often omitted) of the proof of some estimates deriving from the properties of the heat kernel.

Lemma 3.1. Let (u 0 , b 0 ) ∈ H r (R 2 ) with r > 2 and T > 0 be such that there

exists (u, b) ∈ C([0, T [, H r σ (R 2 )) solution of the 2D MHD equations (2)-(3). Then there exists a real C 1 > 0 depending only on (u 0 , b 0 ) H r , r and T such that b L ∞ (R 2 ×[0,T ]) ≤ C 1 .
For any real p > 1 and q > 2, we have also three real C 2 > 0, C 3 > 0 and C 4 > 0 depending only on (u 0 , b 0 ) H r , p, q, r and T such that,

∇b L ∞ ([0,T ]×L q (R 2 )) ≤ C 2 , ω L ∞ ([0,T ]×L q (R 2 )) ≤ C 3 , ∇ 2 b L p ([0,T ]×L q (R 2 )) ≤ C 4 .
Proof. For this, we write the second equation of 2 under its integral form, then we have for all t ∈ [0, T [

b(t) = e t∆ b 0 + t 0 e (t-s)∆ ((b • ∇)u(s) -(u • ∇)b(s)) ds. (24) 
Then by using inequality (2.3) in [START_REF] Kato | Strong L q solutions of the Navier-Stokes equations in R m , with application to weak solutions[END_REF], we get

e (t-s)∆ ((b • ∇)u(s) -(u • ∇)b(s)) ∞ (t -s) -2 3 (b • ∇)u(s) -(u • ∇)b(s) 3 2 (t -s) -2 3 ( b(s) 6 ∇u(s) 2 + u(s) 6 ∇b(s) 2 ).
As a consequence, from (24) we get,

b(t) ∞ b 0 ∞ + t 0 (t -s) -2 3 ( b(s) 6 ∇u(s) 2 + u(s) 6 ∇b(s) 2 ) ds. ( 25 
) Since b(s) 6 b(s) H 1 , u(s) 6 u(s) H 1 and ∇b(s) 2 j(s) 2 , ∇u(s) 2 ω(s) 2 (see Theorem 3.1.1 in [8]
), then thanks to ( 22) and ( 23), from [START_REF] Lei | BKM's Criterion and Global Weak Solutions for Magnetohydrodynamics with Zero Viscosity[END_REF] we deduce that there exists a real C 0 > 0 depending only on (u 0 , b 0 ) 2 , (ω 0 , j 0 ) 2 such that for all

t ∈ [0, T [, b(t) ∞ b 0 ∞ + C 0 (T ) 1 3 . (26) 
Owing to [START_REF] Marsch | Non-Gaussian probability distributions of solar wind fluctuations[END_REF] and thanks to the Sobolev embedding H r (R 2 ) → L ∞ (R 2 ) since r > 2, we deduce that there exists a real C 1 > 0 depending only on (u 0 , b 0 ) H r , r and T such that for all t ∈ [0,

T [ b(t) ∞ ≤ C 1 , (27) 
which concludes the first part of the proof. By virtue of (24), we get that for all t ∈ [0, T [

∇b(t) = e t∆ ∇b 0 + t 0 ∇e (t-s)∆ ((b • ∇)u(s) -(u • ∇)b(s)) ds. (28) 
Then by using inequality (2.3') in [START_REF] Kato | Strong L q solutions of the Navier-Stokes equations in R m , with application to weak solutions[END_REF], from (28) we deduce,

∇b(t) q q ∇b 0 q + t 0 (t -s) -(1-1 q ) (b • ∇)u(s) -(u • ∇)b(s) 2 ds. ( 29 
)
Thanks again to [START_REF] Kato | Strong L q solutions of the Navier-Stokes equations in R m , with application to weak solutions[END_REF] and [START_REF] Kerr | Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Reconnection[END_REF], from [START_REF] Priest | Solar Magnetohydrodynamics[END_REF] we get that for all t ∈ [0, T [, ∇b(t) q q ∇b 0 q + (u 0 , b 0 ) 2 (ω 0 , j 0 ) 2 e c (u0,b0) 2 2 qT

1 q . ( 30 
)
Thanks to Gagliardo-Nirenberg inequality, for any q > 2 we have the following Sobolev embedding H r (R 2 ) → Ẇ 1,q (R 2 ) since r > 2, then owing to [START_REF] Priest | Magnetic reconnection, MHD theory and Applications[END_REF] we deduce that there exists a real C 2 > 0 depending only on (u 0 , b 0 ) H r , T , r and q such that for all t ∈ [0, T [,

∇b(t) q ≤ C 2 , (31) 
which concludes the second part of the proof.

To get an estimate of ω L ∞ ([0,T ];L q ) , we borrow some arguments used in [START_REF] Jiu | Global regularity of 2D generalized MHD equations with magnetic diffusion[END_REF]. Thanks to the L p -L q maximal regularity of the Laplacian operator (see e.g [START_REF] Giga | Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains[END_REF]), from the second equation of 2, we get that for all t ∈ [0, T [, p > 1 and

q > 2 t 0 ∇ 2 b(s) p q p,q t 0 (b • ∇)u(s) -(u • ∇)b(s) p q ds p,q t 0 ( b(s) p ∞ ω(s) p q + u(s) p ∞ ∇b(s) p q ) ds, (32) 
where we have used the fact that ∇u(s) q q ω(s) q (see Theorem 3.1.1 in [START_REF] Chemin | Perfect Incompressible Fluids[END_REF]). Then, we multiply the first equation of ( 15) by ω|ω| q-2 , integrate it over R 2 and use the fact that ∇ • u = 0 to obtain

75 1 q d dt ω(t) q q = R 2 b(x, t) • ∇j(x, t)ω(x, t)|ω(x, t)| q-2 dx ≤ b(t) ∞ ∇j(t) q ω(t) q-1 q , which yields to: for all t ∈ [0, T [, 1 2 
d dt ω(t) 2 q ≤ b(t) ∞ ∇j(t) q ω(t) q .
After an integration over [0, t] of the inequality just above, we obtain

ω(t) 2 q ≤ ω 0 2 q + 2 t 0 b(s) ∞ ∇j(s) q ω(s) q ds ≤ ω 0 2 q + t 0 ( ∇j(s) 2 q + b(s) 2 ∞ ω(s) 2 q ) ds (33) 
Then thanks to [START_REF] Tran | On global regularity of 2D generalized magnetodydrodynamics equations[END_REF], from [START_REF] Tran | Two-dimensional magnetohydrodynamic turbulence in the limits of infinite and vanishing magnetic Prandtl number[END_REF] we infer that for all t ∈ [0, T [

ω(t) 2 q ω 0 2 q + t 0 ( u(s) 2 ∞ ∇b(s) 2 q + b(s) 2 ∞ ω(s) 2 q ) ds. ( 34 
)
By using Gagliardo-Nirenberg inequalities, Young inequalities and the fact that ∇u(s) q q ω(s) q , we get

u(s) ∞ q u(s) 2 + ω(s) q . ( 35 
)
By virtue of ( 34) and ( 35), we get that for all t ∈ [0, T [,

ω(t) 2 q q ω 0 2 q + t 0 ( u(s) 2 2 ∇b(s) 2 q + ( ∇b(s) 2 q + b(s) 2 ∞ ) ω(s) 2 q ) ds. ( 36 
)
Thanks to ( 22), ( 27) and ( 31), we deduce that there exists a real C > 0 depending only on (u 0 , b 0 ) H r , T , r and q such that for all t ∈ [0, T [

ω(t) 2 q ≤ C + C t 0 ω(s) 2 q ds. ( 37 
)
Thanks to Gronwall inequality, we infer that for all t ∈ [0, T [,

ω(t) 2 q ≤ Ce C T .
Therefore with

C 3 = √ Ce 1 2
C T , we obtain a real C 3 > 0 depending only on (u 0 , b 0 ) H r , T and q such that for all t ∈ [0, T [,

ω(t) q ≤ C 3 , (38) 
which concludes the third part of the proof. By using ( 35) into ( 32) and thanks to ( 38), ( 22), ( 27) and ( 31), we completes the proof.

Some new estimates

In this section, we give a sketch of the proof of the Lemma 4.1 obtained in [START_REF] Yuan | Global Regularity of 2D almost resistive MHD Equations[END_REF] by exploiting the special structure of the 2D MHD equations [START_REF] Alfvén | Existence of electromagnetic-hydrodynamic waves[END_REF].

Lemma 4.1. Let (u 0 , b 0 ) ∈ H r (R 2 ) with r > 2 and T > 0 be such that there exists (u, b) ∈ C([0, T [, H r σ (R 2 )) solution of the 2D MHD equations (2)- (3) 
. Then there exists a real C > 0 depending only on (u 0 , b 0 ) H r , r and

T such that ∆b + (b • ∇)u L ∞ ([0,T ];L ∞ (R 2 )) ≤ C, (39) 
and we have also that for any real p ≥ 2 and q ≥ 2,

∇(∆b + (b • ∇)u) L p ([0,T ];L q (R 2 )) ≤ C. (40) 
The proof of Lemma 4.1 given in [START_REF] Yuan | Global Regularity of 2D almost resistive MHD Equations[END_REF] is obtained by writing the equation satisfied by

F := ∆b + (b • ∇)u that is ∂ t F -∆F = -(b • ∇)P((u • ∇)u) + (b • ∇)P((b • ∇)b) -∆((u • ∇)b) -∇u (u • ∇)b + ∇u (b • ∇)u + ∇u ∆b. ( 41 
)
This equation is obtained by applying (b • ∇) and ∆ respectively to the first equation of ( 14) and second equation of (2), and multiplying the second equation of ( 2) by ∇u and after adding the resulting equations together. Then, by writing equation ( 41) under its integral form and using the fact that ∇ • u = 0 and ∇ • b, we get for all t ∈ [0, T [

F(t) = e t∆ F(0) + t 0 ∇e (t-s)∆ (b(s) ⊗ P((u • ∇)u)(s) -b(s) ⊗ P((b • ∇)b)(s)) ds + t 0 ∇e (t-s)∆ ∇((u • ∇)b)(s) ds + t 0 e (t-s)∆ (-∇u(s) (u(s) • ∇)b(s) + ∇u(s) (b(s) • ∇)u(s) + ∇u(s) ∆b(s))ds. (42) 
Then using inequalities (2.3) and (2.3') of [START_REF] Kato | Strong L q solutions of the Navier-Stokes equations in R m , with application to weak solutions[END_REF] stated for 1 < p ≤ q < +∞ but remaining true for q = ∞, we obtain for all t ∈ [0, T [

F(t) ∞ ≤ F(0) ∞ + t 0 (t -s) -5 6 (b(s) ⊗ P((u • ∇)u)(s) -b(s) ⊗ P((b • ∇)b)(s)) 3 ds + t 0 (t -s) -5 6 ∇((u • ∇)b)(s) 3 ds + t 0 (t -s) -1 2 -∇u(s) (u(s) • ∇)b(s) + ∇u(s) (b(s) • ∇)u(s) + ∇u(s) ∆b(s) 2 ds.
(43) By using the fact that P is a bounded operator from (vector-valued) L q to itself for all 1 < q < ∞ and Hölder inequality, we get

(b(s) ⊗ P((u • ∇)u)(s) -(b(s) ⊗ P((b • ∇)b)(s) 3 b(s) ∞ u(s) 6 ∇u(s) 6 + b(s) ∞ b(s) 6 ∇b(s) 6 , ∇((u • ∇)b)(s) 3 ∇u(s) 6 ∇b(s) 6 + u(s) 6 ∇ 2 b(s) 6 , -∇u(s) (u(s) • ∇)b(s) + ∇u(s) (b(s) • ∇)u(s) + ∇u(s) ∆b(s) 2 ∇u(s) 6 u(s) 6 ∇b(s) 6 + ∇u(s) 2 6 b(s) 6 + ∇u(s) 6 ∆b(s) 3 .
(44) Furthermore, thanks to Gagliardo-Nirenberg interpolation inequality and Theorem 3.1.1 in [START_REF] Chemin | Perfect Incompressible Fluids[END_REF], we get u(s) 6 u(s)

1 3 2 ω(s) 2 3
2 , b(s) 6 b(s)

1 3 2 j(s) 2 3
2 , ∇u(s) 6 ω(s) 6 .

(45) After plugging (45) into (44) and using Lemma 3.1 with the energy inequalities [START_REF] Kato | Strong L q solutions of the Navier-Stokes equations in R m , with application to weak solutions[END_REF], [START_REF] Kerr | Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Reconnection[END_REF], from (43) we infer that there exists a real C 0 > 0 depending only on (u 0 , b 0 ) H r , r and T such that for all t ∈ [0, T [

F(t) ∞ C 0 1 + t 0 (t -s) -5 6 (1 + ∇ 2 b(s) 6 ) + (t -s) -1 2 (1 + ∆b(s) 3 ) ds .
(46) Thanks to Hölder inequality used with the couples of exponents ( 76 , 7) and ( 3 2 , 3), from (46) we deduce that for all t ∈ [0, T [ , which yields to

F(t) ∞ C 0 + C 0 t 0 (t -s) -
F(t) ∞ C 0 1 + t 1 42 t 0
(1 + ∇ 2 b(s) 7 6 ) ds

1 7
+ t .

(47) Then, thanks again to Lemma 3.1, from (47) one obtains that there exists a real where β r > 0 is a real depending only on r. Let us give an estimate of the term 1 + log + u(t) H r . Thanks to [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF], we get that there exists a real κ r > 0 depending only on r such that for all t ∈ [0, T [

(u, b)(t) H r ≤ (u 0 , b 0 ) H r e κr R t 0 (∇u,∇b)(τ ) ∞ dτ . ( 52 
)
After taking the logarithm in the inequality (52), we observe that for all t ∈ [0, T [,

log + (u, b)(t) H r ≤ log + (u 0 , b 0 ) H r + κ r t 0 (∇u, ∇b)(τ ) ∞ dτ. (53) 
Thanks to Lemma 3.1 and the Sobolev embedding

W 2,q (R 2 ) → W 1,∞ (R 2 )
with q > 2, we infer that there exists a real 0 > 0 depending only on r, T , (u 0 , b 0 ) H r such that

T 0 ∇b(σ) ∞ ≤ 0 . (54) 
Then owing to (54), from (53) we infer that there exists a real 1 ≥ 1 depending only on r, T , (u 0 , b 0 ) H r such that for all t ∈ [0, T [,

1 + log + (u, b)(t) H r ≤ 1 + κ r t 0 ∇u(s) ∞ ds. (55) 
Thus, by plugging (55) into (51), we deduce that there exists a real 2 > 0 depending only on (u 0 , b 0 ) H r , T and r such that for all t ∈ [0, T [,

∇u(t) ∞ ≤ β r + 2 ω(t) ∞ 1 + t 0 ∇u(s) ∞ ds . (56) 
Now, let us estimate ω(t) ∞ . We observe that the first equation of ( 15) can be changed into

∂ t ω + u • ∇ω = F -b 1 b • ∇u 2 + b 2 b • ∇u 1 , (57) 
where

F = b 1 (∆b 2 +b•∇u 2 )-b 2 (∆b 1 +b•∇u 1 )
. By using estimates for transport equations (see for instance Lemma 4.1 in [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF]), we obtain that for all t ∈ [0, T [

ω(t) ∞ ≤ ω 0 ∞ + c t 0 F (s) ∞ ds + c t 0 b(s) 2 ∞ ∇u(s) ∞ ds, (58) 
where c > 0 is a constant. Thanks to Lemmata 3.1 and 4.1, we deduce that there exist two real 3 > 0 and 4 > 0 depending only on (u 0 , b 0 ) H r , T and r such that for all t ∈ [0, T [,

c t 0 F (s) ∞ ds ≤ 3 b(t) 2 ∞ ≤ 4 . (59) 
As a consequence of Gronwall Lemma, from (69) we get for all t ∈ [0, T [, log(e + J(t)) ≤ log(e + J(0)) exp

1 2 6 t 0 ∇u(s) 1 2 
∞ log(e + ∇u(s)

1 2 ∞ ) ds . (70) 
From (65), we get J(0) = 6 and thanks to (70), we thus obtain for all t ∈ [0, T [,

J(t) ≤ exp log(e + 1 2
6 ) exp

1 2 6 t 0 ∇u(s) 1 2 
∞ log(e + ∇u(s)

1 2 ∞ ) ds . (71) 
Owing to (66) and (71), we obtain that for all t ∈ [0, T [,

∇u(t) ∞ ≤ exp 2 log(e + 1 2 
6 ) exp

1 2 6 t 0 ∇u(s) 1 2 
∞ log(e + ∇u(s)

1 2 ∞ ) ds . (72) 
Since e + ∇u(s)

1 2 ∞ ≥ (e + ∇u(s) ∞ ) 1 
2 , then we get log(e + ∇u(s) 

∞

log(e + ∇u(s) ∞ ) ds , which concludes the proof.

Remark 5.1. We observe that the expression of the estimate obtained in Lemma 5.1 for ∇u(t) ∞ makes appear a double exponential growth. This double exponential growth derives from the taking into account in the estimate of the term log(e + ∇u(t) ∞ ). We thus point out that we have also an upper bound of ∇u(t) ∞ for which we get only one single exponential growth. Indeed, from (64), thanks to Gronwall Lemma, we obtain that for all t ∈ [0, T [ Proof. Let us assume that we have

∇u(t) 1 2 ∞ ≤ 1 2 6 exp 1 2 6 t 0 ∇u(s) 1 2 ∞ ds , which yields to ∇u(t) ∞ ≤ 6 exp 2 1 2 6 t 0 ∇u(s)
T 0 ∇u(t) 1 2 ∞ log(e + ∇u(t) ∞ ) dt < +∞. ( 73 
)
For a contradiction, we suppose that u ∈ C([0, T ], H r σ (R 2 ). Then we get [START_REF] Gala | An improved blow-up criterion for smooth solutions of the two-dimensional MHD equations[END_REF]. Thanks to Lemma 3.1 and the Sobolev embedding W 2,q (R 2 ) → W 1,∞ (R 2 ) with q > 2, we infer that T 0 j(t) ∞ dt < +∞. Then from ( 16), we get only

T 0 ω(t) ∞ dt = +∞. ( 74 
)
Thanks to Lemma 5.1, there exists a real 1 > 0 depending only on (u 0 , b 0 ) H r , T and r such that for all t ∈ [0, T [,

∇u(t) ∞ ≤ exp 1 exp 1 t 0 ∇u(s) 1 2 ∞ log(e + ∇u(s) ∞ ) ds . (75) 
Then by virtue of ( 75) and (73), we infer that

T 0 ∇u(t) ∞ dt < +∞ which 110 implies that T 0 ω(t) ∞ dt < +∞.
Then we obtain a contradiction with (74) and hence u ∈ C([0, T ], H r σ (R 2 ) which concludes the proof.

Conclusion

In this article, we obtained a new regularity criterion for the two-dimensional resistive magneto-hydrodynamic (MHD) equations less restrictive than the BKM's regularity criterion (see Theorem 5.1), by using the logarithmic Sobolev inequality. It is important to find some criteria less restrictive than the BKM's regularity criterion. Indeed, due to the quadratic nonlinearity of the MHD equations, we expect that the blow-up rate of ∇u(t) ∞ at a time T be at least faster than

O 1 T -t
. Thus, if one investigates numerically on the finite time singularities of the solutions of such system of equations and believe that its numerical solution computed leads to a finite-time blowup at some time T , then one may observe a blow-up rate at the time T for ∇u(t) of the form O 1 (T -t) γ , γ ≥ 1. Further, in all the recent numerical investigations performed to find finite time singularities of the 2D inviscid MHD equations, the results suggest blow-up rates at a time T for ∇u(t) ∞ of the form O 1 (T -t) α with 1 ≤ α < 2 (see [START_REF] Brachet | Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries[END_REF][START_REF] Kerr | Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Reconnection[END_REF]). Then, for these numerical cases, with the BKM's regularity criterion, one would conclude to an evidence for finite time singularity at some time T of the solutions of the 2D resistive MHD equations. However, with the use of our regularity criterion (see Theorem 5.1), we can confirm that in fact there is no blowup of the solution at this time T . Then, it is dangerous to interpret the blow-up of an under-resolved computation as evidence of finite-time singularities for the 2D resistive MHD equations. Indeed, computing 2D MHD singularities numerically is an extremely challenging task. First of all, it requires huge computational resources (see [START_REF] Brachet | Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries[END_REF]). Tremendous resolutions are required to capture the nearly singular behaviour of the 2D MHD equations. Secondly, one has to perform a careful convergence study. Furthermore, we notice also that our problem fits in the class of equations considered in [START_REF] Elgindi | L ∞ Ill-posedness for a class of equations arising in hydrodynamics[END_REF] in the study of L ∞ ill-posedness problem. We thus point out that by borrowing the same arguments used in this paper, we can establish the same regularity criterion to another interesting open problem in mathematical fluid dynamics mentioned in [START_REF] Elgindi | L ∞ Ill-posedness for a class of equations arising in hydrodynamics[END_REF], it is about the following type of equation in two-dimension:

∂ t u + (u • ∇)u + ∇p = Au, ∇ • u = 0, (76) 
with initial conditions u 0 a free-divergence field vector and A is some constant matrix. Namely, as Theorem 5.1, we get the following Theorem for the system of equations (76): 

  where the vorticity ω = ∇×u and the density j = ∇ × b. And so, the Beale-Kato-Majda's criterion ensures that the solution (u, b) of the inviscid MHD equations is smooth up to time T . Meanwhile the 2D Euler equation is globally well-posed for smooth initial data, however for the 2D inviscid MHD equations, the global wellposedness of classical solution is still a big open problem. Despite recent developments on regularity criteria (see

where 6 > 0 ∇u(t) 1 2 ∞

 602 0 is a real depending only on T , r and (u 0 , b 0 ) r . Let us establish now, a new regularity criterion in the Theorem just below. Theorem 5.1. Let (u 0 , b 0 ) ∈ H r σ (R 2 ) with r > 2 and T > 0 be such that there exists (u, b) ∈ C([0, T [, H r σ (R 2 )) solution of the 2D MHD equations (2)-(3). If T log(e + ∇u(t) ∞ ) dt < +∞ then there cannot be blowup of the solution u in H r (R 2 ) at the time T , in other words u ∈ C([0, T ], H r σ (R 2 )).

Theorem 5 . 2 . 0 ∇u(t) 1 2 ∞

 5202 Let u 0 ∈ H r σ (R 2 ) with r > 2 and T > 0 be such that there existsu ∈ C([0, T [, H r σ (R2)) solution of the equations (76).If T log(e + ∇u(t) ∞ ) dt <+∞ then there cannot be blowup of the solution u in H r (R 2 ) at the time T , in other words u ∈ C([0, T ], H r σ (R 2 )).

  we obtain a new estimate of ∇u(t) ∞ in Lemma 5.1 which leads to a new regularity criterion in Theorem 5.1. Our new regularity criterion states that

	if	T	∇u(t)	1 2
	0			

∞

log(e + ∇u(t) ∞ ) dt < +∞ then the solution (u, b) of the 2D MHD equations (2) remains smooth up to time T . This new regularity criterion may appear less restrictive than the BKM regularity criterion which states that if

C 1 > 0 depending only on (u 0 , b 0 ) H r , r and T such that for all t ∈ [0, T [,

which gives us [START_REF] Ye | Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system[END_REF] the first inequality of Lemma 4.1. For the second inequality of Lemma 4.1, we use the L p -L q maximal regularity of the Laplacian operator [START_REF] Giga | Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains[END_REF], one has for any 1 < p < ∞, 1 < q < ∞ and

Then, with the expression of ∇F(t) obtained from [START_REF] Zweibel | Magnetic Fields in Galaxies and Beyond[END_REF] and by using (48), inequality (2.3') of [START_REF] Kato | Strong L q solutions of the Navier-Stokes equations in R m , with application to weak solutions[END_REF], Lemma 3.1 and the energy inequalities ( 22), [START_REF] Kerr | Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Reconnection[END_REF], we obtain in a similar way [START_REF] Yuan | Global Regularity of 2D almost resistive MHD Equations[END_REF] the second inequality of Lemma 4.1.
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In this section, we give a new estimate for ∇u(t) ∞ in Lemma 5.1 and from this estimate, we obtain a new regularity criterion in Theorem 5.1 less restrictive than the BKM regularity criterion.

)) solution of the 2D MHD equations (2)-(3). Then there exists a real γ 0 > 0 depending only on (u 0 , b 0 ) H r , T and r such that for all t ∈ [0, T [,

Proof. We begin the proof with the following logarithmic Sobolev inequality proved in [START_REF] Kozono | Bilinear estimates and critical Sobolev inequality in BMO, with applications to the Navier-Stokes and the Euler equations[END_REF] (see inequality (4.20)) and stands as an improved version of that in [START_REF] Beale | Remarks on the Breakdown of Smooth Solutions for the 3-D Euler Equations[END_REF]:

the vorticity of f and log + x = max(0, log x) for any x > 0. Thus, by virtue of (50), we get that for all t ∈ [0, T [,

Thus by virtue of (59), from (58) we infer that for all t ∈ [0, T [

Furthermore, thanks to the Sobolev embedding

Hence, owing to (61), from (60) we deduce that there exists a real 5 > 0 depending only on (u 0 , b 0 ) H r , T and r such that for all t ∈ [0, T [,

By plugging (62) into (56), we infer that there exists a real 6 ≥ 1 depending only on r, T , (u 0 , b 0 ) H r such that for all t ∈ [0, T [,

which yields to

We thus introduce the real function J defined for all t ∈ [0, T [ by

On one hand, by virtue of (64), thanks to (65) we get that for all t ∈ [0, T [,

On the other hand, from (65), we infer that for any t ∈ [0, T [,

∞ log(e + ∇u(t)

∞ log(e + ∇u(t)

Then, owing to (66), from (67), we infer that for all t ∈ [0, T [,

6 ∇u(t) 

∞

log(e + ∇u(t)

log(e + J(t)).

(69)