
HAL Id: hal-01410820
https://hal.science/hal-01410820v1

Submitted on 6 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Natural Language Processing of Requirements for
Model-Based Product Design with ENOVIA CATIA V6

Philippe Veron, Frédéric Segonds, Nicolas Croue

To cite this version:
Philippe Veron, Frédéric Segonds, Nicolas Croue. Natural Language Processing of Requirements for
Model-Based Product Design with ENOVIA CATIA V6. Product Lifecycle Management International
Conference (DOHA : 2015 :15), Oct 2015, Doha, Qatar. pp.1-10. �hal-01410820�

https://hal.science/hal-01410820v1
https://hal.archives-ouvertes.fr

Natural Language Processing of Requirements for

Model-Based Product Design with ENOVIA/CATIA V6

Romain Pinquié1, Philippe Véron1, Frédéric Segonds2, Nicolas Croué3

1LSIS, UMR CNRS 7296, Arts et Métiers ParisTech, Aix-en-Provence, France

2LCPI, Arts et Métiers ParisTech, Paris, France
3KEONYS, Toulouse, France

{romain.pinquie1, philippe.veron1, frederic.segonds2}@ensam.eu ;
3nicolas.croue@keonys.com

Abstract. The enterprise level software application that supports the strategic

product-centric, lifecycle-oriented and information-driven Product Lifecycle

Management business approach should enable engineers to develop and

manage requirements within a Functional Digital Mock-Up. The integrated,

model-based product design ENOVIA/CATIA V6 RFLP environment makes it

possible to use parametric modelling among requirements, functions, logical

units and physical organs. Simulation can therefore be used to verify that the

design artefacts comply with the requirements. Nevertheless, when dealing with

document-based specifications, the definition of the knowledge parameters for

each requirement is a labour-intensive task. Indeed, analysts have no other

alternative than to go through the voluminous specifications, to identify the

performance requirements and design constraints, and to translate them into

knowledge parameters. We propose to use natural language processing

techniques to automatically generate Parametric Property-Based Requirements

from unstructured and semi-structured specifications. We illustrate our

approach through the design of a mechanical ring.

Keywords: Functional Digital Mock-Up; CATIA V6; Natural Language

Processing; Requirements; Parametric Modelling.

1 Introduction

1.1 ENOVIA/CATIA V6 RFLP for integrated, model-based product design

In 1990, Gero [1] proposed the FBS ontology where F stands for the set of

functions, B for the set of expected behaviours (Be) and the set of actual behaviours

(Bs), and S for the structure. In [2], Christophe extends the FBS ontology to RFBS by

including the R for requirements. Back in the nineties, in his theory of axiomatic

design, Suh [3] defined four domains of activities: the customer domain, the

functional domain, the physical domain and the process domain. Stepping back and

looking at these product design methods, which could also be assimilated to the

systems engineering process [4], we notice that product design relies upon an iterative

process among requirements, functions, behaviours and structures.

The Dassault Système’s ENOVIA/CATIA V6 software solution proposes a similar

integrated product design model named RFLP [4] (Fig. 1). The R is for ENOVIA V6

Requirements, a requirements management workbench. The F, L and P layers are

used to recursively break down the complexity of the design problem according to the

Functional, Logical and Physical viewpoints of the product. This design approach

follows from Descartes’ reductionism method that consists in understanding a

complicated problem by investigating simple parts and then reassembling each part to

recreate the whole. In RFLP, the functional layer (F) relies upon a Functional Flow

Block Diagram (FFBD) to design functional architectures in which functions

transform material, energy or information input flows into output flows whose

consistency is ensured by the matching of input and output typed-ports. The logical

layer (L) is the behavioural viewpoint of the product and is materialised by a logical

architecture within which each logical unit’s behaviour is equation-based modelled

with the Modelica1 language. Modelica models are executable thanks to the Dynamic

Behaviour Modelling workbench that is the integration of Dymola2 within CATIA

V6. Finally, the physical layer (P) is very similar to the CATIA V53 CAD modeller.

Fig. 1. RFLP product design viewpoints [4]: (1) Requirements tree, (2) Functional architecture,

(3) Logical architecture with equation-based dynamic behaviours, and (4) Physical architecture.

The integrated RFLP product design environment enables designers to define

implementation links between a pair of requirements, functions, logical units or

1 https://www.modelica.org/
2 http://www.3ds.com/products-services/catia/products/dymola
3 http://www.3ds.com/fr/produits-et-services/catia/

1 2

3 4

https://www.modelica.org/
http://www.3ds.com/products-services/catia/products/dymola
http://www.3ds.com/fr/produits-et-services/catia/

physical organs so as to trace implementation relationships thanks to a traceability

matrix. In addition to the traceability capability, the tight integration of ENOVIA V6

Requirements and CATIA V6 offers parametric modelling functionalities that can be

used to make sure that the design artefacts comply with the requirements.

1.2 Problematic

Among the product lifecycle phases defined by Terzi in [6], we focus on the

requirement analysis phase of the product design phase that belong to the Beginning

of Life of the product, but do not address the management of the requirements during

the downstream detailed design and testing lifecycle phases.

Nowadays, a set of requirements is usually very large. Indeed, with the ever-

increasing complexity of products and their relentless customisation, the

mushrooming accumulation of legal documents, let alone the geographically

dispersed teams through whom products are developed, a supplier is faced with a

staggering increase in the number of requirements. For instance, at Mercedes-Benz,

the size of a building block specification varies from 60 to 2000 pages and prescribes

between 1000 and 50 000 requirements [7]. In addition to the massive volume of

requirements, most specifications are unstructured documents – e.g. Word, PDF – and

79% of requirements are written in unrestricted natural language [8].

For all these reasons, in a “buy approach” of a “make vs buy” decision, OEMs

struggle to deliver products that comply with the legal and contractor’s requirements.

Indeed, when an OEM collects the specifications and the applicable documents the

specification refers to, he has no other alternative than to go through the documents to

identify the applicable requirements so as to, in fine, provide a product that complies

with the contractor’s requirements. There are four standard verification methods:

inspection, analysis/simulation, demonstration, and test [9]. In this paper, we benefit

from the simulation method that the parametric modelling CATIA V6’s capabilities

offer in its integrated RFLP product design environment. Parametric modelling-based

verification can be very time consuming since designers have to: (1) read the

specifications, (2) identify the performance requirements and the design constraints,

(3) model the performance requirements and the design constraints as requirements’

knowledge parameters, (4) design the behavioural and structural artefacts using

parametric modelling, and (5) define the knowledge verification rules that map

requirements’ knowledge parameters with design artefacts’ knowledge parameters so

as to verify their compliance.

In a “make approach” there is no exchange of document-based specification.

Therefore, before designing, the company simultaneously prescribes the product’s

requirements and the requirements’ knowledge parameters into ENOVIA V6

Requirements. However, in a “buy approach”, the OEM has to move the requirements

from the unstructured specification documents to the ENOVIA V6 Requirement

database and manually build requirements’ knowledge parameters.

1.3 Proposition

To avoid the very time-consuming requirements’ knowledge parameters definition

process, we propose a natural language processing pipeline to extract text-based

requirements from unstructured and semi-structured specifications and to model them

as Property-Based Requirements (PBRs). PBRs are used to automatically generate

Parametric PBRs (PPRBs) in ENOVIA V6 Requirements. Finally, while designing,

designers define behavioural and structural design knowledge parameters that are

manually mapped to PPBRs thanks to parametric knowledge verification rules.

2 From Unstructured Specifications to Design Synthesis

The Model-Based Product Design process that we present is twofold: (1) we

extract Text-Based Requirements (TBR) from document-based specifications and

transform them into Parametric Property-Based Requirements (PPBRs) in ENOVIA

V6 R2015X; (2) we exploit the PPBRs in an integrated, parametric, model-based

product design synthesis with CATIA V6 R2015X.

2.1 From Unstructured Specifications to PPBRs

Before presenting the Natural Language Processing (NLP) pipeline that generates

the PBRs, we must present the concepts of PBR and PPBR.

As Micouin introduces in [10], a PBR is an unambiguous formal definition of a

requirement as a predicate and is defined as follows:

PBR: When C → val(O.P) ∈ D (1)

This formal statement means: “When the condition C is true, the property P of

object type O is actual and its value shall belong to the domain D”. A relevant

characteristic of the concept of PBR is that it is grammar-free, i.e. a PBR does not

have any particular syntactic structure and can therefore be implemented with various

modelling language such as VHDL-AMS [11] and Modelica.

By combining the PBR theory with parametric CAD modelling, we coin the

concept of Parametric PBR (PPBR). A PPBR is a PBR that is implemented with a

parametric CAD modelling technique thanks to knowledge parameters and knowledge

verification rules. In ENOVIA V6, a PPBR is analogous to the formal combination of

an Object (O) – the subject in the statement attribute – with one or several knowledge

parameters that define the boundaries of the constrained domain (D) of a property (P),

whereas the condition (C) is a CATIA V6 knowledge verification rule that is

manually defined by designers while designing behavioural and structural artefacts.

The function “Generate PPBRs” consists in two elements: (1) an NLP4 pipeline

generates an XML file that stores a set of PBRs derived from TBRs prescribed in

unstructured and semi-structured document-based specifications, and (2) the

translation of the XML file of PBRs into PPBRs within ENOVIA V6 Requirements.

To derive PBRs from TBRs we implemented the following NLP pipeline:

 Step 1 <Uploading>: The user uploads one or several specifications whose

extension is .doc(x) (Word), .odf (OpenOffice), .pdf., .xls(x) (Excel), .xmi

(SysML requirements diagram). While uploading, the file uploader item gets the

input stream of each specification.

4 One should refer to [12] for further details on statistical natural language processing.

 Step 2 <Parsing>: We trigger a specific parser according to the file extension of

each specification. If it is a .doc or .odf, the parser uses the Apache Tika5 API to

extract each specification content and transform it into HTML semi-structured

data. We transform the content into HTML because it makes the analysis of

tables, lists, headings, etc. a lot easier. If it is a .pdf, we use the native capability

of Word to convert from .pdf into .doc and finally use the .doc parser. The

headings of .doc and .odf help us to identify the sections. Sections are used for

multi-threading to run processing tasks in parallel. The .xls parser uses the

Apache POI6 API to parse the textual content of each cell. We make the

hypothesis that each cell is a sentence. Finally, the .xml parser extracts the

statements that are between the XML tags of the elements corresponding to the

requirements of a SysML requirements diagram.

 Step 3 <Tokenization>: The Stanford CoreNLP [13] Tokenizer7 API iteratively

tokenizes each specification content, that is, it chops the textual content up into

pieces of a sequence of characters that are grouped together as a useful semantic

unit for processing, the tokens. We store the tokens in a term-sentence matrix

whose rows are sentences and columns are tokens that make up each sentence.

 Step 4 <Lemmatization>: The Stanford CoreNLP Lemmatizer API iteratively

normalises each token by removing the inflectional ending and returns the

dictionary form, the lemma. This enables us to increase the recall in step 8.

 Step 5 <POS-tagging>: The Stanford CoreNLP POS-tagger8 API iteratively

POS tags each token, that is, it annotates each token with its grammatical

category (noun, verb, adjective, adverb, etc.), the Part Of Speech (POS).

 Step 6 <Sentence splitting>: The Stanford CoreNLP API iteratively splits each

textual specification content into sentences.

 Step 7 <Sentences cleaning>: We use various regular expressions and analyse

HTML tags to clean the sentences. For instance, we rebuild sentences from

enumerations, get rid of the headings, headers, footers and informative sections

(introduction, scope, table of content, glossary, list of acronyms, etc.) that may

generate false positives, and extract the content of .pdf and .odf tables.

 Step 8 <Classification>: We use a knowledge engineering – a.k.a rules-based –

text classification approach [14] to binary classify each sentence into a

“requirement” vs “non requirement” class. The matrix of lemmas is traversed,

and when the condition “if tokeni of sentencej = a prescriptive term ∈ {shall,

must, should, have to, require, need, want, expect, wish or desire}” is true, the

current sentencei is classified as a requirement.

 Step 9 <Dependencies analysis>: The Stanford CoreNLP Dependencies

Analyzer9 [15] API iteratively analyses each requirement to generate a semantic

graph within which we identify the numeric dependencies and extract the source

and target nodes of each dependency. The source of a numerical dependency is a

numerical token annotated with the POS tag (CD), whereas the target is a word.

5 https://tika.apache.org/
6 https://poi.apache.org/
7 http://nlp.stanford.edu/software/tokenizer.shtml
8 http://nlp.stanford.edu/software/tagger.shtml
9 http://nlp.stanford.edu/software/stanford-dependencies.shtml

https://tika.apache.org/
https://poi.apache.org/
http://nlp.stanford.edu/software/tokenizer.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/stanford-dependencies.shtml

 Step 10 <Classification>: While going through the dependencies list of each

requirement, we check whether the word stored in the target node of each

dependency is a physical unit such as N, °C, kg, Pa, etc. using a resource file that

collects all existing physical units under its abbreviated and expanded form – e.g.

N and Newton. Each time a given numerical dependency is classified as a

physical numerical dependency, we add a third attribute from our resource file

that is the dimension of the physical unit – e.g. Force for the unit N or Newton.

 Step 11 <PBR Pattern analysis>: A well-written TBR prescribing a functional

level of performance or a design constraint usually follows three distinct

syntactic patterns (Pattern 1, 2 and 3) [16]. Note that the condition is not always

specified; consequently, there is one more syntactic pattern (Pattern 4).

Pattern 1: <Prescriptive> <Domain> <Condition> - PDC

The Control_Subsystem shall open the Inlet_Valve in less than 3 seconds, when

the temperature of water in the Boiler is less than 85 °C.

Pattern 2: <Prescriptive> <Condition> <Domain> - PCD

The Control_Subsystem shall, when the temperature of water in the Boiler is less

than 85 °C, open the Inlet_Valve in less than 3 seconds.

Pattern 3: <Condition> <Prescriptive> <Domain> - CPD

When the temperature of water in the Boiler is less than 85 °C, the

Control_Subsystem shall open the Inlet_Valve in less than 3 seconds.

Pattern 4: <Prescriptive> <Domain> - PD

The Control_Subsystem shall open the Inlet_Valve in less than 3 seconds.

Based on these four patterns, for each TBR, we compare the index of the physical

numeric dependencies, the index of the prescriptive term, and the index of the

index of the conditional term (when, if, while) so as to identify the condition C

and the domain D.

A physical numerical value is sometimes followed by a tolerance. Thus, the

patterns 1, 2 and 3 give rise to four more patterns where the domain D and the

condition C are split into a nominal domain, a tolerance domain, a nominal

condition and a tolerance condition – e.g. pattern 5 follows from pattern 1.

Pattern 5: <Prescriptive> <Nominal Domain> <Tolerance Domain>

<Nominal Condition> <Tolerance Condition> - PnDtDnCtC

The Control_Subsystem shall open the Inlet_Valve in 3 seconds +/- 1 second,

when the temperature of water in the Boiler is between 70 °C and 85 °C.

In this scenario, to make sure that two consecutive physical numerical

dependencies form the so called <nominal, tolerance> pair of a domain or a

condition, we check whether their units belong to the same physical dimension.

For instance, in the requirement “When the temperature is less than 40°C, the

pressure shall be less than 30 Pa”, the consecutives physical numerical

dependencies <40 °C> and <30 Pa> do not belong to the same physical dimension

since the former is a temperature (°C), whereas the latter is a pressure (Pa).

However, in the requirement “The system shall control a pressure of 30 Mpa +/- 5

Pa”, the physical numerical dependencies <30 Mpa> and <5 Pa> belong to the

same physical dimension – a pressure – and are consequently respectively

modelled as the nominal domain value and the tolerance domain value.

Finally, there are six more syntactic patterns according to whether there is a

tolerance associated to the domain and/or the condition – e.g. pattern 7 follows

from pattern 1 and 5.

Pattern 7: <Prescriptive> <Domain> <Nominal Condition> <Tolerance

Condition> - PDnCtC

The Control_Subsystem shall open the Inlet_Valve in less than 3 seconds, when

the temperature of water in the Boiler is between 70 °C and 85 °C.

 Step 12 < Tolerance calculation>: The calculation of the minimum, maximum

and nominal values defining the tolerance of a condition C or a domain D relies

upon four patterns: (1) “X +/- Y” with X > Y, (2) “X more or less Y” with X > Y,

(3) “from X to Y” with X < Y and (4) “between X and Y” with X < Y. If there is

no tolerance, e.g. “the temperature shall be less than 50°C”, the maximum and

minimum values of the domain are identical. At present, there is a limit when the

unit is not the same, e.g. “1 daN +/- 10 N” or “from 10 Pa to 1 MPa”, because we

cannot compute the tolerance without using a unit convertor.

 Step 13 <PBRs modelling>: The NLP pipeline ends up with an XML file that

lists the PBRs in a structure that complies with the PPBRs data model in ENOVIA

V6 Requirements. Thus, each PBR element has a statement, a nominal value, a

minimal value and a maximum value that specify a domain D that can be inferred

from the nominal domain and tolerance domain, a physical dimension and a unit

attribute. The XML file can finally be imported into ENOVIA V6 Requirements

so as to automatically generate the PPBRs. This pure software development part

of our proposal has not been implemented yet.

Once the PPBRs have been generated in ENOVIA V6 Requirements, designers can

start the design synthesis thanks to the F, L and P layers of CATIA V6.

2.2 Integrated, Parametric, Model-Based Product Design Synthesis

Design synthesis is the translation of input requirements into possible solutions

satisfying those inputs [17].

The design synthesis with the integrated CATIA V6 FLP product design

environment consists in translating the input requirements (R) into functional, logical

and physical solutions satisfying those inputs. In order to do so, designers recursively

break down the functional requirements into functions (F) that transform flows.

Functions are then implemented by dynamic logical units (L) that simulate the

expected behaviour, whereas non-functional requirements that prescribe design

constraints are implemented by inert structural organs (P). Once the design of a given

hierarchical level is completed, we apportion the performance requirements of the

current hierarchical level to the functions of the next lower level by either sticking

with the same physical dimension (allocation) or by establishing new requirements

resulting from specific implementation choices (derivation).

Parametric modelling enables designers to not only create flexible CAD model, but

also to verify that the requirements comply with the design artefacts. When the

PPBRs are directly specified in ENOVIA V6 Requirements, engineers have to

manually create the requirements and the associated knowledge parameters. However,

when requirements are imported from a document-based specification, the generation

of PPBRs results from the NLP pipeline. The knowledge verification rules that link

the PPBRs and the knowledge parameters of the design artefacts require domain-

specific knowledge; consequently, they are manually defined by designers.

In the next section, we illustrate the transformation of TBRs into PBRs so as to

generate PPBRs that drive the design synthesis of a mechanical ring. We decided to

use a mechanical ring as a case study because it is a mechanical part whose design is

often impacted by engineering change requests and because it is a simple universally

understood object.

3 Case study

3.1 From Unstructured Specifications to PPBRs

First, we put ourselves in the shoes of a contractor who wants to acquire a

mechanical ring. We only write three requirements10 to ease the illustration of our

proposition. Each requirement is in a different specification (.doc, .pdf and SysML).

Then, we play the role of the OEM who receives the specifications. First, we

upload the specifications and send them through the NLP processing pipeline. Once it

has finished, the NLP processor generates the XML file of PBRs.

In the XML file, the data structure of the PBRs is defined in such a way that the

PBRs should directly be importable into ENOVIA V6 Requirements. Therefore, we

can automatically generate the PPBRs (Fig. 3) from the PBRs. Nevertheless, because

our NLP pipeline was developed in Java EE, it is not integrated into ENOVIA V6.

Fig. 3. Two ENOVIA V6 Requirements windows: (1) the

attributes to define a property of a PPBR (left) and (2) the list

of PPBRs with their properties (diameter, length and weight)

that makes up the specification of the ring (right).

3.2 Integrated, Parametric, Model-Based Product Design Synthesis

Now that the PPBRs are specified, designers can start the design synthesis of the

ring. We only have non-functional PPBRs that prescribe design constraint, therefore

they will be implemented by a structural design artefact, the ring, and more precisely,

10 (Req 1.) The diameter of the Ring shall be 20 mm +/- 1 mm. (Req. 2) The length of the Ring

shall be between 35 mm and 37 mm. (Req. 3) The Ring shall weight less than 500 g.

1

2

the external diameter, length and weight properties of the ring. By using parametric

modelling, we define a design parameter for each property – e.g. a parameter named

<D> whose physical dimension is <length> and unit is <mm> that drives the diameter

of the circle standing for the external diameter property of the ring.

After having associated the design artefacts’ knowledge parameters with the

geometrical features, designers define knowledge verification rules between the

PPBRs and the design artefacts’ knowledge parameters. For instance, Fig. 4 (4) shows

the knowledge verification rule verifying that the external diameter property of the

ring belongs to the domain 20 mm +/- 1 mm. It consists in defining a conjunction

between two partial order relations “<” that constrain the design knowledge parameter

<D> with the maximum and minimum values of the external diameter property

defined in the “Ring diameter” PPBR (Fig. 4 (2)). As shows Fig. 4 (5), a red light

signals when the design does not comply with a requirement. In our case, the design

artefact’s knowledge parameter that stands for the external diameter property of the

ring does not belong to the domain prescribed by the “Ring diameter” PPBR.

Fig. 4. (1) PPBRs, (2) external diameter PPBR, (3) design artefact’s knowledge

parameters, (4) knowledge verification rule, and (5) quantitative level of compliance.

3.3 Results & Limitations

We conducted various experiments with both real industrial and handcrafted data

sets. The initial results that we obtained after analysing handcrafted specifications are

encouraging since the requirements are prescribed by an expert in requirements

engineering so as to ensure the writing quality. Regarding the analysis of industrial

specifications, the results are also promising, although we cannot fully validate the

proposition without including a units converter.

Our solution presents a few limitations, such as the detection of sections when the

headings functionality has not been used to edit .doc and .odf or native .pdf. We were

also challenged by original writing-style that came across while we were testing the

application. Finally, as previously explained, the translation of PBRs from TBRs is

limited since the nominal and tolerance values must have the same unit, but a unit

converter could be used to overcome this limit.

2

4

5

3

1

4 Conclusion & future work

In this paper, we present a natural language processing pipeline that strongly cuts

down the time spent by OEMs to create Parametric Property-Based Requirements

(PPBRs). PPBRs are derived from text-based requirements expressed in natural

language that are prescribed in document-based and model-based specifications.

In the future we plan to continue testing our algorithm on various specifications

and integrate a unit converter. We will also develop the plug-in to load the XML file

into ENOVIA V6 Requirements. Finally, we will implement a supervised machine

learning decision tree [18] to infer the functional vs non-functional attribute.

References

1 Gero, J.: Design prototypes: a knowledge representation schema for design. AI magazine,

11(4), 26-36 (1990)

2 Christophe, F., Bernard, A., Coatanéa, É.: RFBS: a model for knowledge representation of

conceptual design. CIRP annals – manufacturing technology, 59(1), 155--158 (2010)

3 Suh, N.P.: Axiomatic design: advances and applications. Oxford University Press (2001)

4 ISO/IEC 15288.: Systems and software engineering – System life cycle processes. 1--84

(2008)

5 Kleiner, S., Kramer, C.: Model based design with systems engineering based on RFLP using

V6. In: Smart product engineering, Springer, New York, Heidelberg, 93--102 (2013)

6 Terzi, S., Bouras, A., Dutta, D., Garetti, M., Kiritsis, D.: Product Lifecycle Management -

from its history to its new role. Product Lifecycle Management, 4(4), 360--389 (2010)

7 Houdek, F.: Challenges in automotive requirements engineering. In: Industrial presentations

by requirements engineering: foundation for software quality, Essen (2010)

8 Mich, L., Franch, M., Novi Inverardi, P.: Market research for requirements analysis using

linguistic tools. Requirements Engineering,), 40--56 (2004)

9 ISO/IEC/IEEE 29148.: Systems and software engineering – Life cycle processes

requirements engineering. 1--94 (2011)

10 Micouin, P.: Toward a property based requirement theory: system requirements structured

as a semilattice. Systems engineering, 11(3), 235--245 (2008)

11 Micouin, P.: Property-model methodology: a model-based systems engineering approach

using VHDL-AMS. Systems engineering, 17(3), 249--263 (2014)

12 Manning, C., Schütze, H.: Foundations of statistical natural language processing. MIT Press,

Cambridge (1999)

13 Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Berthard, S.K., McClsky, D.: The

Stanford CoreNLP natural language processing Toolkit. In: 52nd annual meeting of the

association for computational linguistics: system demonstrations, 55--60 (2014)

14 Feldman, R., Sanger, J.: The text mining handbook. Advanced approaches in analyzing

unstructured data. Cambridge University Press (2007)

15 Cer, D., de Marneffe, M-C., Jurafsky, D. Manning, C.D.: Parsing to Stanford dependencies:

trade-offs between speed and accuracy. In: LREC (2010)

16 INCOSE.: Guide for writing requirements. Requirements working group, International

Council on Systems Engineering (INCOSE), San Diego, CA (2012)

17 INCOSE.: Systems engineering handbook. A guide for system life cycle processes and

activities. Version 3.2. (2010)

18 Hussain, I., Kosseim, L., Ormandjieva, O.: Using linguistic knowledge to classify non-

functional requirements in SRS documents. In: Natural language and information systems,

LNCS 5039, 287--298, Springer-Verlag (2008)

http://webapps.unitn.it/Ugcvp/en/Web/ProdottiAutore/PER0001016
http://webapps.unitn.it/Ugcvp/en/Web/ProdottiAutore/PER0004292
http://webapps.unitn.it/Ugcvp/en/Web/ProdottiAutore/PER0004920

