Supplemental material to "Lift crisis on non-symmetrical obstacles"

This supplemental material shows the results briefly given in the paper for three different sections.

Figure SM1: The three sections tested (bodies 2, 1 and 3 from left to right).

As shown in Figures SM2 and SM3, the same behavior is evidenced on the 3 tested sections showing a simultaneous lift and drag crisis.

Figure SM2: Lift and drag crisis on the three sections tested. The crisis is less abrupt for the circular-back profile than for the other sections.

Figure SM3: Time-averaged velocity field below (top line) and above (bottom line) the critical Reynolds number, for the circular-back section (left column) and the half-cylinder section (right column).

The following table summarizes the results obtained on the three sections.

Profile	1 Circular arc	2 Circular-back	3 Half-cylinder
$\operatorname{Re}_{C}\left(10^{5}\right)$	2.0	2.5	3.0
$C_{L 0}$	0.08	0.24	-0.103
C_{L} below	-0.6	-0.3	-0.6
C_{L} above	0.87	0.9	0.53
C_{D} below	0.2	0.18	0.57
C_{D} above	0.1	0.04	0.25
γ	0.2	0.5	0.2
C_{L} / C_{D} below	-3	-0.2	-0.1
C_{L} / C_{D} above (\max)	8.5	22	2
C_{x} below	0.9	0.81	1.14
C_{X} above	0.45	0.18	0.5

Table SM1: Comparison between the 3 profiles. C_{L} and C_{D} are defined with the chord length c as the reference length C_{x} is defined with the section thickness as the reference length. Values below and above the transition are given far away from the threshold $R e_{c}$.

Comparing the circular-back section with the circular arc section:

- The critical Reynolds number $R e_{c}$ is slightly higher: 2.510^{5} instead of 2.010^{5},
- The lift coefficient above Re_{c} is similar and the drag coefficient is about half;
- The lift coefficient below $R e_{c}$ is about half and the drag coefficient is similar.

Comparing the half-cylinder section with the circular arc section:

- The critical Reynolds number $R e_{c}$ is higher: 3.010^{5} instead of 2.010^{5},
- The lift coefficient above Re_{c} is lower;
- The lift coefficient below Re_{c} is similar;
- The drag coefficient C_{D} (defined with the chord length) is far higher for all Re; the drag coefficient C_{x} defined with the frontal area is similar (of order 1 below Re_{c}, of order 0.5 above $R e_{c}$).

Figure SM4: Separation point location x / c for the 3 profiles.

Figure SM5: Lift-to-drag ratio for the three different profiles. The circular-back profile has a large lift-todrag ratio at high Reynolds numbers.

