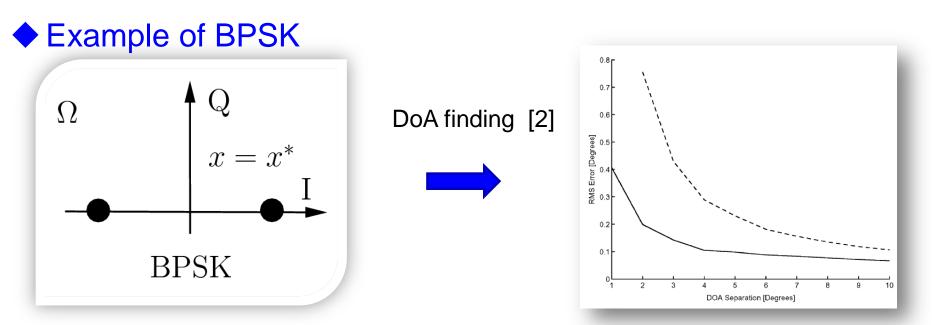


Widely linear detection in MIMO communications from non-circularity to circularity

Yuehua DING South China University of Technology Guangzhou China Yide WANG IETR UMR 6164 Université de Nantes

Outline


- Widely linear processing concepts
- **MIMO detection model**
- **Widely linear detection I: non-circular signals**
- **Widely linear detection II: circular signals**
- Performance evaluation
- **Conclusions**

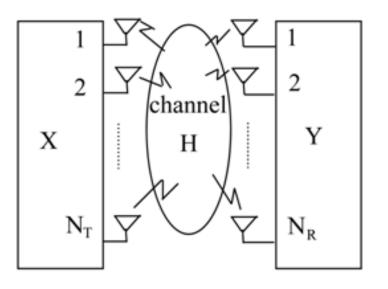
Widely linear processing (WLP) concepts

- WLP: exploiting the information in received signal and its conjugate version, such as $\mathbf{x} = \mathbf{C}_1 \mathbf{y} + \mathbf{C}_2 \mathbf{y}^*$ if $\mathbf{y} = f(\mathbf{x})$.
- **Potential case: non-circular signals**
- Applications: array signal processing, beamforming

[2] P. Charge, Y. Wang, J. Saillard: A non-circular sources direction finding method using polynomial rooting, Signal Process., 2001, 81, (8), pp. 1765–1770.

Outline

- Widely linear processing concepts
- MIMO detection model
- **Widely linear detection I: non-circular signals**
- **Widely linear detection II: circular signals**
- Performance evaluation
- **Conclusions**



MIMO detection model

MIMO model:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$

- **x** : transmitted signal vector
- y : received vector
- w : white Gaussian noise
- **H**: frequency flat fading

Outline

- Widely linear processing concepts
- **MIMO detection model**
- Widely linear detection I: non-circular signals
- **Widely linear detection II: circular signals**
- Performance evaluation
- **Conclusions**

Circular signals

A random signal x is said to be second-order circular if it satisfies the following conditions

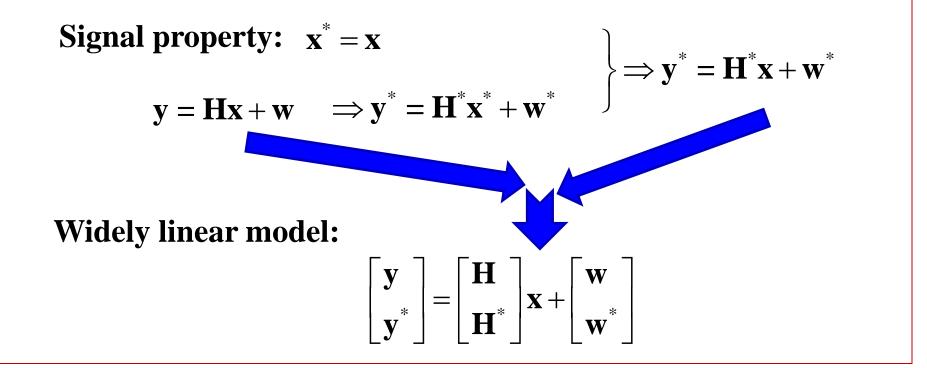
$$E[\mathbf{x}(t)\mathbf{x}^{T}(t+\tau)] = \mathbf{0}$$
$$E[\mathbf{x}(t)] = \mathbf{0}$$

Examples: QPSK, MPSK, MQAM in MIMO communications

Non-circular signals

A signal **x** is second-order non-circular if $E[\mathbf{x}(t)\mathbf{x}^T(t+\tau)] \neq \mathbf{0}$ for at least one couple (t, τ)

Examples: BPSK, ASK, real signals in MIMO communications


FECH

POLYTECH

Exploitation of real signals in MIMO $\mathbf{x}(t) = \mathbf{x}^{*}(t)$

MIMO system model:

Y. DING, Y.WANG, J.F. DIOURIS: Efficient detection algorithms for MIMO systems by exploiting the non circularity of transmitted signal source, IET signal processing, vol. 5, no. 2, pp. 180-186, 2011.

• Detection:
$$\hat{\mathbf{x}} = \mathbf{C} \begin{bmatrix} \mathbf{y} \\ \mathbf{y}^* \end{bmatrix} = [\mathbf{C}_1 \ \mathbf{C}_2] \begin{bmatrix} \mathbf{y} \\ \mathbf{y}^* \end{bmatrix} = \mathbf{C}_1 \mathbf{y} + \mathbf{C}_2 \mathbf{y}^*$$

Extended zero-forcing (EZF)

$$\mathbf{C}_{1} = \mathbf{C}_{2}^{*}$$
$$\mathbf{C}_{1} = (2 \operatorname{Re}[\mathbf{H}^{H}\mathbf{H}])^{-1}\mathbf{H}^{H}$$

 $\mathbf{C} = \begin{bmatrix} \mathbf{H} \\ \mathbf{H}^* \end{bmatrix}^{\dagger}$

Extended MMSE (EMMSE) $\mathbf{C}_1 = \mathbf{C}_2^*$ $\mathbf{C}_1 = (2P \operatorname{Re}[\mathbf{H}^H \mathbf{H}] + \sigma^2 \mathbf{I})^{-1} P \mathbf{H}^H$

FECH

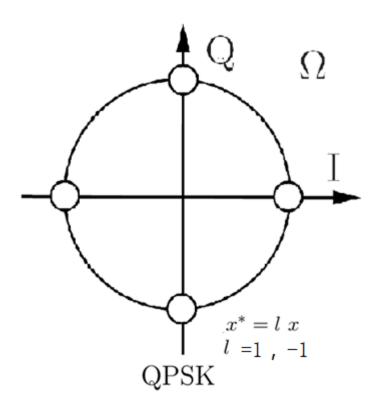
Outline

- Widely linear processing concepts
- **MIMO detection model**
- **Widely linear detection I: non-circular signals**
- Widely linear detection II: circular signals
- Performance evaluation
- **Conclusions**

General case: MPSK signal

♦ In the complex plane of a MPSK signal constellation Ω , $|\Omega|=M$, scalar MPSK signal $\chi \in \Omega$ can be generally represented as:

$$x = \sqrt{P} \exp(j\frac{2\pi}{M}m) \quad m = 0, 1, \cdots, M-1$$


Property 1 : Scalar signal x is drawn from MPSK constellation Ω , the following equation holds:

$$x^* = lx$$

where l is called rotation factor, $l \in \Phi$.

$$\Phi = \{ \exp(\pm j \frac{4\pi}{M} k) \mid k = 0, 1, \cdots, \frac{M}{4} - 1 \}$$

Example

POLYTECH

POLYTECH"

Widely linear detection II: circular signals MPSK vector

Property 2 : For a n-dimensional signal vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ with elements drawn from an MPSK constellation, the following equation holds:

$$\mathbf{x}^* = \mathbf{M}_n \mathbf{x}$$

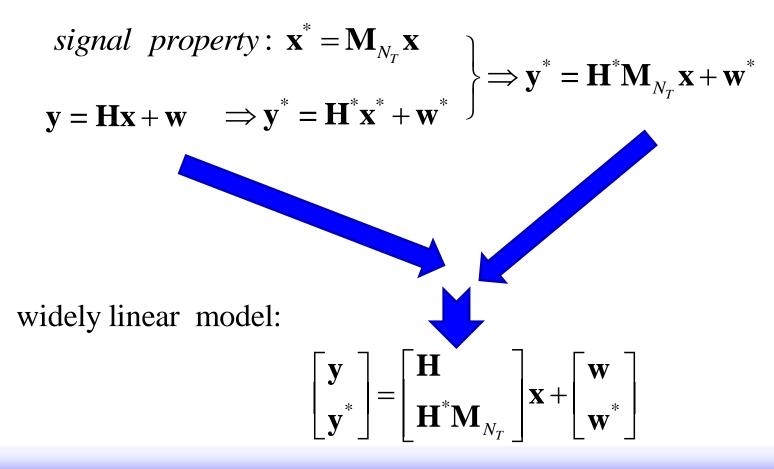
where M_n is called rotation matrix,

$$\mathbf{M}_{n} = \begin{bmatrix} l_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & l_{n} \end{bmatrix}$$

with $l_{i} \in \Phi$, $|\Phi| = \frac{M}{2} = K$

Y.DING, N. LI, Y. WANG, S.FENG: Widely linear sphere decoding by exploiting the hidden properties of PSK signals, IEEE GLOBECOM 2014, Austin, Texas, USA 12

Rotation matrix partitions the constellation Ω^{N_T} into K subsets


Constellation partition ($K = |\Xi^{N_T}|$), $\Omega_i^{N_T} \cap \Omega_k^{N_T} = \emptyset$, $i \neq k$.

Y. DING, N.LI, Y. WANG et al: Widely linear sphere decoder in MIMO systems by exploiting the conjugate symmetry of linearly modulated signals, **IEEE Transactions on Signal Processing,** vol.64, no.24, pp. 6428-6442. 2016

Exploitation model in MIMO detection

Detection:

Widely linear detection II: circular signals

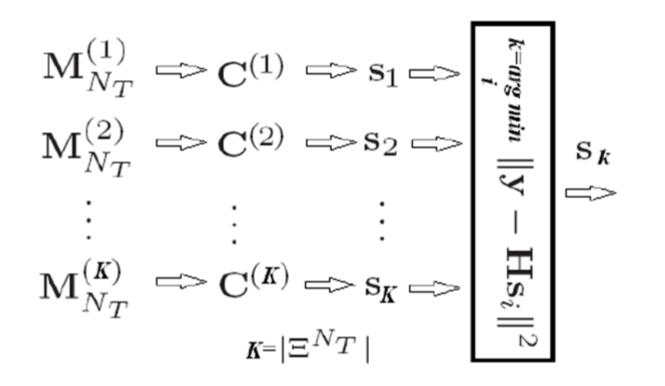
 $\hat{\mathbf{x}} = \mathbf{C} \begin{vmatrix} \mathbf{y} \\ \mathbf{v}^* \end{vmatrix}$

Extended zero-forcing (EZF)

$$\mathbf{C} = \begin{bmatrix} \mathbf{H} \\ \mathbf{H}^* \mathbf{M}_{N_T} \end{bmatrix}^{\dagger} = (\mathbf{H}^H \mathbf{H} + \mathbf{M}^*_{N_T} \mathbf{H}^T \mathbf{H}^* \mathbf{M}_{N_T})^{-1} [\mathbf{H}^H \ \mathbf{M}^*_{N_T} \mathbf{H}^T]$$

Extended MMSE (EMMSE)

 $\mathbf{C} = (P\mathbf{H}^{H}\mathbf{H} + P\mathbf{M}_{N_{T}}^{*}\mathbf{H}^{T}\mathbf{H}^{*}\mathbf{M}_{N_{T}} + \sigma^{2}\mathbf{I})^{-1}[\mathbf{H}^{H} \mathbf{M}_{N_{T}}^{*}\mathbf{H}^{T}]$


EZF/EMMSE-OSIC

Difficulty: unknown $\mathbf{M}_{N_T} \in \Phi^{N_T}$, $K = \left| \Phi^{N_T} \right| = (M/2)^{N_T}$

Solution: exhaustive searching?

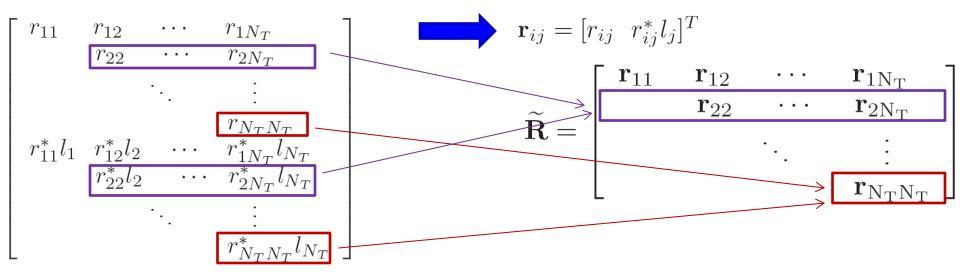
Difficulty: unknown $\mathbf{M}_{N_T} \in \Phi^{N_T}, |\Phi^{N_T}| = (M/2)^{N_T}$

Complexity: (M/2)^{NT} matrix inverse (M/2)^{NT} candidate vector x (M/2)^{NT} likelihood test Proposed algorithm: WLSD

Widely linear sphere decoding

widely linear model:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^* \end{bmatrix} = \begin{bmatrix} \mathbf{H} \\ \mathbf{H}^* \mathbf{M}_{N_T} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{w} \\ \mathbf{w}^* \end{bmatrix}$$


Transformation by exploiting QR decomposition H = QR:

$$\begin{bmatrix} \mathbf{Q}^{H} \mathbf{y} \\ \mathbf{Q}^{T} \mathbf{y}^{*} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{R}^{*} \mathbf{M}_{N_{T}} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{Q}^{H} \mathbf{w} \\ \mathbf{Q}^{T} \mathbf{w}^{*} \end{bmatrix} \begin{bmatrix} r_{11} & \cdots & r_{1N_{T}} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{N_{T}N_{T}} \\ r_{11}^{*} l_{1} & \cdots & r_{1N_{T}}^{*} l_{N_{T}} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{N_{T}N_{T}}^{*} l_{N_{T}} \end{bmatrix}_{8}$$

By gathering the inter-conjugate rows:

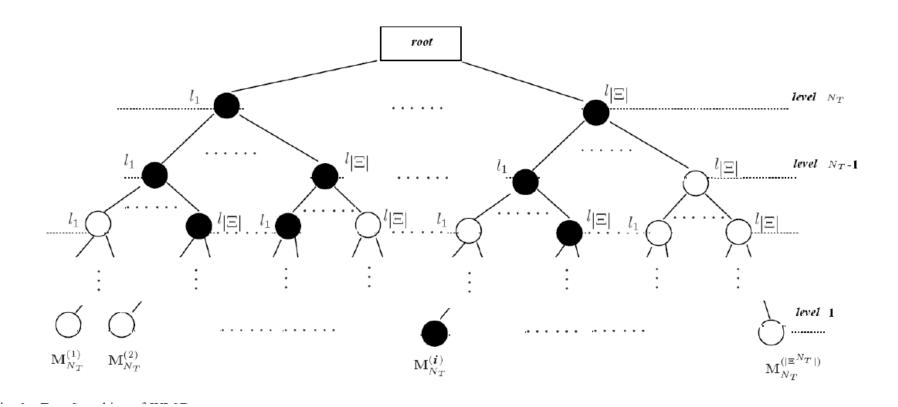
New model: $\tilde{\mathbf{y}} = \tilde{\mathbf{R}}\mathbf{x} + \tilde{\mathbf{w}}$ $\tilde{\mathbf{y}} = [\mathbf{y}_1^T, \mathbf{y}_2^T, \cdots, \mathbf{y}_{N_T}^T]^T$ $\mathbf{y}_i = [y_i, y_i^*]^T$

ew model:
$$\tilde{\mathbf{y}} = \tilde{\mathbf{R}}\mathbf{x} + \tilde{\mathbf{w}}$$

$$\widetilde{\mathbf{y}} = [\mathbf{y}_1^T, \mathbf{y}_2^T, \cdots, \mathbf{y}_{N_T}^T]^T \qquad \mathbf{y}_i = [y_i, y_i^*]^T$$

Sphere searching based on rotation factor

$$\mathbf{M}_{N_T} = \arg\min_{\mathbf{l} \in \Xi^{N_T}} \|\widetilde{\mathbf{y}} - \widetilde{\mathbf{R}}\mathbf{x}\|^2 \le d^2$$


For each element x_i , we have:

$$\|\mathbf{y}_{N_{T}} - \mathbf{r}_{N_{T}N_{T}}x_{N_{T}}\|^{2} \leq d^{2}$$
$$\|\mathbf{y}_{j} - \sum_{i=j}^{N_{T}}\mathbf{r}_{ji}x_{i}\|^{2} \leq d^{2} - \sum_{k=j+1}^{N_{T}}\|\mathbf{y}_{k} - \sum_{i=k}^{N_{T}}\mathbf{r}_{ki}x_{i}\|^{2}$$

Widely linear sphere decoding

Outline

- Widely linear processing concepts
- **MIMO detection model**
- **Widely linear detection I: non-circular signals**
- **Widely linear detection II: circular signals**
- Performance evaluation
- **Conclusions**

Detection for non-circular signal

Detector:	EZF/EMMSE	EZF-OSIC/EMMSE-OSIC
Diversity:	$N_R - \frac{N_T - 1}{2}$	$[N_{R} - \frac{N_{T} - 1}{2}, N_{R}]$
Complexity:	polynomial	2

Detector:ZF/MMSEZF-OSIC/MMSE-OSICDiversity: $N_R - N_T + 1$ $[N_R - N_T + 1, N_R]$ Complexity:polynomial

WI SD

Detection for circular signal

Det	ect	tor:	
Div	ers	sity:	

$$[N_{R} - \frac{N_{T} - 1}{2}, N_{R}]$$

Candidate set:

$$\mathbf{M}_{N_{T}} \in \Phi^{N_{T}}, \quad |\Phi^{N_{T}}| = (M / 2)^{N_{T}}$$

Complexity: exponential

Detector:SDDiversity: N_R Candidate set: $\mathbf{x} \in \Omega^{N_T}$ $\left| \Omega^{N_T} \right| = M^{N_T}$ Complexity:exponential

$$\Phi^{N_T} \Big| = \frac{\Big| \Omega^{N_T} \Big|}{2^{N_T}}$$

Variations from non-circularity to circularity

Non-circular signal Candidates set $\mathbf{M}_{N_T} = \mathbf{I}_{N_T}, \ \Phi^{N_T} = \{ \mathbf{I}_{N_T} \}, \ |\Phi^{N_T}| = 1$ Detector: EZF/EMMSE+OSIC Complexity: polynomial Diversity:

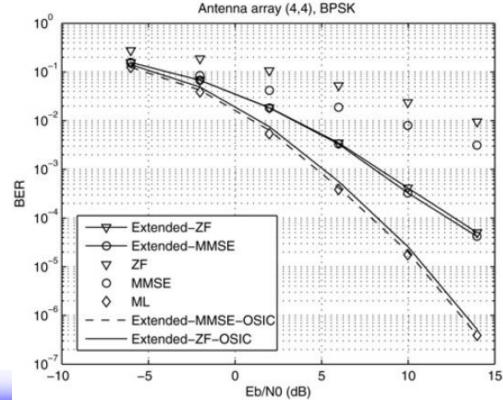
$$[N_R - \frac{N_T - 1}{2}, N_R]$$

Circular signal: Candidates set

$$\mathbf{M}_{N_T} \in \Phi^{N_T}, \quad \left| \Phi^{N_T} \right| = (M / 2)^{N_T}$$

Detector: WLSD Complexity: exponential Diversity :

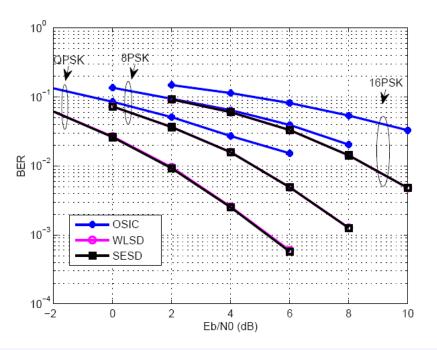
$$[N_R - \frac{N_T - 1}{2}, N_R]$$

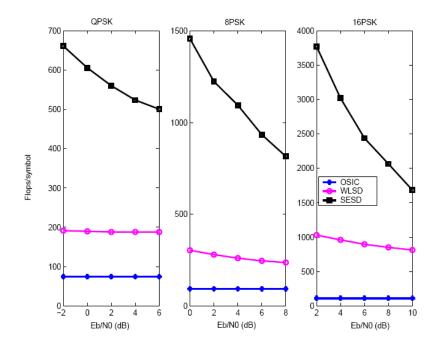


Performance evaluation

BER performance 1:

Simulation setting: (4,4) array BPSK modulation signal

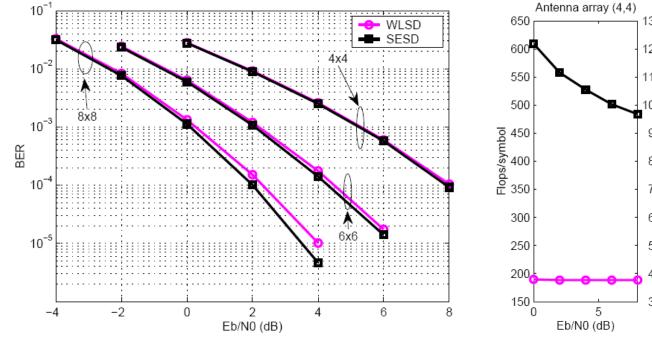


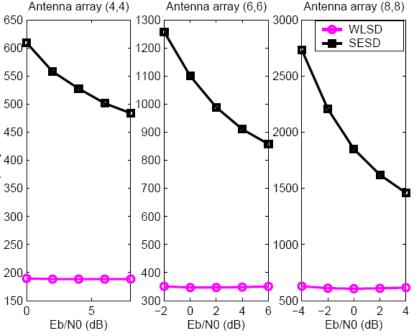


Performance evaluation

BER performance 1: Simulation setting:

(4,4) array QPSK, 8PSK, 16PSK modulation signal





Performance evaluation

BER performance 2: Simulation setting: **QPSK modulation signal (4,4)** (6,6) (8,8) array

Outline

- Widely linear processing concepts
- **MIMO detection model**
- **Widely linear detection I: non-circular signals**
- **Widely linear detection II: circular signals**
- Performance evaluation
- Conclusions

Contributions:

Properties of modulation signals are modeled by a unified mathematical model;

Widely linear MIMO receiver is proposed for non-circular signals

• Widely linear sphere decoding is proposed for MIMO detection by exploiting the properties of circular signals.

Thanks!!