N

N
N

HAL

open science

Fusion of calling sites

Douglas Do Couto Teixeira, Caroline Collange, Fernando Magno Quintao

Pereira

» To cite this version:

Douglas Do Couto Teixeira, Caroline Collange, Fernando Magno Quintao Pereira. Fusion of calling
sites. International Symposium on Computer Architecture and High-Performance Computing (SBAC-
PAD), Oct 2015, Floriandpolis, Santa Catarina, Brazil. 10.1109/SBAC-PAD.2015.16 . hal-01410221

HAL Id: hal-01410221
https://hal.science/hal-01410221
Submitted on 6 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01410221
https://hal.archives-ouvertes.fr

Fusion of calling sites *

Douglas do Couto Teixeira
Departamento de Ciéncia da Computagao

Caroline Collange

Fernando Magno Quintao Pereira
Universidade Federal de Minas Gerais, Brazil

{douglas,fernando}@dcc.ufmg.br

December 16, 2021

Abstract

The increasing popularity of Graphics Processing
Units (GPUs), has brought renewed attention to old
problems related to the Single Instruction, Multi-
ple Data execution model. One of these problems
is the reconvergence of divergent threads. A diver-
gence happens at a conditional branch when different
threads disagree on the path to follow upon reaching
this split point. Divergences may impose a heavy
burden on the performance of parallel programs. In
this paper we propose a compiler-level optimization
to mitigate this performance loss. This optimization
consists in merging function call sites located at dif-
ferent paths that sprout from the same branch. We
show that our optimization adds negligible overhead
on the compiler. It does not slowdown programs in
which it is not applicable, and accelerates substan-
tially those in which it is. As an example, we have
been able to speed up the well known SPLASH Fast
Fourier Transform benchmark by 11%.

1 Introduction

Graphics Processing Units (GPUs) are becoming
a staple hardware in the high-performance world.
They provide a simple, cheap, and efficient plat-
form in which parallel applications can be devel-
oped [1]. Since the release of CUDA, in early 2006 [2],
a plethora of programming patterns and algorithms
have been designed to run in this environment, touch-
ing multiple fields of knowledge, including Biology,
Chemistry and Physics [3].

The basic operating principle of this hardware con-
sists in running the threads of Single Program, Mul-
tiple Data (SPMD) programs in lockstep, so to exe-

*This work was partially supported by CNPq, CAPES,
FAPEMIG.

cute their identical instructions on Single Instruction,
Multiple Data (SIMD) units. This execution model
is, nowadays, known as Single Instruction, Multiple
Threads (SIMT), a term coined by Nvidia’s engi-
neers [1]. SIMT execution has gained momentum be-
yond the graphics processing ecosystem. SPMD pro-
gramming environments like OpenCL!, OpenACC?
or OpenMP 4.0% can target SIMD architectures like
GPUs, multi-core CPUs with SIMD extensions, and
even Intel Xeon Phi accelerators.

Nevertheless, in spite of all these advances, pro-
gramming SPMD applications for SIMD architec-
tures remains a challenging task. Omne of the rea-
sons behind this difficulty is a phenomenon known
as Thread Divergence. When facing a conditional
branch, two threads diverge if they disagree on which
path to take. Divergences are a problem because
they have an impact on the program’s performance.
In other words, a divergence splits threads into two
groups, upon reaching a conditional branch. Only
one of these groups contain threads that do useful
work at a given point in time.

We have designed, implemented and tested a com-
piler optimization that mitigates this performance
loss. We name this optimization Fusion of Calling
Sites (FCS). Our optimization relies on a simple idea:
threads should enter functions in lockstep to mini-
mize the effects of divergences. Therefore, whenever
a function is invoked at the two different paths that
stem from a conditional test, we merge the two call-
ing sites into one single invocation of that function.
This optimization can benefit implicit SIMD archi-
tectures, such as those found in GPUs, and explicit
SIMD hardware like the Xeon Phi. In the latter
case, the compiler merges threads together to form
SIMD instruction, handling divergence with mask-

Thttp://www.khronos.org/opencl/
2http://www.openacc.org/
Shttp://openmp.org/

predicated instructions [4].

As we show in Section 3, our algorithm scans blocks
of code within the program, performing the merging
whenever it is possible. In this paper, we demon-
strate that our optimization is: (i) easy to implement,
(ii) innocuous when non-applicable and (iii) effective
when used. Our optimization has low computational
complexity in practice. In other words, it always
applies a constant number of operations per pair of
calling sites that it merges. If a program does not
present any opportunity for this merging to happen,
then we do not impose any runtime overhead onto
the compiler, nor onto the executable program, once
it is deployed. In Section 4, we show the potential of
our optimization through a toy benchmark, and show
its applicability in the well-known implementation of
Fast Fourier Transform available in SPLASH*. In the
former benchmark, FCS reduces the number of diver-
gent instructions by 55%, and on the latter by 11%.

2 Overview of the Approach

Figure 1 will let us illustrate thread divergences. This
phenomenon characterizes the Single Instruction,
Multiple Data execution model typical of Graphics
Processing Units. These processors organize threads
in groups that execute in lockstep. Such groups are
called warps in NVIDIA’s jargon, or wavefronts in
AMD’s. We can imagine that threads in the same
warp use different arithmetic and logic units, but
share the same instruction control logic. Control flow
divergences happen when threads in a warp follow dif-
ferent paths after processing the same branch. If the
branching condition is data divergent, then it might
be true to some threads, and false to others. In face of
divergences, some threads will take the “then” part
of the branch in Figure 1, and others will take the
“else” part. Due to the shared instruction control
logic, only one group of threads will be allowed to do
useful work at a given instant. The execution trace
at the bottom of Figure 1 shows which threads are
active at each cycle, assuming an architecture that
allows four threads simultaneously in flight.

When two threads diverge, the hardware should
reconverge them as earlier as possible to maximize the
amount of active workers per cycles. A reconvergence
point is the earliest instruction in the program where
we can expect control flow paths to join regardless of
the outcome or target of the divergent branch. Fung

4nttp://www.capsl.udel.edu/splash/

et al. have shown that the post-dominator of a branch
is — usually — the best place to reconverge threads [5].
We say that a node v in a CFG post-dominates a node
u if any path from v to the end of the CFG must go
across u. In Figure 1, basic block end is the post-
dominator of every other block. Yet, as Fung et al.
themselves have also shown, reconverging threads at
the post-dominators of branches is far from being a
perfect solution to divergences. Figure 1 illustrates

if (Tid % 2) { ° bie=Tyy %2
m =Tid * 1000; ¢;:bzc, ¢
a=Tid+1 N
R = divide(m, a) / €5 m, =T, x 2000
yelse { bia =T +2
m1 =Tid * 2000; ¢ m =T, x 1000
. ¢, p = read()
al =Tid +2; bra=Ty+1
p =read(; ¢,: d, = divide(m, a) bem=pxa,
pl=p*al ly: d, = divide(m, a;)
R = divide(m1, at); \ ¢,4: print(p,)
print(p1); /
¥ - ¢,,: sync
print(Ry; (i R=(d, d) —(@)
¢,5: print(R)
Cycle | Instruction to | t1 | t2 | t3
14 c=Tia%2 VA A e
15 bz c,then ViIiviIiv |V
16 m = T;q x 1000 V|e | V| e
17 a=Tiq + 1 v o | V .
18 dl = divide(m,a) | v | © | V |
118 ml="T;q x2000 | ¢ | vV | @ | V
119 al =Tiqg + 2 o |V | o |V
120 | p =read() o |V | o |V
121 pl=p xal e |V | o |V
122 | d2 = divide(m,a) | o | Vv | o | V
222 | print(pl) o |V | o |V
223 sync VIV VvI|VY
224 R = phi(dl,d2) VIiviIiv|Y
225 | print(R) VvV Vv

Figure 1: (Top) A program whose performance may
experience a slowdown due to divergences. (Bottom)
An execution trace of the program. If a thread ¢
executes an instruction at cycle j, we mark the entry
(t,4) with v'. Otherwise, we mark it with e. In this
example we assume that each invocation of function
divide takes one hundred cycles to execute.

this situation particularly well.

The divide function is invoked at both sides of
the branch in Figure 1. Even though this function
must be executed by all the threads that reach the
divergent branch, these threads will be entering the
function at different execution cycles due to the di-
vergence. Consequently, the instructions that consti-
tute function divide will be called twice: once for
the threads in the “then” part of the branch, and
another time for the threads in the “else” part. In
this case, reconverging threads at post-dominators of
divergent points will not avoid the redundant execu-
tion of divide. If divide runs for a long time, then
we will be missing the opportunity to share many ex-
ecution cycles among different threads. The goal of
FCS is to reconverge threads at the entry points of
functions. We will accomplish this goal by changing
the structure of the program’s control flow graph, as
we will explain in the next section.

3 Fusion of Calling Sites

Figure 2 provides a high-level view of FCS. The func-
tion merge_call_site tries to join call sites, until this
action is no longer possible. If a merging happens,
then the function invokes itself recursively, otherwise
the optimization terminates. Candidate branches are
found via the function find_joinable_calls, which is
also depicted in Figure 2. This procedure looks for
paths that stem from the same branch ¢, and that
lead to different calls of the same function F. If the
cost of transforming the program’s control flow graph
is lower than a certain threshold, then the prospec-
tive branch is sent to function merge_cfg, which is
in charge of transforming the program.

We use the program from Figure 1 as an example
to illustrate our transformation. The program in that
figure has one candidate branch, at label ¢;. Our
function find_joinable_calls will detect two paths
from this branch leading to invocations of the same
function. The first path is formed by the sequence of
labels £ — o — 3 — {4. The second path if formed
by the sequence ¢1 — U5 — lg — {7 — Ly — lg.
After finding the paths, our routine merge_cfg will
produce a new version of the program.

Figure 4 provides an overview of the transforma-
tion that merge_cfg performs. This function creates
a common label, e.g., ¢, that will join the two call
sites that we want to fuse. We use the ¢-functions of
the Static Single Assignment [6] (SSA) form to join
function arguments. SSA form is a program repre-

merge_call_site:
input: Threshold T, Program P
output: Program P'
if (4, ¢4, &) = find_joinable_calls(P):
P'= merge_cfg(P, 4,, ¢, {o)
return merge_call_site(T, P')
else:
P'=P
return P'

© O N o o &~ WO N o=

11 find_joinable_calls():
12 input: Threshold T, Program P
output: (Label ¢,, Label ¢;, Label ¢,)

14 for each branch ¢, in P:
15 let ¢, = post-dominator of 4,
16 if J path t1 from ¢, to Zp
17 3 path t2 from ¢, to ep
18 t1Nt2=¢
19 t1 Dcallto F at¢,
20 t2 Dcallto F até,
21 return (4,, ¢, &)
Figure 2: Main routines that perform the fusion of

calling sites.

sentation in which each variable has only one defini-
tion site [6]. Nowadays, almost every compiler uses
this intermediate representation to manipulate pro-
grams. The SSA format relies on ¢-functions to join
different variables into common names. Going back
to Figure 4, an instruction such as a1 = ¢(ai1,a21)
will assign to variable a; the value of a1y if the pro-
gram flow reaches that operation through label /1,
and will assign as; to aq, if the program flow comes
through label ¢5. Figure 5 shows the program that
we obtain after applying the FCS optimization onto
the function seen in Figure 1. This time we have only
one invocation site for function divide, which will be
reached independent on the way that we branch at
£1. The branch immediately after the new label £, is
used to preserve the program flow after the execution
of divide.

Ensuring Strictness: We notice that the trans-
formed program contains a path in which variable
p1 is used without being defined: ¢y — ¢ — {5 —
by — by — 0, — L4171 — £10. In this case we say
that the program is not strict. Strictness is a very
important requirement imposed by the Static Single

1 merge_cfg():

2 input: Program P, Label¢, , ¢, , ¢,
output: Program P'

letr, =F(pyy, ..., Py,) be até; in P

L)

5 letr, = F(pyyq, ..., Py,) e AL 4 In P
6 let p; = d(P4q, Poy)

s letp,=d(py, Poy)
9 replace ¢; by "goto " in P
10 replace ¢, by "goto ¢" in P
11 create " py; ...; Py F = F(Py, -0, Pp);
12 create "¢ ,: branch equal to ¢,
13 targeting such(¢;) and succ(/,)
14 rename every use of ry torin P
5 rename every use of r,torin P
16 P' = strictify_program(P)
17 return P'

Figure 3: Routine that transforms the program’s
control flow graph. We let succ(¢) be the unique suc-
cessor of label /.

¢,.;: p=cond ¢,_:p=cond
¢, :brzp ¢, :brzp
| ¢ goto . | ¢): goto ¢,
6 F(ayy, ..., ay,) ¢ a =¢(a)), a5))
3, =@y, ay)
F(a, ..., a)
¢:F(ay,...a;,) . :brzp
| succ(¢)) | | succ(é,) |

Original Program

Transformed Program

Figure 4: Overview of the transformation that we
perform to join function calls.

Assignment form. It ensures the key SSA property:
the definition of a variable dominates all its uses. Af-

brc=T %2
o—
¢:bzc,

/ \ ¢s: m, =T, x 2000
¢: m=T,; *x 1000 boa, =T,+2
bra=T,+1 ¢, p =read()
¢,: goto ¢, l:p,=pxa

\ / ly: goto €,
¢: m, = ¢(m, m))
= ¢(a, a))
d = divide(m,, a,)
bibze b N
¢,o: print(p,)
¢,,: sync /

¢,:R=d

—@®

¢, print(R)

Figure 5: Transformed version of the program earlier
seen in Figure 1.

ter our transformation, we may have programs that
are not strict, as we have seen in the example. To
obtain strictness back, we apply the function stric-
tify_program in the transformed code. This func-
tion inserts dummy definitions to all the variables de-
fined within the scope of the branch, and that were
used after the fused call. In our example, p; is the
only such variable. If a variable is used at one side of
the branch, then the dummy definition is inserted in
the other side. Figure 6 shows this transformation.

Termination: The function merge_call site al-
ways terminates due to a simple argument: the fusion
of two function call sites do not enable the fusion of
further calls. In other words, if a program has a num-
ber N of branches that pass the profit test performed
by the function find_joinable_calls; then no more
than N branches will be fused by our optimization.
Therefore, as the number of branches in a program is
limited, our algorithm is guaranteed to terminate.

Complexity: We call function merge_call_site
recursively at most once per potentially profitable
branch in the program. Each call of this function
scans all the conditional tests in a program, look-

Kr: Pyer = ¢(paux’ pl)
m, = ¢(m, m;)
a,=¢(a, a))

d = divide(m,, a,)
bibze, ()

T

¢,0: print(py.p)

Figure 6: New definitions of p; to ensure strictness.

ing for the most profitable fusion (see line 14 of
find_joinable_calls in Figure 2). If we have O(N)
blocks in the program, we may have to inspect O(NV)
branches. Each inspection is O(N), as it involves a
traversal of the paths that sprout away from the con-
ditional. If two calls must be merged, then we resort
to function merge_cfg, whose complexity is bound
by strictify_program. This last function is stan-
dard in compilers, and runs in O(N). Therefore, our
functions (merge_call_site, merge_cfg and stric-
tify_program) run — together — in O(N?).

This complexity may seem very high at a first
glance. However, in practice only a handful of
branches lead to two different calls of the same func-
tion. Furthermore, if we order the branches by profit,
then we can inspect each one of them in line 14
of find_joinable_calls at most once. Therefore, in
practice our optimization runs in O(N?), where N is
the number of basic blocks in the program code.

4 Experimental Results

Experimental setup. The fusion of call sites may
be applied onto SPMD programs running on SIMD
machines, following the SIMT execution model.
There are several different computer architectures
that fit into this model, from GPUs and vector units
(SSE, MMX, etc) to Long’s Minimal Multi-Threading
architectures [7]. As the transformation is performed
at source code level, our technique makes no assump-
tion about the way the SPMD code is later trans-
formed into SIMD instructions. Evaluating FCS sep-
arately on each programming environment and each

Cycle | Instruction to | t1 | ta | t3
14 ¢ =Tig%2 VvV |V
15 bz ¢, then VIivIiv |V
16 m = T;q x 1000 V|e | V| e
17 a=Tyqq + 1 Ve | V| e
25 ml =T;q x 2000 o |V | o |V
26 al =T;q + 2 o |V | o |V
27 p = read() o |V | e |V
28 pl=p x al o |V | o |V
45 sync VIivI|IVv VY
46 P = phi(m,m1) VIiVvIiVv |V
47 | P2 = phi(P, P1) N aRaN
48 dl = divide(P,Pl) | v | vV | V | V

[49 [print(P2) [e [V]e]V]
51 sync VIV Vv |V
52 print(dl) VvV |V

Figure 7: (Top) The same program from Figure 1
after being optimized. (Bottom) An execution trace
of the program. If a thread t executes an instruction
at cycle j, we mark the entry (¢, j) with the symbol
v'. Otherwise, we mark it with e.

platform would be tedious. Furthermore, this ap-
proach would produce results that are hard to gener-
alise. Therefore, we chose to evaluate FCS on general-
purpose parallel applications in a micro-architecture-
agnostic simulator which models an ideal SIMT ma-
chine. This simulator has been implemented by Mi-
lanez et al. [8], who have made it publicly available.
The simulator is implemented on top of the PIN
binary instrumentation framework®. The Pin tool
reads the binary and produces traces representing
every instruction that each thread executes. Then,
we replay the traces using different heuristics (that
we describe in the next paragraph) to re-converge
threads. To perform the code transformation, we
have used the LLVM compiler [9]. Our performance
numbers have been obtained in the following way: we
run the PIN-based simulator on the original program
that LLVM produces at its -O3 optimization level.
Then, we apply FCS on that binary, and re-run the
simulator.

Heuristics for Thread Reconvergence: our sim-
ulator accepts different thread reconvergence heuris-

Shttp://www.pintool.org/

tics. Such heuristics determine the next instruc-
tion to be fetched in an SIMT architecture. We
chose to simulate four heuristics: MinPC, MinSP-PC,
MaxFun-MinPC, and Long-MinSP-PC. These heuris-
tics are described below:

Min-PC: this technique, due to Quinn et al. [10], is the
thread reconvergence heuristics typically adopted in
the implementation of graphics processing units: in
face of divergent lines of execution, the fetcher al-
ways chooses the heuristics with the smallest Pro-
gram Counter (PC) to process. The rational behind
this heuristics is simple: in the absence of backward
branches, given two program counters: n and n + 1,
the latter will be executed after the former. By fetch-
ing the instruction at the lowest PC, the hardware
maximizes the chance of keeping the threads in lock-
step execution.

MinSP-PC: this approach was proposed by Col-
lange [11] and is built on top of Quinn’s Min-PC
heuristic [10]. It is used in programs that contain
function invocations, and its bedrock is the fact that
when a function is called, the stack grows down.
Thus, threads running more deeply nested function
calls have smaller Stack Pointers (SP). Based on
this observation, this heuristic fetches instructions
to threads with the smallest SP, because it assumes
that these threads are behind in the program’s exe-
cution flow.

MaxFun-MinPC: this heuristic, Maximum Function
Level - Minimum PC, is similar to MinSP-PC, but
instead of choosing the smallest SP, it chooses the
thread that has the highest number of activation
records on the stack. Therefore, this heuristic would
have the same behavior of MinSP-MinPC if all acti-
vation records had the same size.

Long: Long et al. [7] have created a heuristic to analyze
redundancies in SIMD programs. Their key idea is
to add memory to each thread. One thread uses the
memory of the others to advance or stall. If the cur-
rent PC of a thread to is in the recent history of
another thread t;, then thread ¢, is probably behind
t1. In this case, to needs to progress to catch up
with t1. The idea of Long’s heuristic can be used to
create other heuristics. When multiple threads have
the same highest priority, the original heuristic exe-
cutes these threads alternately, but the variations of
Long’s heuristic use other policies to choose the next
thread to execute. In this paper we used Long’s with
Min-PC: when multiple threads have the highest pri-
ority, the basic block of the threads with smallest PC
is executed first. Then, all priorities are recounted
again for the next choice.

The Benchmarks: To probe the effectiveness of
the FCS optimization, we chose to apply it on gen-

Benchmark | LoC Inst Trace Merge
Divide 51 112 581 1
FFT 1,291 2,854 697 4
Fluidanimate | 5,712 6,357 5,586 3
Swaptions 1,309 3,742 1,123 3

Figure 8: The benchmarks that we have analyzed.
LoC: number of lines of code, including comments;
Inst: number of assembly instructions; Trace: num-
ber of instructions in millions, that each benchmark
executes with its standard input Merge: number of
call sites that we have merged.

eral purpose SPMD applications from the PAR-
SEC/SPLASH benchmark suite [12]. We have
used three programs from these collections: FFT,
Fluidanimate and Swaptions. Figure 8 shows some
characteristics of these benchmarks. These are the
PARSEC programs that we manage to compile using
LLVM 3.4. These programs are large, and contain
only a handful of branches that touch the same func-
tion call through different program paths. Therefore,
the benefits that we can expect from the application
of FCS on these benchmarks is limited. Hence, to
demonstrate the possibilities of our optimization, we
shall apply it also onto the program first seen in Fig-
ure 1.

Performance analysis: Figure 9 shows the result of
combining our optimization with different heuristics
and different numbers of available threads. Numbers
above bars show relative speedup compared to not
using our optimization. We performed these experi-
ments on an Intel Xeon CPU E5-2620 2.00GHz pro-
cessor with 16 GB of DDR2 RAM running Linux run-
ning Ubuntu 12.04 (Kernel 3.2.0). Nevertheless, our
results do not dependend on these features, as they
have been produced through simulation. Our exper-
iments let us draw some conclusions. MinPC-based
heuristics (MinSP-PC and MinPC) tend to benefit
more from FCS. This advantage exists because such
heuristics favour the synchonization of threads be-
fore a function call. For instance, in Figure 5 both,
MinPC and MinSP-PC, will fetch the instructions in
all the smaller labels, e.g., {5 — {g, before grabbing £,.,
which lays further ahead in the program’s binary lay-
out. Consequently, the heuristic published by Long
et al. does not benefit as much, because it has been
designed in a way that is totally oblivious to the invo-
cation of functions. Figure 9 also shows that our opti-
mization does not impact negatively the benchmarks

Two Threads

1 (IS
U H I I 3% 3% 3% 0%
0.5

56% 56% 56% 53%

0% 2% 2% 2% 0% 0% 0% 0%

Divide FFT Fluidanimate Swaptions
Four Threads
15
-12%
1% _m S S -
1 |_||_|II IEI/H‘;‘/T% 0% 0% 0% 0% 0% 0%
34%
0.5
55% 55% 55%
Divide FFT Fluidanimate Swaptions
Eight Threads
15
; 1% -0.7%
I—I E ‘;/’ 5=‘V . 0% 0% UE 0% 0% 0%_
05 % 19%
56% 56% 569
Divide FFT Fluidanimate Swaptions

Sixteen Threads

1 o e ™ —
|_| % 5% gy 0.8% 05% 0.4% 0% 0% 0% 0%
0.5 36%.
57% 57% 57%
Divide FET Fluidanimate Swaptions
[m] [m} =]]

Long_MinSP_PC MaxFun_MinSP MinSP_PC MinPC

Ratio (lower is better)

Figure 9: Execution time reduction after applying

FCS.

that we have tested. The only exceptions are due to
MinPC in Swaptions (four threads) and in FFt (16
threads). This negative impact is due to back-edges,
e.g., jumps that lead the program’s flow back to the
beginning of a loop. In face of repeat-style iterators,
which test the exit condition at the end, MinPC may
fail to reconverge threads within the loop. In this
case, the slightly larger code that we produce ends
up causing an increase on the number of instructions
that are not shared among threads. We have not ob-
served this behavior in the other heuristics.

5 Related Work

Other Divergence Aware Optimizations: this
paper introduces a new optimization to mitigate the
performance loss caused by divergences in GPGPU
applications. There are a number of different opti-
mizations that serve the same purpose; however, they
reduce divergences in different ways [13, 14, 15, 16,

17, 18]. For instance, Han et al.’s [15] Branch Dis-
tribution hoists instructions up or down divergence
paths to join them at common program points —
we can perform this merging in the middle of diver-
gence paths. Branch Fusion [14] is a generalization
of Branch Distribution; however, it does not merge
function calls. In other words, the optimization of
Coutinho et al. bails out when faced with divergent
branches that contain call instructions — this is the
exact case that we handle.

There are other divergence aware optimizations
that target loops, instead of branches, as we do. For
instance, Carrillo et al. [13] have designed a code
transformation called Branch Splitting, which divides
parallelizable loops enclosing multi-path branches.
In this way, they produce multiple loops, each one
with a single control flow path. In similar lines, Lee
et al. [16] have proposed Loop Collapsing, a tech-
nique that reduces divergences by combining multi-
ple divergence loops into common iterators. Han et
al. [15] have further extended Lee’s approach with
the notion of Iteration Delaying. This transforma-
tion recombines loops containing divergent branches,
so that threads tend to remain together for a longer
time. None of these optimizations is designed to han-
dle function calls specifically, and, more importantly:
none of them would be able to carry out the opti-
mization that we discuss in this paper.
Function-Aware Heuristics to Reconverge
Threads: there exist different heuristics imple-
mented at the hardware level that enforce early re-
convergence of divergent threads [19, 20, 7]. In partic-
ular, Milanez et al. [8] have proposed the Min-SP-PC
technique, one of the heuristics that we use in this pa-
per. We emphasize that our work is orthogonal and
complementary to these research efforts. Our opti-
mization can be applied on programs independent on
the heuristic used to reconverge threads. Neverthe-
less, as we have observed in Section 4, some of these
heuristics yield greater benefit when combined with
our approach.

6 Conclusion

This paper has introduced Fusion of calling sites, a
new compiler optimization that mitigates the neg-
ative impact caused by divergences on applications
running in SIMD fashion. This optimization consists
in rearranging the control flow graph of a program, so
to merge different function call sites at common pro-
gram points. In this way, the merged function can be

invoked together by divergent threads. There exists,
presently, a great deal of effort to develop techniques,
at the hardware and software level, to reduce the ef-
fects of divergences. Our work is complementary to
these efforts: our gains are cumulative with the in-
creasing performance of graphics cards, and it adds
a negligible cost over compilation time. More impor-
tantly, we believe that optimizations such as Fusion
of calling sites contribute to shield application devel-
opers from particularities of the parallel hardware,
such as divergence and reconvergence of threads.
Software: the software used in this paper, in-
cluding our simulator and binary instrumentation
tool, is available at https://github.com/dougct/
function-call-fusion.

References

[1] J. Nickolls and W. J. Dally, “The gpu computing
era,” IEEE Micro, vol. 30, pp. 56-69, 2010.

[2] M. Garland, “Parallel computing experiences
with CUDA,” IEEE Micro, vol. 28, pp. 13-27,
2008.

[3] C. A. Navarro, N. Hitschfeld-Kahler, and L. Ma-~
teu, “A survey on parallel computing and its ap-
plications in data-parallel problems using GPU
architectures,” Communications in Computa-
tional Physics, vol. 15, no. 2, pp. 285-329, 2014.

[4] R. Karrenberg and S. Hack, “Improving perfor-
mance of opencl on cpus,” in CC. Springer,
2012, pp. 1-20.

[5) W. W. L. Fung, I. Sham, G. Yuan, and T. M.
Aamodt, “Dynamic warp formation and schedul-
ing for efficient GPU control flow,” in MICRO.
IEEE, 2007, pp. 407-420.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Weg-
man, and F. K. Zadeck, “Efficiently computing
static single assignment form and the control de-
pendence graph,” TOPLAS, vol. 13, no. 4, pp.
451-490, 1991.

[7] G. Long, D. Franklin, S. Biswas, P. Ortiz,
J. Oberg, D. Fan, and F. T. Chong, “Minimal
multi-threading: Finding and removing redun-

dant instructions in multi-threaded processors,”
in MICRO. IEEE, 2010, pp. 337-348.

[8] T. Milanez, C. Collange, F. M. Q. Pereira,
W. Meira, and R. Ferreira, “Thread scheduling

[10]

[18]

and memory coalescing for dynamic vectoriza-
tion of SPMD workloads,” Parallel Computing,
vol. 40, no. 9, pp. 548-558, 2014.

C. Lattner and V. S. Adve, “LLVM: A compi-
lation framework for lifelong program analysis
& transformation,” in CGO. IEEE, 2004, pp.
75-88.

M. J. Quinn, P. J. Hatcher, and K. C. Jour-
denais, “Compiling C* programs for a hyper-
cube multicomputer,” SIGPLAN Not., vol. 23,
pp. 57-65, 1988.

C. Collange, “Stack-less SIMT reconvergence at
low cost,” ENS Lyon, Tech. Rep., 2011.

C. Bienia, S. Kumar, J. P. Singh, and K. Li,
“The PARSEC benchmark suite: characteriza-
tion and architectural implications,” in PACT.
ACM, 2008, pp. 72-81.

S. Carrillo, J. Siegel, and X. Li, “A control-
structure splitting optimization for gpgpu,” in
Computing frontiers. ACM, 2009, pp. 147-150.

B. Coutinho, D. Sampaio, F. M. Q. Pereira, and
W. M. Jr., “Divergence analysis and optimiza-
tions,” in PACT. IEEE, 2011, pp. 320-329.

T. D. Han and T. S. Abdelrahman, “Reduc-
ing branch divergence in gpu programs,” in
GPGPU-4. ACM, 2011, pp. 3:1-3:8.

S. Lee, S.-J. Min, and R. Eigenmann, “Openmp
to gpgpu: a compiler framework for auto-
matic translation and optimization,” in PPoPP.
ACM, 2009, pp. 101-110.

E. Z. Zhang, Y. Jiang, Z. Guo, and X. Shen,
“Streamlining GPU applications on the fly:
thread divergence elimination through runtime
thread-data remapping,” in ICS. ACM, 2010,
pp. 115-126.

E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and
X. Shen, “On-the-fly elimination of dynamic ir-
regularities for GPU computing,” in ASPLOS.
ACM, 2011, pp. 369-380.

M. Dechene, E. Forbes, and E. Rotenberg, “Mul-
tithreaded instruction sharing,” North Carolina
State University, Tech. Rep., 2010.

J. Gonzalez, Q. Cai, P. Chaparro, G. Magklis,
R. Rakvic, and A. Gonzélez, “Thread fusion,”
in ISLPED. ACM, 2008, pp. 363-368.

