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The scope of this paper is to give a general framework to use two recent sophisticated algorithms for signal processing communication applications: EM and BEM algorithms. Some contexts of application are then illustrated as application examples.

I. General Framework for EM algorithm :

We denote with r a random vector obtained by expanding the received modulated signal r(t) onto a suitable basis, and we indicate with b a deterministic vector of parameters to be estimated from the observation of the received vector r. Assume that r also depends on a random nuisance parameter vector a independent of b and with a priori probability density function (pdf) () p a . The problem addressed here is to find the ML estimate b of b, that is to say, the solution of: The likelihood function to be maximized with respect to the trial value  b of b is obtained after elimination of the nuisance parameter vector a as follows: 

In order to solve (1), we take the derivative of ln ( ) p  rb with respect to  b and we equate it to zero, that is: [START_REF] Xie | Two EM-type channel estimation algorithm for ofdm with transmitter diversity[END_REF] In other words, the ML estimate b of b is that value that nulls the conditional a posteriori expectation of the derivative with respect to  b of the conditional log-likelihood function (LLF) ln ( , ) p  r a b . Finding the solution of ( 4) is not trivial, since  b appears in both factors of the integrand. Thus, we try an iterative procedure that produces a sequence of values () ˆn b hopefully converging to the desired solution. In particular, we use the previous sequence value ( 1) ˆn b to resolve the conditioning on the first factor of the integrand, and we find the current solution [START_REF] Zhang | Iterative Carrier Phase Recovery Suited to Turbo-Coded Systems[END_REF] If the sequence of estimates () ˆn b yielded by (5) converges to a finite value, that value is a solution of ML equation ( 4) [START_REF] Moon | The expectation-maximization algorithm[END_REF]. Observe now that the first factor of the integrand in [START_REF] Zhang | Iterative Carrier Phase Recovery Suited to Turbo-Coded Systems[END_REF] does not depend on () ˆn b . Therefore, we can bring the derivative back out of the integral and obtain the equivalent equation: [START_REF] Helstrom | Elements of Signal Detection & Estimation[END_REF] that is, the estimate () ˆn b maximizes the conditional a posteriori expectation of the conditional LLF ln ( , ) p 
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converges to the ML estimate under mild conditions [START_REF] Feder | Parameter estimation of superimposed signals using the em algorithm[END_REF][START_REF] Georghiades | Sequence estimation in the presence of random parameters via the EM algorithm[END_REF]. To make (8-a) (8-b) equivalent to (7-a) (7-b), we observe that, by using Bayes rule and considering that the distribution of a does not depend on the parameter vector to be estimated: Therefore, substituting ( 9) in (8-a), we get :

( ) ( , ) ( , ) ( ) ( , 
( [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate[END_REF] The second term I 2 in [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate[END_REF] does not depend on  b , and as far the M-step is concerned, it can be dropped. Consequently, the estimation procedure given by (7-a) (7-b) and the EM algorithm defined by (8-a) (8-b), yield the same sequence of estimates. We explicitly observe that the solution of (1) can be found iteratively be only using a posteriori probabilities 

II. Application of EM to Synchronization for SISO-based receivers :

EM-based synchronization

We show here how to apply the general framework of the previous section to the estimation of the synchronization parameters for a digital data-modulated bandpass signal. In this context, the nuisance parameter vector a contains the values of the N unknown (hence random) transmitted symbols, that is,

  0 1 1 , , , T N a a a    a
. Those symbols take values in an M-point constellation  (M-PSK, M-QAM,…). Thus, the vector a has a probability mass function (pmf) ()

P  a  , with   0 1 1 , , , N         and N  
. The vector b contains the synchronization parameters to be estimated, that is,

 

, , ,

T A     b
where , , , A    are the channel gain, symbol timing, carrier frequency, and phase offsets, respectively. Here, the synchronization parameters are assumed as constant within the received code block. This has the advantage of simplifying notably the processing required by the estimation algorithm. Furthermore, for the sake of simplicity, we will consider in the sequel an AWGN channel as well. Hence, the baseband received signal r(t) can be written as: 

N jt k k r t A a g t k T e w t             ( 11 
)
where T is the symbol period, g(t) is a unit-energy (square-root raised-cosine) pulse, and w(t) is complex-valued AWGN with power spectral density 2.N 0 (assumed to be known). Neglecting irrelevant terms independent of a and b, the conditional LLF of ( 11) is   

               ( 13 
)
is obtained by precompensating the received signal by the trial value    , then applying the result to the matched filter g(-t), and finally sampling the matched filter output at the trial instant .

t k T    . Substituting (12) into (7-b) and dropping the terms which do not depend on  b , we get:
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We emphasize the similarity between ( 12) and ( 16): the latter is formally obtained from the former by simply replacing the terms 

rb

. The new estimate () ˆn b at the nth step is then determined by applying (7-a) and therefore by maximizing

( -1) ( , ) n   bb ,
given by ( 16) with respect to  b . The corresponding result is:
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The obtained solution can be interpreted as an iterative synchronization procedure, which can be referred to as soft-decision-directed (SDD) synchronization. What we call here soft decisions are the a posteriori average values We now concentrate on the evaluation of the marginal a posteriori symbol probabilities. Whereas for uncoded transmission the usual assumption is that data symbols are independent and equally likely (yielding ()

N PM   a  for all N  
), for a coded transmission with code rate , we only have a subset N B  of all possible sequences corresponding to N M  legitimate encoder output sequences. Therefore, taking into account that the APP of the symbol sequence a is given by:

( ). ( , ) ( , ) ( ). ( , ) B Pp P Pp           a r a b a r b a r a b   (18) 
and assuming that: , () 0,

N MB P B           a    (19) we get: ( , ) , ( , ) ( , ) 0, 
B p B p P B                   r a = b r a b a r b     (20)
which relates the APP of the symbol sequence to the conditional likelihood function. Note that the result for uncoded transmission is obtained from (20) by taking N B  . Finally, the marginal APP related to a symbol a k is obtained summing the symbol sequence APPs (20) over all symbols a i with i ≠ k. Evaluation of the APPs according to (20) yields a computational complexity that increases exponentially with the sequence length N, as all possible data sequences must be enumerated. However, in systems where the received signal can be modeled as a Markov process, the marginal symbol APPs can be efficiently obtained using the BCJR algorithm with a complexity that grows only linearly with the sequence length N.

Using a simple gate function for h(t) instead of the square-root raised-cosine filter, we can completely compute ). 

( -1) ( , ) n   bb . We have: .2. . . ( , ) ( ). . ( . 
jt k z v r t e h t k T dt              (21) 
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For the computation of

( -1) ( , ) n k  rb
, we suppose that a simple BPSK is used and we get:

( -1) () ( , ) tanh( ) 2 n nk k La   rb ( 24 
)
with n denoting the nth corresponding turbo iteration. Then, combining (23) and (24) we eventually obtain: 
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)
Looking for a maximum value in (25) with tentative values ,    constitutes a highly complicated task. One way of simplifying this problem would be to expand ( , )

L v    as a Fourier serie [START_REF] Zhang | Iterative Carrier Phase Recovery Suited to Turbo-Coded Systems[END_REF].

III. General Framework for BEM algorithm :

In order to introduce the key differences between EM and BEM, we recall the main properties of EM. Let

  0 1 1 , ,..., T L    
denote an L-dimensional deterministic vector to be estimated from an N-dimensional received vector

0 1 1 [ , ,..., ] T N R R R   R
of noisy data (with N ≥ L). The ML estimation of  is the solution of the problem [START_REF] Helstrom | Elements of Signal Detection & Estimation[END_REF] arg max ( )

ML r L      (26)
where ( ) log ( )

r Lf   r
 is a log-likelihood function and () f xy denotes the probability density function (pdf) of the random vector X conditioned on the event    Yy . Solving the problem (26) in a direct fashion requires a closed form expression for () r L   but, even if this expression is available, the search for its maximum may entail an unacceptable computational burden. When this occurs, a feasible alternative can be offered by the EM algorithm [START_REF] Moon | The expectation-maximization algorithm[END_REF][START_REF] Feder | Parameter estimation of superimposed signals using the em algorithm[END_REF]. The EM approach develops from the assumption that a complete data vector

0 1 1 [ , ,..., ] T P C C C   C
(with P ≥ N) is observed in place of the incomplete data set R. The vector C is characterized by a couple bof relevant properties: (1) it is not observed directly but, if available, would ease the estimation of  ; (2) R can be obtained from C through a many-to-one mapping ()  C R C . In practice, in communication problems, C is always chosen as a superset of the incomplete data [START_REF] Feder | Parameter estimation of superimposed signals using the em algorithm[END_REF], that is,

[ , ] T T T  C R I ( 27 
)
where the so-called imputed data I are properly selected to simplify the ML estimation problem [START_REF] Moon | The expectation-maximization algorithm[END_REF]. In particular, when  consists of all transmitted channel symbols, I collects all the unwanted random parameters (fading, phase jitter, …) affecting the communication channel. These choices lead to hard detection algorithms often having an acceptable complexity and capable of incorporating the statistical properties of the channel parameters.

In the following, the complete data vector C will be always structured as in (27).

Given C, the auxiliary function :

    ( , ) ( ) , log ( ) , 

log ( ). ( , )

.

i EM c Q E L Ef f f d            I I S Rr C R r r,i i r i         ( 28 
)
is evaluated, where

 .

E X denotes the statistical average with respect to a random vector X and S i is the space of I. The, this function is employed in the following two-step procedure generating successive approximations   () , 1, 2,...

k k   of ML  (1): 
(1) Expectation step--( , )

EM Q   in (28) is evaluated for () k EM     (2) Maximization step--given () k EM  , the next estimate ( 1) k EM  
is computed as:

( 1) ( ) arg max ( , ), 0,1,...

kk EM EM EM Qk       (29) 
An initial estimate (0) EM  of  must be provided for the algorithm start-up. In digital communication problems, proper initialization of the EM algorithm is usually accomplished exploiting the information provided by known symbol pilots [START_REF] Moon | The expectation-maximization algorithm[END_REF]. It can be proved that, under mild conditions, the sequence  

() k EM 
converges to the true ML estimate ML  of (1), provided that the existence of local maxima does not prevent it. Avoiding this requires an accurate initial estimation (0) EM  whose choice, for this reason, is of crucial importance [2].

The BEM algorithm : The unknown vector

  0 1 1 , ,..., T L    
mentioned in the previous paragraph can also be modeled as a random quantity, when its joint pdf f() is available. In this case the MAP estimate MAP  of  , given the observed data vector r, can be evaluated as:  . Solving (30) remains a formidable task for the same reasons previously illustrated for the ML problem (1). In principle, however, an improved estimate of  can be evaluated via the MAP approach since statistical information about channel uncertainty are exploited. Since there is a strong analogy between the ML problem (26) and the MAP one (30), it is not surprising that an expectation-maximization procedure, dubbed Bayesian EM (BEM) [START_REF] Chiavaccini | MAP symbol estimation in the presence of random parameters via a generalized EM algorithm[END_REF][START_REF] Gelman | Bayesian Data Analysis[END_REF], for solving the latter, is available. The BEM algorithm evolves through the same iterative procedure, as the EM, but with a different auxiliary function [START_REF] Chiavaccini | MAP symbol estimation in the presence of random parameters via a generalized EM algorithm[END_REF], namely:

arg max ( ) MAP r M      (30) 
      ( , ) ( ) , log , , log ( , , ). ( ) 
. i BEM C c Q E M Ef f f d        S Rr C R r r i i r, i         (31) 
A clear relationship can be established between the BEM And the EM algorithms. In fact, factoring the pdf ( , , ) f ri as:

( , , ) ( , ). ( )

f f f  r i r i    (32) 
and substituting (32) into (31) produces ( , ) ( , ) ( )

BEM EM Q Q I        (33)
where ( ) log ( ) If   . Equation (33) shows that the difference between ( , )

BEM Q   (31) and
( , )

EM Q   (28 
) is simply a bias term () I  favoring the most likely values of  . It is worth noting that, if a priori information about  were unavailable and, consequently, a uniform pdf was selected for () f  , the contribution from () I  would turn into a constant in (33), that is, it could be neglected. Therefore, the BEM encompasses the EM as a special case and, since the former benefits by the statistical information about  , it is expected to provide improved accuracy with respect to the latter. For the same reason, an increase in the speed of convergence and an improved robustness against the choice of the initial conditions could be offered by the BEM.

SISO Data detection in the presence of parametric uncertainty via the BEM Technique

In this section we show how the BEM technique can be employed to derive SISO algorithms for detecting digital signals transmitted over channels with parametric uncertainty and memory. A single-user transmission over a single input-single output channel is considered for simplicity, but the proposed approach can be extended to an arbitrary number of users and to MIMO system without any substantial conceptual problem.

Here, we assume that the kth component of the received data vector R can be expressed as:

( , )

k k k R g N  DA ( 34 
)
where D = (,.,) k g expresses the known functional dependence of the channel on both the transmitted symbols and its parametric uncertainty. In particular, we focus on conditional finite memory channels, that is, on random channels such that: 12 ( , ) ( , , ,..., , )

c k k k k k k L g g D D D D     D A A ( 35 
)
where L c denotes the channel memory. The goal is to devise a MAP SISO detection algorithm given the observed data R = r and a statistically known parameter vector A. In data detection problems involving the EM technique, two different choices have been usually suggested for the imputed data I and the parameter vector  :

(1) and = (2) and =  

I A D I D A   ( 36 
)
It is extremely important to comment now on the meaning and the consequences of these choices. In the first case, both EM and BEM-based algorithms aim at producing hard estimates of the transmitted data. The only substantial difference between these two classes of strategies is that BEM allows to exploit the data statistics, that is, their APRP's, in the detection algorithm, since () I  in (33) turns into: . In other words, employing the EM (BEM) technique leads to hard-in (soft-in) hard-output detection algorithms. In the second case, both EM and BEM-based algorithms estimate the random parameters of the communication channel in a direct frashion. Nonetheless, they can be considered as SISO detectors since they generate soft estimates (i.e., the APPs) of the transmitted data as a byproduct of the estimation procedure and can also incorporate the data APRPs. BEM-based estimators, however, also make use of channel statistics, whereas EM-based estimators do not, that is, they operate in a blind fashion. Since blind detection techniques can be substantially outperformed by their counterparts exploiting channel statistics, this offers a strong motivation for preferring BEM-based strategies to EM-based ones when such statistical information are available. To further clarify these ideas, we derive now the BEM estimator of  , given  ID . the joint pdf ( , , ) f ri can be factored as:

( , , ) ( , , ) ( , ). ( ). ( ) f f f f f  r i r d a r d a d a  (38) 
as the data D are independent of the channel parameters A. 41) into (31) and dropping the unrelevant terms produces, after some manipulations:

1 2 2 0 1 ( , ) Pr( , , ) ( , , ) log ( ) kk 
N BEM k k k k k k kd N Q d r g d a f                 a a r a a ( 42 
)
where  denotes the set of c L M possible channel state vectors. We define now the estimate vector

0 1 1 [ ] [ [ ], [ ],..., [ ]] T L k a k a k a k   a
generated, at the kth iteration, by the BEM estimation algorithm based on ( , ) BEM Q  aa (42). Such an algorithm operates as follows. First, ( , [ ])

Qk aa is evaluated (E step). The next estimate [START_REF] Moon | The expectation-maximization algorithm[END_REF] k  a corresponds to the maximum of ( , [ ]) Qk aa with respect to a. Then, taking the gradient of (42) with respect to a and setting it to zero produces the recursive relation.

 

1 * * * 2 [ 1] 0 [ 1] 1 Pr( , , [ ]) 2 Re ( ( , , ) ) ( , , ) 1 ( ) 0 ( 
) kk N k k k k k k k k k k kd N k d k g d r g d f f                     a aa a a a
r a a a a a (43) expressing a set of nonlinear equations for evaluating [ 1] k  a , given [] k a (M-step). It is worth noting that complexity of solving (43) depends on the type of functional dependence of (.) k g on a and on the inner structure of log f(a). We now explain why the estimator based on (43) can be also interpreted as a SISO algorithm. First of all, we note that the contribution from Pr( ) l d (coming from (39)), being independent of a, has been dropped in ( , ) (42). The contribution from the APRPs of the channel symbols, however, has not really disappeared since such probabilities are used in the evaluation of the APPs   ( , , kk Pd   ra . This means that, in its (k+1)th iteration, the BEMbased estimation algorithm requires the evaluation of the new APPs starting from the available APRPs and the last estimate [] k a of channel parameters. Generally speaking, on channels with memory, these APPs can be evaluated by means of a forward-backward recursive procedure operating on the trellis diagram of the channel states [START_REF] Kaleh | Joint parameter estimation and symbol detection for linear or nonlinear unknown channels[END_REF][START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate[END_REF][START_REF] Chang | On receiver structures for channels having memory[END_REF] ( ,, )

BEM Q  aa
kk k k k k kk kk f r f r P f f r                      aa ra r a a (44)
Following [START_REF] Kaleh | Joint parameter estimation and symbol detection for linear or nonlinear unknown channels[END_REF][START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate[END_REF][START_REF] Chang | On receiver structures for channels having memory[END_REF] it can be proved that 

k k k k k k k k k k f r f r                 aa ( 45 
)
where 1 , ,..., d ra can be delivered to soft decoding stages to improve the error performance of a digital receiver. Finally, we note that substantial simplifications of the BEM-based procedure based on (43) can be found when the communication channel does not have memory, that is, 1 c L  , since in this case the forward-backward procedure is no more required.
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k k k k k k k k k k k k S fr                          a (46) 2 1 2 1 1 2 2 1 1 2 2 1 ( , ) ( ) ( ). ( , , ) Pr( ) k k k k k k k k k k k k S fr                                a where ( , ) ij S  is the subset of states i  such that the transition ij    is admissible. The initial conditions     0 0 0 0 Pr( );        and     1; N N N       need

Example of application: A BEM-based SISO algorithm for space-time block coded systems

Here we focus on a space-time block coded system employing N t transmit and N R receive antennas.The set of channel symbols transmitted during the nth block is denoted by the L  N

t matrix , [ ] [ [ ]] li n s n  S (with l = 1,2,…,L, i = 1,2,…,N T )
, where L is the overall duration of the block in channel symbols and , [] li sn is the channel symbol feeding the ith antenna in the symbol interval ( . ) l n L  . In the following we assume that the multiple channels involved in the communication system are (a) affected by frequency-flat Rayleigh fading and (b) quasi-static, that is, channel variations within each block are negligible, whereas changes from block to block are taken into account. Then the path gain , [] ij an (with i = 1,2,…,N T and j = 1,2,…,N R ) from the ith transmit to the jth receive antenna during the nth block is a complex Gaussian random process with zero mean and correlation function

  * ,, [ ] [ ]. [ ] a i j i j R m E a n m a n  (with [0] 1 a R  ).
Moreover, the gain processes  

, [] ij an are independent (rich scatterer environment). Let , [] lj rn denote the received signal sample taken at the output of the jth receive antenna in the (l + n.L)th symbol interval, with j = 1,…,N R and l = 1,…,L. A at the kth iteration, the next estimate ( 1) k A is evaluated as 

  solving the resulting simplified equation that follows:

  a)-(7-b) of our iterative solution can also be derived by means of the EM algorithm[START_REF] Feder | Parameter estimation of superimposed signals using the em algorithm[END_REF][START_REF] Georghiades | Sequence estimation in the presence of random parameters via the EM algorithm[END_REF][START_REF] Xie | Two EM-type channel estimation algorithm for ofdm with transmitter diversity[END_REF]. Consider r as the "incomplete" observation and ( , )T T T  z r aas the "complete" observation. The EM algorithm states that the sequence () ˆn b defined by:

(

  



  a posteriori probability (APP) of the kth channel symbol k a conditioned on the observation r and on the estimate ( the M possible values taken in the constellation  . Equation (14) can then be rearranged as:

((

  symbol. They are a sort of "weighted average" over all the constellation points according to the respective symbol APPs. Note that thanks to (15-a) and (15-b), these a posteriori average values other words, due to the particular structure of the digital data-modulated signal, the implementation of the iterative ML estimation algorithm only requires the evaluation of the marginal a posteriori symbol probabilities (

  of random channel parameters independent of D and with known statistical properties,   k N is an AWGN sequence with variance 2 N  , and



  is the set of all the M N possible data sequences of length N, of the channel symbol vector d. If we define the channel state vector f r d a in (38) can be expressed as:

  kth sample r k depends on d through the couple   , kk d  only, and the random variables   k R , conditioned on D and A, are independent. Moreover, the conditional pdf ( , ) f  ir in (31) is given by: a is the probability of the event   l  dd, given  Rr and   Aa . Substituting (39) and (40) into (38) and substituting (38) and (

  indications illustrated in the previous application, we set  and   ,  C R S in applying the BEM technique. Then the auxiliary function is: , given R and   AA . Starting from (51), the following BEM-based recursive channel estimator can be derived. Given the channel estimate() k 

  important to note that (a) P does not depend on the index of the receive antenna; (b) the inverse of P does not need to be recomputed as long as the channel statistics do not change; (c) (54) can be simplified factoring C A as: K iterations the BEM algorithm stops producing a channel estimate which can be processed exactly like in the previous application.

  and which can be derived as follows. To begin, we note that the couple ( , )

									kk d	uniquely identifies a
	transition	1 kk  ( , 	)	in the channel state, so that	( , k P d	k 	1   , ) ( , , ) k k P    r a r a . Applying
	the Bayes' rule to the evaluation of	( , kk P 	1 	, )  ra gives
				( , ,	11 )
				1			
								1
								,	1

  Then the

										LN 	received
										R
	signal matrix	lj , ( ) [ [ ]] n r n  R	is given by:
										[ ] n R	[ ] [ ] n n  S A	W	[ ] n	(49)
	Here [] n  S	, where	 	 S m mM , 1,..., 		is an M-ary alphabet of unitary matrices
	() m S	H	S	m		T I , where I N	n is the n  n identity matrix. Moreover,	ij , [ ] [ [ ]] n a n  A	and
	W	lj , [ ] [ [ ]] n w n 	are the N	T  N	R fading matrix and the L  N R noise matrix, respectively. The
	lj elements , [] wn of W[n] are independent Gaussian random variables, all having zero mean
	and variance 2 w  	0 N 2.	.
	A set of N consecutive vectors (49) (with n = 0,…,N-1) can be grouped as
	[ [0], [1],..., [ H H H  N R R R R	1]] H	, with
										( ).  R D S A W	(50)
	where			[ [0], [1],..., [ H H H  N A A A A	1]] H	and	[	[0],	[1],...,	[	1]]