
HAL Id: hal-01410138
https://hal.science/hal-01410138v1

Submitted on 6 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards the Description and Execution of Transitions in
Networked Systems

Alexander Frömmgen, Björn Richerzhagen, Julius Rückert, David Hausheer,
Ralf Steinmetz, Alejandro Buchmann

To cite this version:
Alexander Frömmgen, Björn Richerzhagen, Julius Rückert, David Hausheer, Ralf Steinmetz, et al..
Towards the Description and Execution of Transitions in Networked Systems. 9th Autonomous In-
frastructure, Management, and Security (AIMS), Jun 2015, Ghent, Belgium. pp.17-29, �10.1007/978-
3-319-20034-7_2�. �hal-01410138�

https://hal.science/hal-01410138v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards the Description and Execution of
Transitions in Networked Systems

Alexander Frömmgen1, Björn Richerzhagen2, Julius Rückert3,
David Hausheer3, Ralf Steinmetz2, and Alejandro Buchmann1

1 Databases and Distributed Systems, TU Darmstadt.
{froemmge|buchmann}@dvs.tu-darmstadt.de

2 Multimedia Communications Lab, TU Darmstadt.
{bjoern.richerzhagen|ralf.steinmetz}@kom.tu-darmstadt.de

3 Peer-to-Peer Systems Engineering Lab, TU Darmstadt.
{rueckert|hausheer}@ps.tu-darmstadt.de

Abstract. Today’s distributed systems have to work in changing envi-
ronments and under different working conditions. To provide high per-
formance under these changing conditions, many distributed systems im-
plement adaptive behavior. While simple adaptation through parameter
tuning can only react to a limited range of conditions, a switch between
different mechanisms at runtime enables broader adaptivity. However,
distributed systems that switch mechanisms at runtime lack a clear ab-
straction for the adaptive behavior and, thus, usually interleave the adap-
tation and actual application logic. This leads to complex and error-prone
systems that are hard to maintain and not easy to extend.
In this paper, we analyze the adaptations of two distributed systems
from different application domains. We identify recurring requirements
as well as life cycles of transitions between mechanisms. Based on this, we
present a framework that provides a clear abstraction of the underlying
transition logic and manages the transitions at runtime. The concept is
applied to the two example systems to practically evaluate its benefits.
We show that our approach leads to less complex realizations of the
adaptive behavior and allows new mechanisms to be integrated easily.

1 Introduction

Today’s distributed systems operate in challenging environments with rapidly
changing working conditions. In order to provide high performance in such dy-
namic environments, systems need to be highly adaptive. However, simple adap-
tations by means of configuration parameter adjustments can only react to a
limited range of conditions. As distributed systems can be described as a com-
bination of multiple functional blocks, in the following called Mechanisms, the
ability to switch between mechanisms at runtime and the possibility to extend
the system by novel mechanism, proved to provide greater flexibility and enables
the system to adapt to a wider range of environmental conditions [14,18]. In the
following, such switches between mechanisms are referred to as Transitions.

While this idea is appealing, so far, there exists neither a systematic approach
of how to generically integrate multiple mechanisms in a complex distributed
system, nor how to systematically execute and coordinate transitions between
mechanisms at runtime. The latter is especially challenging as it requires a deep
understanding of mechanism life cycles and a generic approach for state trans-
fers between mechanisms in transition. As adaptivity has complex implications
for the overall system, an explicit design of transition-enabled adaptive behavior
is necessary and essential. So far, existing adaptive distributed systems lack a
clear separation of concerns between the logic realizing adaptivity (the transi-
tion logic) and the actual application logic. A general concept to design and
implement systems that allow for adaptivity in all key aspects is missing so far.

In this work, we propose a formal description of adaptivity through transi-
tions and provide system developers with a sophisticated framework to describe
and realize mechanism transitions in distributed systems. The approach allows
mechanisms to be easily added over time to address new scenarios. Furthermore,
the framework enables a clear separation of concerns between the transition and
application logic. To identify the relevant functionality for the framework, two
state-of-the-art systems (Bypass [14] and Transit [18]) targeting different appli-
cation domains are analyzed. Even though both systems proved already that
they highly benefit from adaptive behavior, a systematic approach to describe
this behavior is missing so far. Based on the results, a first general design for the
execution of transitions is derived and applied to the analyzed systems. By fol-
lowing the presented design, the mechanisms still define their application-specific
interfaces. Additionally, transition-enabled mechanisms follow a common life cy-
cle approach, managed by the framework. This allows us to (i) define Elementary
Transitions between mechanism instances that can be performed during runtime
and (ii) easily add new (specialized) mechanisms and transitions to an existing
system. First proof-of-concept applications and initial evaluation results show
that the approach is well-suited to describe and enable generic adaptivity in
distributed systems by supporting mechanism transitions. As this work concen-
trates on the description and execution of transitions, the highly domain-specific
adaptation decisions (based on performance models such as queuing models) are
not discussed. However, our work poses a first step towards a generalization of
the decision process by providing a unified description and handling of transi-
tions in distributed systems.

The remainder of the paper is structured as follows: Section 2 presents the
analysis of two existing adaptive systems and the derivation of requirements for
the transition execution framework. The developed methodology, the derived life
cycles and the framework is presented in Section 3 and discussed in Section 4.
Subsequently, Section 5 presents related work and Section 6 concludes the paper.

2 Requirements Derivation

In this section, we analyze two state-of-the-art distributed systems and derive
requirements for a transition framework.

2.1 Analysis of Bypass

Bypass [14] provides low-latency event dissemination for interactive mobile aug-
mented reality games. In the targeted application scenario most events generated
by mobile players are only relevant within a given area of interest around the
player’s current position. Therefore, once groups of nearby players are detected,
the system adapts to local event delivery via ad hoc dissemination protocols.
Depending on relevant environmental conditions (e.g. the group size), the local
dissemination protocol is reconfigured or replaced. The original paper showed the
benefit of adaptations to two local dissemination protocols: (i) a range-limited
broadcast scheme and (ii) a probabilistic, gossip-like scheme. The authors fur-
ther mention the possibility to switch between physical layer protocols, such as
Wi-Fi ad hoc and Bluetooth. This leads to an architecture with a set of potential
compositions as shown in Figure 1.

Fig. 1: Overview of Bypass and the possible transitions.

The reconfigurations, i.e. the transitions between the local dissemination pro-
tocols, are not explicitly modeled in [14]. Instead, they are interweaved with the
application logic and part of a predefined adaptation strategy at the cloud-
based controller. Thus, no existing implementation for the recurring handling of
transitions is used. This raises concerns as to how maintainable the adaptation
implementation is, in particular how feasible it is to add new dissemination pro-
tocols, and how to implement the complex switch between these at runtime. We
argue that a systematic methodology and a framework which supports this with
well-defined interfaces for transition-enabled mechanisms significantly reduces
the complexity of implementing and extending an adaptive distributed system.

Furthermore, the authors show that some nodes utilize different dissemina-
tion protocols. This causes approximately 40% of the overall message loss. We
therefore propose an explicit life cycle management for the mechanisms involved
in a transition. The coordinated life cycle has to enable a smooth handoff be-
tween two mechanisms, thereby reducing the amount of lost events caused by
the transition itself.

The additionally possible transitions between Wi-Fi ad hoc and Bluetooth
impose challenges to the existing transition handling. First of all, the estab-
lishment of the Bluetooth connection requires at least a short period of time,
which causes an increased latency. Second, the establishment of the connections
might fail for multiple reasons, which has to be compensated by the applica-
tion. Switching between Wi-Fi and Bluetooth also affects the currently utilized
dissemination protocol. Furthermore, sophisticated protocols require a specific
physical layer protocol as they rely on assumptions regarding communication
characteristics such as range or reliability. Therefore, we propose to build com-
positions of transitions to reflect dependencies, e.g. a transition between physical
layer protocols might depend on a transition of the dissemination protocol.

As the aforementioned challenges are recurring for transitions in adaptive
distributed systems, they should be handled by a transition framework to reduce
the complexity. Depending on the mechanisms, state such as routes or neighbor
tables are maintained that could benefit the target mechanism. Transferring
state requires domain-specific knowledge, while conceptually being part of the
transition logic. A transition framework needs to provide ways to utilize such
knowledge in the transition handling to benefit the overall system.

2.2 Analysis of Transit

The streaming system Transit [18] realizes an overlay-based multicast service
that adapts to a wide range of working conditions. For this, a main feature of
the system is to flexibly adapt its overlay topology, which is used to distribute
the video streams among participants in the system. The adaptivity is realized
by different sets of topology optimizations (cf. Figure 2). These optimizations
are usually executed in a distributed manner at the participants, also called
peers in the following. While Transit includes several other mechanisms that
realize adaptivity, including an extension [13] for network-layer multicast, in the
following, we focus on overlay topology optimizations as they promise to have
great potential for the adaptation considerations in this work.

Fig. 2: Exemplary mechanisms and transitions in Transit.

A challenging use case for topology adaptations are flash crowds, which are
common to large-scale (video) streaming events. A large number of users needs
to be quickly connected to the system. While in non-flash crowd times complex
optimizations are reasonable to gradually improve the delivery process, here it is
essential to quickly attach new peers to the topology and serve them with a low
startup delay. One way to achieve this is to build topologies where many peers
have free upload slots. Complex topology optimizations that could interfere with
the attachment process should be disabled during the massive join phases of a
flash crowd. Both can be achieved by defining topology optimizations strategies
that define which optimizations are run. Therefore, as the topology adaptation
logic is already modularized, this part of the system could greatly benefit from
well-defined interfaces for transition-enabled components. Even though transi-
tions between topology optimizations seem less complex as transitions in Bypass,
a unified transition model which covers recurring challenges would improve the
current systems and allow to build more complex systems easily.

3 Design and Description Methodology

3.1 Analysis of Transition Life Cycles

The systematic development of adaptive distributed systems requires abstrac-
tions. In the following, the Elementary Transition is introduced as the basic
building block. Therefore, the Life Cycle of an elementary transition is defined
based on the life cycle of the involved components. As the execution of a mech-
anism (e.g. Bypass’s dissemination protocol) can be distributed over multiple
nodes, we use Components as the smallest unit which is exchanged through a
transition. A component implements all mechanism logic that is executed on a
single node. Thus, the Broadcast components at multiple nodes together repre-
sent the Broadcast Dissemination mechanism in the distributed system.

To allow the application developer to abstract from the transition logic, a
proxy [8] component is used instead of the actual component. This proxy inter-
cepts all method invocations and forwards them to the currently active compo-
nent instance. This enables a clear separation of concerns, as it strictly separates
the application logic from the transition logic. The application only interacts
with the proxy. A transition affects the inner workings of the proxy while leav-
ing the reference to the proxy and the interface for the application unchanged.
The proxy hides the exchange of the Source component with the Target com-
ponent4. Additionally, the proxy instance ensures a thread-safe transition in a
multithreaded environment. A transition between two components, for exam-
ple, might not be executed while one thread is executing the source component
(more precisely: while at least one method of the source component instance is
part of a current execution stack). Similar problems might occur for application
layer protocols, e.g. finishing a communication sequence before executing the
transition. This follows the idea of quiescence as discussed by Pissias et al. [12].

4 In the following, component is used instead of component instance.

Fig. 3: Mechanisms comprise concurrently executed components on multiple nodes,
each managed by a proxy instance.

Figure 3 illustrates the overall architecture with multiple nodes, each exe-
cuting components managed by proxies. The proxies are managed by the Local
Transition Engine, which in turn is coordinated by the Global Transition Engine.
Components on different nodes interact, thereby forming a mechanism.

Our analysis of the existing adaptive systems and their requirements lead to
two kinds of elementary transitions, the runrun and the flip transition. Their
most important difference is the life cycle and the parallel usage of the involved
components. The flip transition does not execute both components in parallel
and, thus, executes a hard switch, whereas the runrun transition smoothes the
transition and executes both components in parallel for a short period of time,
enabling a handover of, e.g., protocol state. Even though the runrun transition
seems to be favorable, the flip transition is sometimes beneficial or even required
due to resource constraints. For example, most mobile devices do not support
the parallel usage of infrastructure Wi-Fi and Wi-Fi ad hoc, the parallel usage of
Wi-Fi and LTE causes a higher energy consumption, and exclusive used software
handles, e.g. established socket connections, cannot be shared. In the following,
we discuss both transition types in detail.

Flip Transitions The flip transition executes an abrupt switch between the
source and target component. Figure 4 shows the life cycle of a component for
such a transition. We model the life cycle as a mealy state machine which ex-
changes messages between the coordinating instance (the transition engine) and
the component. Therefore, the state transitions of the state machine are anno-
tated with the triggering messages (the input) which are sent to the component
(above the bar) and the expected answer when the new state is reached (below
the bar). For example, the transition engine signals an init to a newly created
component. Once the component followed its internal initialization steps, it sig-
nals finished back to the transition engine leading to the Initialized state. During
the initialization, the component executes preparation tasks such as allocating
memory. The proxy ensures that methods of the component are not yet invoked.
After the component has started successfully, and therefore can use the shared
resources, it reaches the Running state and is used by the application.

RunningInitialized
init

finished
start

finished

Aborted

start
abort

Cleaned Up

clean up
finished

clean up
finished

Fig. 4: Single component life cycle of a flip transition.

In case the component start fails, e.g. due to a network connection failure, it
reaches the Aborted state. From the software engineering point of view, the actual
constructor logic is distributed among the init and the start state transition.

Based on the component life cycle, we specify the life cycle of the flip tran-
sition (Figure 5). We denote messages exchanged with the components with an
according prefix (src:, trg:). The parent:-prefix is used for message exchanges
with the local transition engine as discussed later in this section. As the start
of the target component may fail, the Initialized state has two outgoing state
transitions. In case of a success, the flip transition finishes. Otherwise, the local
transition engine decides, based on the specification of the application developer,
if a new recovery component instance should be initialized or the transition fails.
Please note that the details of these steps are skipped in the figure due to clarity.

Executed

Initializing

parent: execute
trg: init

trg: finished; src: finished

Aborted

parent: abort

parent: abort

Recover

trg: finished
trg: start; src: clean up

Initialized

parent: finished
trg: abort

trg: clean up
...

rec: init
parent: recover

...

Fig. 5: Overall life cycle of a flip transition.

Runrun Transitions To reduce the performance degradation during the transi-
tion and allow a smooth transition, the runrun transition deactivates the source
component when the target component is already running. This interweaving
requires both components to be executed in parallel. The component life cycle
reflects this with additional states (cf. Figure 6). The main difference is the state
transition to the Active state and, thus, to the internal Running state. The Ac-
tive-state additionally contains an In Shutdown state. Methods of the component
can be executed during both internal active states. As the state transition to the
Running state may fail, there is a state transition to the Aborted state as well.
Additionally, the source component can be triggered to return to the Running
state. In the Active state, the component can execute a state transition to the
Cleaned Up state and clean up.

Running

Initialized

In Shutdown

init
finished

start
finished

Active

shutdown
finished

run
finishedAborted

start
abort

Cleaned Up

clean up
finished

Fig. 6: Single component life cycle of a runrun transition.

Based on this component life cycle, we define the life cycle of an elementary
runrun transition (Figure 7). As the source component can be used in the In
Shutdown state, the proxy can always forward method invocations, and therefore
never blocks the application. This holds even for the time during the state transi-
tions to the Parallel Active and the Aborted state. In case the start of the target
component fails, the transition can always return to the source component. As
the local transition engine coordinates the execution of a transition, it triggers
the state transition to the Clean up and the Rollback state. Even though the
component life cycle introduces a strict contract for the components, it allows
easily integrating new mechanisms.

Parallel Active

Initializing

parent: execute
trg: init

trg: finished; src: finished
parent: parallel active

Aborted

trg: abort; src: finished
trg: clean up; src: run

Clean up

parent: finished

src: clean up

Recovered

trg: finished; src: finished

parent: recovered

Rollback

parent: rollback

trg: clean up; src: run

Initialized

trg: finished
trg: start; src: shutdown

src: finished trg: finished; src: finished

Fig. 7: Overall life cycle of a runrun transition.

3.2 A Framework for Transition Description and Execution

Based on the two identified transition types and their life cycles, a systematic
description and framework support for transitions is possible. In the following,
we propose a transition description language, possible framework support, and
suitable visualizations.

The transition description language allows to specify all available transitions
and their affected components, as illustrated in Listing 1.1. As typical use cases
have only a limited number of possible transitions, the exhaustive description of
all transitions is without difficulty. Based on the described transitions, a Global
Transition Engine coordinates Local Transition Engines to execute distributed

transitions. As both analyzed distributed systems have a centralized instance
(the Cloud Server for Bypass and the Tracker for Transit), the assumption of a
global transition engine is reasonable.

The coordination and synchronization of the proxies can be implemented ef-
ficiently. As in the two example applications multiple nodes execute the same
transitions, the global transition engine does not require a huge and complex
state machine (e.g. a Cartesian product of the involved life cycle states). In-
stead, a single state at the global transition engine can represent multiple states
of the nodes. For scalability reasons, the global transition engine could use sub
coordinators to handle the coordination messages. As this work focuses on the
description and execution of transitions, a central coordinator is assumed. How-
ever, for future work, the methodology could be extended to support applications
with a decentralized transition control.

The transition engines use the additional information from the transition
description to control the transition execution. For example, the time the tran-
sition stays in the parallel active state (line 4), and the timeout which leads to a
rollback of the transition (line 7) can be specified. In case a ‘best effort’ approach
is sufficient, it is also possible to partly deactivate the transition coordination.

During both kinds of transition, state from the source component can be
transferred to the target component. This state is represented by the references
of the component and class instances which the source component transfers to the
target component. As the transitions in the two analyzed systems both transfer
this state in the life cycle state transition to the Running state, the framework
makes this state transfer explicit and supports it in the transition description
language (Listing 1.1 line 3). Components which only implement the stateless
strategy pattern [8] do not require state transfer.� �

1 define elementary transition elTransition

2 from ComponentA to ComponentB type runrun

3 transfer state myStateVariable

4 parallel active for 1 minutes;

5 define parallel transition paraTransition

6 foreach A execute elemTransition

7 at least 90% timeout 2 minutes;� �
Listing 1.1: Example of the transition description language.

Additional domain specific transition logic can be added in the host lan-
guage and is invoked by the transition engine during the life cycle events. Such
additional transition logic can, for example, be used to perform more complex
state transfers involving the transformation of data. Even though both evalu-
ated systems are based on Java, the presented approach is agnostic of the utilized
programming language. The explicit notation of the transitions allows a clear
separation between components and transitions and, this way, enables a system-
atic development of distributed adaptive systems. A framework which explicitly
supports transitions between components and manages their execution provides
multiple additional benefits. Besides development and debugging support, it can,

for example, monitor and ensure that only one transition per proxy instance is
executed at the same time, and started transitions finally terminate.

Traditionally, there are two viewpoints on systems, the structural and the
behavioral [9]. The composition of components describes structural properties,
whereas the execution of a transition is behavior which changes the structure.
We propose a combined view as a class diagram (Figure 8). The ternary associ-
ation connects the source and the target component with the specific transition
logic. The stereotypes TransitionEnabled and TransitionLogic are resolved to
implementations of the corresponding interfaces. The transferred state (more
precisely, the transferred references to other objects) is visualized as well.

from to «TransitionEnabled»

«TransitionLogic»

B2W

WiFiTransport
«TransitionEnabled»

«TransitionEnabled»

BluetoothTransport

TransportComponent

Class X Class Xstate from to

Fig. 8: UML visualization of transitions and the composition variability of components.

4 Discussion

To assess the impact of the proposed design methodology, the presented con-
cepts were applied on both systems. For the existing transitions between local
dissemination protocols in Bypass, the new version which leverages the frame-
work reduces the transition specific lines of code to roughly 20% of the original
code. This greatly reduces the complexity of the implementation. Even more im-
portant, the transition-specific source code is no longer part of the application
logic but instead encapsulated by the transition engine, providing separation of
concerns. Additionally, this reduces the error probability, as proved transition
handling code is reused. In addition to porting Bypass to our framework, we
added new component that encapsulate the physical layer protocols as proposed
by the authors. Therefore, the existing interaction via Wi-Fi ad hoc was realized
as a component instance as shown in Figure 1. Additionally, we added a com-
ponent instance that enables local communication via Bluetooth and defined a
runrun transition between both instances (cf. Listing 1.2).

Our implementations show that Bypass benefits from the concept of parallel
and sequential transitions. Switching the local dissemination protocol after the
physical protocol switched successfully, is defined as a sequential transition (List-
ing 1.2), composed of two elementary transitions. In case the connection setup
using Bluetooth fails, the overall transition returns to a well-defined system state.
Considering the life cycle of a runrun transition (Figure 7), the transition enters
the Aborted state and consequently recovers by just continuing to use Wi-Fi as
active component instance. Composing transitions out of elementary transitions
is straight forward with the presented framework, as they can easily be described

in the transition description language. Thereby, common pitfalls such as illegal
combinations or undefined transitions are detected early. The abstraction of the
underlying life cycle enables more complex combinations. For future work, it is
interesting to combine constraints on the possible component compositions and
properties of the compositions, e.g. as proposed by [7], to further support the
developer, e.g. verify legal transitions.� �

1 define elementary transition WiFi2BT

2 from WiFiAdHoc to Bluetooth type runrun;

3 define elementary transition Gossip2BC

4 from Gossip to Broadcast type runrun;

5 define sequential transition SeqTrans (WiFi2BT, Gossip2BC);� �
Listing 1.2: An elementary transition from Wi-Fi to Bluetooth composed with
a subsequent dissemination protocol transition.

Applying the concept to transitions between topology optimization strategies
in Transit was possible in a straightforward manner with very localized changes
at the respective components. As an extension, the concept of so called Opti-
mization Providers was introduced to bundle sets of currently active topology
optimizations. The transition framework was then used to allow for flip tran-
sitions between different provider implementations. As topology optimizations
and their execution are decoupled by design, there was no need to consider op-
timizations and providers that are active in a parallel manner. Providers that
reuse topology optimization instances (in case two providers include similar opti-
mizations) benefit from the automatic state transfer of the framework. As a side
effect, the approach showed to be very helpful to rapidly define and evaluate new
optimization combinations for new scenarios. With the legacy implementation,
this requires large changes to various parts of the optimization implementations,
thus heavily mixing adaptation and application behavior.

5 Related Work

Compositional adaptation [11] is an established concept for adaptive systems.
Many systems [5, 15, 16] leverage proxies to enable transparent dynamic com-
position for the application or extend the host language to enable adaptive be-
havior [10]. Sadjadi et al. [15] use this concept for communication systems and
adapt between different forward error correction schemes in the network. How-
ever, these systems lack a model for the actual transition life cycle and state
transfer. Additionally, they do not provide abstractions for multiple (parallel or
sequential) transitions, even though their proxies can be distributed.

Many component-based systems benefit from an explicit component life cy-
cle. In OSGi [2], for example, bundles and their components follow a clear life
cycle. This enables OSGi to install, update, remove, start, and stop components
at runtime without stopping the system. The different components are loosely
coupled using service bindings. Even though our presented component life cy-
cle is inspired by the bundle life cycle in OSGi, we consequently enhance this

concept to model the life cycle of transitions between components in distributed
environments. This reduces the switching costs and allows transfer state and
composed transitions. The handling of service bindings is hidden by the proxies.

IBM proposes the MAPE-K concept for autonomic control loops [1]. In this
model, the Autonomic Manager manages the tasks monitor, analyze, plan, and
execute as well as the globally shared knowledge. Effectors perform changes on
Managed Elements, which represent any adaptive software/hardware compo-
nent. Our proxies represent a special of managed element with clearly modeled
transition capabilities. The transition description is globally shared knowledge.

Ferreira et al. [6] developed A-OSGi to support the construction of autonomic
OSGi-based applications. Therefore, they integrate the MAPE-K approach into
OSGi. Concentrating on the monitoring, the actual adaptations are simple ser-
vice binding changes, bundle starts, or changes of service properties. A detailed
concept for more complex component exchanges and state transfer is missing.

The knowledge about valid configurations and component compositions is
important to deal with reconfiguration consistency. Batista et al. [3], for exam-
ple, model this and use it to check reconfigurations, but do not investigate the
actual transitions which lead to these configurations. As our current solution
concentrates on the description and the life cycle of transitions, integration of
both approaches might allow to reason about consistent and legal transitions.

Coulson et al. [4] propose a middleware approach for reconfigurable dis-
tributed systems. The middleware is utilized in the publish/subscribe system
GREEN [17] to enable reconfiguration of multiple publish/subscribe-specific
components. However, they do not provide a clear description of the reconfigu-
ration possibilities. Transitions in between configurations and implications such
as state transfer and life cycle management are not detailed.

6 Conclusion and Future Work

In this paper, we identified recurring requirements to handle adaptive behavior
in distributed systems. Based on this, we proposed a framework which supports
two transition life cycles and provides a clear abstraction of the underlying com-
plex transition logic. The concept was applied to two example systems to prac-
tically evaluate its benefits. In both cases, the approach leads to less complex
realizations of adaptivity and allows new mechanisms to be integrated easily.

For future work, we consider to leverage the proposed concept and method-
ology to design and study a new class of highly adaptive distributed systems
that were not feasible so far. While the proposed approach builds the founda-
tion for this, additional support for more dependencies between transitions and
according coordination strategies, e.g. a decentralized coordination, need to be
developed as next steps.

Acknowledgments
This work has been funded by the German Research Foundation (DFG) within
the Collaborative Research Center (CRC) 1053 – MAKI.

References

1. An Architectural Blueprint for Autonomic Computing. Tech. rep., IBM (2003)
2. OSGi Service Platform Core Specification (2007)
3. Batista, T., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in

Component-based Systems. In: Software Architecture. Springer (2005)
4. Coulson, G., Blair, G.S., Clarke, M., Parlavantzas, N.: The Design of a Configurable

and Reconfigurable Middleware Platform. Distributed Computing 15(2) (2002)
5. Felber, P., Garbinato, B., Guerraoui, R.: Towards reliable CORBA: Integration vs.

service approach. Tech. rep., dpunkt-Verlag (1997)
6. Ferreira, J., Leitão, J., Rodrigues, L.: A-OSGi: A Framework to Support the Con-

struction of Autonomic OSGi-Based Applications. In: Autonomic Computing and
Communications Systems. Springer (2010)

7. Frömmgen, A., Lehn, M., Buchmann, A.: A Property Description Framework for
Composable Software. In: Software Architecture. Springer (2014)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns: Elements of Reusable Object-oriented Software. Pearson (1994)

9. Hilliard, R.: Recommended Practice for Architectural Description of Software-
intensive Systems. IEEE Std. 1471-2000 (2000)

10. Kasten, E., McKinley, P., Sadjadi, S., Stirewalt, R.: Separating Introspection and
Intercession to Support Metamorphic Distributed Systems. In: Distributed Com-
puting Systems Workshops (2002)

11. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive
Software. Computer 37(7) (Jul 2004)

12. Pissias, P., Coulson, G.: Framework for Quiescence Management in Support of Re-
configurable Multi-threaded Component-based Systems. Software, IET 2(4) (2008)

13. Rückert, J., Blendin, J., Hausheer, D.: Software-Defined Multicast for Over-the-
Top and Overlay-based Live Streaming in ISP Networks. Springer JNSM, Special
Issue on Management of Software-defined Networks (2014)

14. Richerzhagen, B., Stingl, D., Hans, R., Groß, C., Steinmetz, R.: Bypassing the
Cloud: Peer-assisted Event Dissemination for Augmented Reality Games. In: Proc.
P2P. IEEE (2014)

15. Sadjadi, S.M., McKinley, P.K., Kasten, E.P., Zhou, Z.: MetaSockets: Design and
Operation of Runtime Reconfigurable Communication Services: Experiences with
Auto-adaptive and Reconfigurable Systems. Softw. Pract. Exper. 36(11-12) (2006)

16. Sadjadi, S.M., McKinley, P.K.: ACT: An Adaptive CORBA Template to Support
Unanticipated Adaptation. In: Distributed Computing Systems. IEEE (2004)

17. Sivaharan, T., Blair, G., Coulson, G.: GREEN: A Configurable and Re-configurable
Publish-Subscribe Middleware for Pervasive Computing. In: OTM. Springer (2005)

18. Wichtlhuber, M., Richerzhagen, B., Rückert, J., Hausheer, D.: TRANSIT: Support-
ing Transitions in Peer-to-Peer Live Video Streaming. In: IFIP NETWORKING
(2014)

