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Abstract Permeability is the fundamental macroscopic
material property needed to quantify the flow in a fibrous
medium viewed as a porous medium. Composite process-
ing models require the permeability as input data to predict
flow patterns and pressure fields. In a previous work, the
expressions of macroscopic permeability were derived in
a double-scale porosity medium for both Newtonian and
generalized Newtonian (shear-thinning) resins. In the lin-
ear case, only a microscopic calculation on a representative
volume is required, implying as many microscopic calcu-
lations as there are representative microscopic volumes in
the whole fibrous structure. In the non-linear case, and
even when the porous microstructure can be described by
a unique representative volume, a large number of micro-
scopic calculations must be carried out as the microscale
resin viscosity depends on the macroscopic velocity, which
in turn depends on the permeability that results from a
microscopic calculation. An original and efficient offline-
online procedure was proposed for the solution of non-linear
flow problems related to generalized Newtonian fluids in
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porous media. In this paper, this procedure is generalized
to quasi-Newtonian fluids in order to evaluate the effect of
extensional viscosity on the resulting upscaled permeability.
This work constitutes a natural step forward in the defi-
nition of equivalent saturated permeabilities for linear and
non-linear fluids.

Keywords Permeability · Computational
homogenization · Quasi-Newtonian fluids · Generalized
Newtonian fluids · Extensional viscosity · Composite
materials · Model order reduction · Proper generalized
decomposition · Parametric solutions

Introduction

Isothermal flows of complex fluids in complex microstruc-
tures can be simulated by solving the momentum and mass
balance equations and a suitable rheological constitutive
model. For inertialess incompressible flows, these balance
equations read,

∇ · σ = 0, (1)

and

∇ · v = 0, (2)

respectively. Here, σ is the Cauchy stress tensor and v the
velocity field, both defined at time t at each point within
the fluid domain �f . When considering porous media, the
domain � is assumed fully saturated, with the fluid phase
occupying the region �f whereas the remaining part �s =
� − �f is occupied by a solid phase assumed at rest.

An appropriate constitutive equation must be postulated
to describe the fluid’s rheology. There are many possible
choices, the most usual ones being related to Newtonian,
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Int J Mater Form

generalized Newtonian and viscoelastic fluids, as summa-
rized below.

– For a Newtonian fluid, the constitutive equation reads

σ = −pI + τ = −pI + 2ηD, (3)

where p is the pressure field that can be interpreted
as the Lagrange multiplier associated with the incom-
pressibility constraint, I is the identity tensor, τ the
extra-stress tensor, η the constant fluid viscosity and D
the rate of strain tensor, i.e. the symmetric part of the
velocity gradient, 2D = ∇v + (∇v)T .

– For a generalized Newtonian fluid, the constitutive Eq.
3 remains formally unchanged but the viscosity η now
depends on the strain rate γ̇ usually expressed from the
second invariant of the rate of strain tensor, i.e. γ̇ =√
2D : D. The simplest of such models is the power-law

(shear-thinning) viscosity given by

η = Kγ̇ n−1, (4)

where K and n are the consistency and power-law
index, respectively. The value n = 1 corresponds to a
Newtonian fluid.

– Viscoelastic models combine viscous and elastic
behaviours and results in a history-dependent extra-
stress tensor τ . Both integral and differential models
exist, but the latter are more popular in flow simula-
tions. They have the deceptively simple generic form

Dτ

Dt
= F(τ , ∇v), (5)

meaning that the Lagrangian or material time derivative
of the extra-stress tensor is given as a model-dependent
function F of the local extra-stress and velocity gradi-
ent evaluated along fluid trajectories.

In all these cases, suitable boundary conditions must be
specified at the fluid domain boundary � = ∂�f . For
inelastic fluids, they are of two types: prescribed velocity on
�D and prescribed tractions on �N , with �D ∪ �N = � and
�D ∩ �N = ∅. Inlet extra-stresses must also be specified
for viscoelastic fluids.There is a variety of discretization
techniques for solving numerically such a flow problem.
The interested reader can refer to [9] and the numerous
references therein. Advanced computational techniques for
differential and integral viscoelastic models are detailed in
[3, 12–14, 20].

Describing the internal structure of heterogeneous mate-
rials at a variety of length scales requires a high-enough
resolution for capturing the size, orientation and distri-
bution of the material constituents, i.e. the heterogeneity
and its effects on the velocity field. Fibrous media with a
large number of fibres and inter-fibre volumes cannot be
described by considering each of these individually, which
would lead to intractable boundary value problems to solve

for the flow. Thus, another continuum approach at a coarser
level is called for. One possibility consists in separating the
scales (when this can be performed) and associating to each
point X ∈ � a representative volume at the finest scale
ω(X) (with boundary ∂ω(X)) from which upscaling can be
carried out.

When the same physics is valid and applies at each
scale, for example in the case of thermo-mechanical mod-
els, homogenization procedures work quite well in both the
linear and non-linear cases. Linear and non-linear thermo-
mechanical homogenization, including its computational
counterpart, has been the subject of active research over
the last three decades. The interested reader can refer to
[10, 19, 21] and the references therein. The main issue in
computational homogenization is the consideration of non-
linear behaviours that involve heavy computations. Use of
model order reduction techniques is an appealing route for
improving the efficiency of multi-scale solvers [4, 15, 16].

In the case of flows in porous media, the macroscopic
scale corresponds to the scale of the part, much bigger than
the heterogeneities scale, whereas the microscopic scale
coincides with the scale of heterogeneities. In these cir-
cumstances, and for a Newtonian fluid, the macroscopic
behaviour is well described by the phenomenological Darcy
law that relates the fluid velocity to the pressure gradi-
ent at the macroscopic scale, whereas at the microscopic
level the flow behaviour is described by the Stokes prob-
lem defined in the domain occupied by the fluid (in this
work, for the sake of simplicity, we consider the solid phase
as rigid and at rest). Even if both descriptions are notably
different, appropriate bridges can be defined to associate
to each point X in � a permeability tensor K(X) relat-
ing locally the equivalent macroscopic velocity V(X) and
the pressure gradient ∇P(X), by upscaling the microscopic
physics that only involves as material parameter the fluid
viscosity η.

In [17], we derived the expressions of the macroscopic
permeability in a double-scale porous medium for both
Newtonian and shear-thinning fluids. In the linear case, a
single microscopic calculation on a representative volume
is required, which implies as many microscopic calcula-
tions as there are representative microscopic volumes in �.
In the non-linear case, and even when the microstructure
can be described by a unique representative volume, the
microscopic calculation must be carried out repeatedly as
the microscale fluid viscosity depends on the macroscopic
velocity, which in turn depends on the macroscopic perme-
ability obtained from the microscopic calculation. In [18],
we proposed an original and efficient offline-online proce-
dure that allows one to solve the multi-scale shear-thinning
fluid flow problem at a computational cost typical of a
macroscopic non-linear solution. This procedure is based
on the calculation of the microscopic parametric solution,
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given the velocity field at each point in the representa-
tive volume ω(X), v(x ∈ ω(X)), for any value of the
macroscopic velocity field V, v(x ∈ ω(X);V). From the
parametric flow kinematics, parametric permeabilitiesK(V)

were successfully and efficiently computed.
The route followed in [18] was based on the use of

the so-called Proper Generalized Decomposition – PGD
– widely described in our recent works [5–8]. The main
idea of the PGD technique, when focusing on a given
microstructure ω(X), consists in introducing the parameters
as extra-coordinates and then solving the resulting multidi-
mensional problem by using a separated representation of
the problem solution for circumventing the curse of dimen-
sionality that high-dimensional models entail. Within the
PGD framework, the microscopic parametric velocity field
reads:

v(x ∈ ω(X),V) ≈
Q∑

n=1

Rn(x) ◦ Sn(V), (6)

where Rn and Sn are a priori unknown functions and the
symbol “◦” denotes the Hadamard product.

In the present paper, we extend to some of the richer
rheologies encountered in industrial applications the above
methodology that was successfully used in our previous
works for modelling the flow of Newtonian and generalized
Newtonian fluids in complex porous microstructures.

In the field of structural composites, there is a recent
trend to substitute thermosets by thermoplastics. The high
shear viscosity of thermoplastics, however, makes preform
impregnation difficult. Two solutions are currently envis-
aged: use of thermoplastics with low molecular weight, and
injection of a low molecular weight pre-polymer that poly-
merizes after having impregnated the porous medium. In
both cases, the shear viscosity remains reasonably moderate
to allow for preform impregnation.

The flow around fibres entails a sequence of converg-
ing and diverging flows that are likely to activate significant
extensional effects. Neither the Newtonian nor the general-
ized Newtonian fluid models are capable of describing the
behaviour of polymeric liquids in extensional flows. Con-
sideration of richer constitutive laws seems compulsory. In
the present paper, we follow the simplest route and adopt the
constitutive equation of a so-called quasi-Newtonian fluid.
This allows us to model realistic behaviours both in shear
and extensional flows while neglecting history-dependent
viscoelastic phenomena.

In Section Quasi-Newtonian fluid model, we define
the quasi-Newtonian fluid model used in the present
work. Then, we describe in Section Upscaling of Quasi-
Newtonian behaviour the upscaling procedure that allows
one to go from the microscopic scale at which the quasi-
Newtonian model applies, to the macroscopic scale char-
acterized by an effective Darcy law. Finally, the predicted

permeabilities are discussed in Section Numerical results,
and compared to those obtained with a simple generalized
Newtonian fluid.

Quasi-Newtonian fluid model

The quasi-Newtonian fluid [23] differs from the generalized
Newtonian fluid in the fact that the only material func-
tion involved, namely the viscosity function, is not merely
a function of the second invariant of the rate of strain ten-
sor but also depends on the relative rate of rotation of the
fluid. Consequently, the quasi-Newtonian fluid is able to
show shear-thinning in shear flow and extension-thickening
in elongational flow. In what follows, and without loss of
generality, we consider 2D planar flows.

The constitutive equation for the quasi-Newtonian fluid
reads

σ = −pI + 2ηQND, (7)

where ηQN is the effective viscosity of the fluid that
accounts for shear-thinning as well as extension-thickening
according to the local type of flow.

Thus, the first step is to define a descriptor of the local
flow type. There is a large variety of such descriptors [24].
In the present work, we use the particular descriptor con-
sidered in [23] and successfully validated there with the
experimental results reported in [22].

First, we introduce the relative rate of rotationW from

W = ω − w, (8)

where ω is related to the flow vorticity � (2� = ∇v −
(∇v)T ) according to

� = ε · ω, (9)

where ε is the third-order permutation tensor (also known
as the Levi-Civita tensor). The vector ω can also be written
in terms of the curl of the velocity,

ω = −1

2
∇ × v. (10)

The vector w in Eq. 8 represents the angular velocity of
the eigenvectors of the rate of strain tensor D. Thus, if the
two eigenvectors of D have their orientations expressed by
the unit vectors d1 and d2, then we have

w = di × Ddi

Dt
, (11)

for i = 1 or i = 2, and where D•
Dt

is the material derivative.
A simple local descriptor of the type of flow can then be

constructed from the second invariant of D, γ̇ = √
2D : D,

and from the norm ofW, ‖W‖, according to

χ = 4‖W‖
γ̇ + 2‖W‖ . (12)
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We have 0 ≤ χ ≤ 2, and more concretely

χ =
⎧
⎨

⎩

0, in planar extension
1, in pure shear
2, in rigid motion

. (13)

Now, the shear viscosity ηS depends on γ̇ , i.e. ηS(γ̇ ),
whereas the extensional viscosity ηE depends on ε̇, with
2ε̇ = γ̇ (in 2D), i.e. ηE(ε̇). As in [23], we consider the
geometrical weighting of both viscosities, affected by a
function f (χ) depending on the local flow type:

ηQN(γ̇ , χ) = (ηS(γ̇ ))f (χ) (ηE(ε̇))1−f (χ) . (14)

Here, the function f (χ) satisfies the following conditions

f (χ) =
{
1, if χ = 1
0, if χ = 0

, (15)

in order to recover the shear viscosity at locations exhibit-
ing a shear flow and the extensional viscosity where planar
extension occurs. We consider f (1 < χ ≤ 2) = 1 for
approaching the zero shear rate viscosity in the limit case of
rigid rotation.

Upscaling of Quasi-Newtonian behaviour

The upscaling procedure for Newtonian fluids, which allows
one to define a bridge between the microscopic Stokes

model and the macroscopic Darcy law, is summarized in the
Appendix. It is adapted in [17] and [18] to handle a gen-
eralized Newtonian fluid. In what follows, we extend the
procedure to the quasi-Newtonian fluid.

The quasi-Newtonian fluid flow model is solved in the
representative volume ω(X), where two phases coexist, i.e.
the fluid phase occupying the domain ωf (X) and the solid
phase, assumed rigid and at rest, occupying the region
ωs(X), with ωf (X)∪ωs(X) = ω(X) and ωf (X)∩ωs(X) =
∅. The flow model consists of the mass and momentum
balances and the quasi-Newtonian constitutive equation dis-
cussed in the previous section:

⎧
⎨

⎩

∇ · σ = 0
∇ · v = 0
σ = −pI + 2ηQND

. (16)

It is complemented with the boundary condition v(x ∈
∂ω(X)) = V, where the macroscopic velocity V is con-
sidered as an extra-coordinate in the PGD procedure. Thus,
one finally obtains the solution for any possible macro-
scopic velocity in a certain domain 
, i.e. V ∈ 
, where

 is the ball (or circular disk in 2D) whose radius is set to
the maximum expected velocity magnitude. It is assumed
that the solid phase in ω(X) has an empty intersection with
∂ω(X), i.e. the entire boundary ∂ω(X) of ω(X) is occupied
by the fluid phase. If that intersection is not empty, adequate

Fig. 1 Representative volume ω
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Fig. 2 Quasi-Newtonian
viscosity as a function of shear
and elongation rates.
Shear-thinning and
extension-thickening can be
noticed

boundary conditions should be prescribed to ensure a van-
ishing velocity on ωs(X)∪∂ω(X) and a flow rate equivalent
to the one associated with the macroscopic velocity V.

For a quasi-Newtonian fluid, the viscosity ηQN(γ̇ , χ)

depends on the effective strain rate γ̇ and the local flow type
descriptor χ .

It is important to note that the flow solver considered
in this work (i.e. a standard stable Q2/P 1 finite element
Stokes solver for a non-uniform fluid viscosity), produces
identical results when applied to the test problems consid-
ered in [23].

Once the non-linear flow problem (16) is solved for any
macroscopic velocity V ∈ 
, the parametric fluid velocity
v(x,V) is available. From it, γ̇ , ε̇ = γ̇ /2 and χ can be eval-
uated everywhere in the fluid domain x ∈ ωf (X) and for
each macroscopic velocity V ∈ 
: we thus obtain γ̇ (x,V),
ε̇(x,V) and χ(x,V).

Then, the parametric quasi-Newtonian viscosity
ηQN(x,V) can be computed at each point in the fluid
domain for each macroscopic velocity. After freezing
ηQN(x,V) at each point x ∈ ωf (X), the following two
parametric linear Stokes problems are solved in ω(X):
{ ∇pi(x,V) = ∇ · (

2ηQN(x,V)Di (vi (x,V))
)

∇ · vi (x,V) = 0
, i = 1, 2

(17)

with the boundary conditions (in the 2D case)
{
v1(x ∈ ∂ω(X),V) = (1, 0)T

v2(x ∈ ∂ω(X),V) = (0, 1)T
. (18)

This yields the localization tensor, from which the paramet-
ric effective permeability KQN(V;X) can be identified, as
explained in the Appendix for the case of linear fluids.

Numerical results

In order to apply the upscaling procedure described above,
we calculate first the microscopic velocity v(x,V) associ-
ated to each possible value of the macroscopic velocityV by
means of the Proper Generalized Decomposition in order to
alleviate the computational cost related to the multidimen-
sional character of the problem. With a frozen parametric
quasi-Newtonian viscosity ηQN(x,V), the flow problems
(17) become linear and their solution yields the paramet-
ric permeability KQN(V;X). For additional details on the
constructor, the interested reader can refer to [18].

Fig. 3 Microscopic velocity field v(x) associated with the macro-
scopic velocity field VT = (V cos θ, V sin θ), V = 5 mm · s−1 and
θ = π/3
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Fig. 4 Local flow descriptor χ(x) associated with the velocity field
v(x) related to the macroscopic velocity fieldVT = (V cos θ, V sin θ),
V = 5 mm · s−1 and θ = π/3: blue colour indicates elongation, yellow
rigid motion and green shear

In this section, we consider the representative volume
depicted in Fig. 1. It is slightly asymmetric in order to
induce richer kinematics.

Following the discussion in [23], the quasi-Newtonian
fluid rheology is selected such as to approximate the
response of a Giesekus model with relaxation time λ, mobil-
ity α, solvent viscosity ηs and polymeric contribution ηp to
the zero shear rate shear viscosity. The Giesekus model has
a shear-thinning shear viscosity and an extension-thickening
planar elongational viscosity for 0 < α < 0.5. Thus, we
specify

ηS(γ̇ ) = ηpβS(γ̇ ) + ηs, (19)

Fig. 5 Quasi-Newtonian viscosity ηQN associated with the veloc-
ity field v(x) related to the macroscopic velocity field VT =
(V cos θ, V sin θ), V = 5 mm · s−1 and θ = π/3

Fig. 6 Solution v1(x,V) of Eq. 17 associated with the quasi-
Newtonian viscosity related to the macroscopic velocity field VT =
(V cos θ, V sin θ), V = 5 mm · s−1 and θ = π/3

and

ηE(ε̇) = ηpβE(ε̇) + ηs; (20)

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βS(γ̇ ) = y(y−1+2α)

2α(y2+(λγ̇ )2)

y2 = 1
2

(
1 + √

1 + ν
)

ν = 16α(1 − α)(λγ̇ )2

, (21)

Fig. 7 Solution v2(x,V) of Eq. 17 associated with the quasi-
Newtonian viscosity related to the macroscopic velocity field VT =
(V cos θ, V sin θ), V = 5 mm · s−1 and θ = π/3
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βE(ε̇) = y−1+2α
2αy

y2 = 1 + 1
2

(√
(z + 1)2 + ν − (z + 1)

)

ν = 64α(1 − α)(λε̇)2

z = −4(λε̇)2

. (22)

As in [23], the function f (χ) in Eq. 14 is defined as
follows:

f (χ) =
{

3 sin4(π/2)χ
1+2 sin4(π/2)χ

if χ ≤ 1

1 if 1 < χ ≤ 2
. (23)

In the simulations, we set ηp = 1.422 Pa · s, ηs =
0.002 Pa · s, α = 0.15 and λ = 0.03 s. The resulting fluid

rheology is depicted in Fig. 2, showing indeed significant
shear-thinning as well as extension-thickening.

The quasi-Newtonian flow problem is solved for any pos-
sible macroscopic velocity V ∈ 
. The parametric domain

 consists of velocities having any direction in [0, 2π)

and magnitude [0, Vmax], with Vmax = 15 mm · s−1. One
of these solutions, associated with the macroscopic veloc-
ity V of magnitude V = ‖V‖ = 5 mm · s−1 oriented
at π/3 with respect to the horizontal axis, is depicted in
Fig. 3.

Figure 4 depicts the local descriptor related to the type
of flow for this particular choice of the macroscopic veloc-
ity, that results from the particularization of the parametric
solution χ(x,V). The parametric quasi-Newtonian viscos-
ity ηQN(x,V) is shown in Fig. 5, where extensional effects
are noticeable.

According to the proposed upscaling procedure, the
computed quasi-Newtonian viscosity is then frozen when
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Fig. 8 Parametric effective permeability for the quasi-Newtonian (top) fluid: KQN
11 (V) (top-left) and KQN

22 (V) (top-right) and Generalized
Newtonian fluid (bottom): KGN

11 (V) (bottom-left) and KGN
22 (V) (bottom-right)
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Fig. 9 Quasi-Newtonian
viscosity as a function of shear
and elongation rates for
ηp = 1 Pa · s and ηs = 1 Pa · s

solving the two parametric linear Stokes problems (17) lead-
ing to the parametric effective permeability KQN(V;X).
The solution of these two elementary flow problems asso-
ciated with ηQN(x,VT = (V cos θ, V sin θ)), with V =
5 mm · s−1 and θ = π/3, are depicted in Figs. 6 and 7.

Finally, the resulting parametric effective permeability
components KQN

11 (V) and KQN
22 (V) are depicted in Fig. 8

(top). They are compared with the results for a General-
ized Newtonian fluid with identical shear viscosity, shown
in depicted in Fig. 8 (bottom) and obtained via the same pro-
cedure but by enforcing f (χ) = 1. We see that extensional
effects have a significant influence at high flow rates, as they
reduce the permeability to about half of that of the purely
shear-thinning fluid. There is not, however, any noticeable

effect on the principal directions of the permeability
tensor.

In order to analyze the influence of the fluid rheology, we
now specify ηp = 1 Pa·s and ηs = 1 Pa·s, all other rheolog-
ical parameters being left unchanged (Fig. 9). In view of the
much larger (constant) solvent viscosity, shear-thinning is
almost suppressed. Shear-thinning effects act mainly in the
regions where χ ≈ 1, i.e. in the neighbourhood of the fluid-
solid interfaces. Thus, one would expect a significant reduc-
tion of the permeability in comparison with the previous
results. Moreover, a lower difference is expected between
the quasi-Newtonian and Generalized-Newtonian fluids.
Figure 10 compares both effective permeabilities, in partic-
ular KQN

11 versus KGN
11 , confirming the expected behaviour.

Fig. 10 Parametric effective permeability for the quasi-Newtonian and Generalized Newtonian fluids: KQN
11 (V) (left) and KGN

11 (V) (right)
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Conclusions

In this paper, we addressed the definition of a permeabil-
ity tensor for quasi-Newtonian fluids flowing in two-scale
porous media. The upscaling procedure is based on the exis-
tence of a localization tensor and the equality of dissipated
powers at the different scales.

For linear Newtonian fluids, an effective geometrical per-
meability tensor can be defined at the macroscopic scale that
only depends on the microscopic geometrical features. This
permeability tensor can be computed offline (for a given
microstructure) by solving two boundary value problems in
the 2D case. For non-linear fluids such as the Generalized
Newtonian and quasi-Newtonian fluids, the permeability is
no longer purely geometrical.

In order to speed up the macroscopic calculation, we pro-
posed to construct, using the PGD, parametric solutions of
microscopic flow problems defined in a representative vol-
ume with a given microstructure. Once the permeability is
expressed with a parametric dependence on the macroscopic
velocity, its particularization becomes computationally very
fast, making it possible to solve macroscopic flow prob-
lems with a computational complexity that scales with the
number of iterations needed by the non-linear macroscopic
solution procedure.

Numerical results have been obtained for a quasi-
Newtonian model that mimics the rheological behaviour of
a Giesekus viscoelastic model, showing significant shear-
thinning and extension-thickening. The predicted effective
permeability tensor was found to be greatly affected by the
extensional viscosity.
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Appendix

Upscaling of linear Newtonian behaviour: from Stokes
to Darcy

Without loss of generality, suppose a statistically homo-
geneous porous medium where two characteristic scales
coexist, the coarsest one in � and the finest in ω, as
depicted in Fig. 11. For the sake of simplicity, we assume the
same microstructure everywhere in �, which allows one to
consider a unique microscopic domain ω. The fluid is New-
tonian and incompressible, with a constant shear viscosity η.

At the macroscopic level, the flow is described by
Darcy’s law and the continuity equation,
{
V(X) = −K(X) · ∇P(X)

∇ · V(X) = 0
, (24)

Fig. 11 Darcy (macro) and Stokes (micro) problems.

where K(X) is the macroscopic permeability tensor at posi-
tion X. In the light of the aforementioned assumption,K(X)

is supposed to be the same everywhere, that is K(X) ≡ K.
At the microscopic scale, inclusions occupy the solid

region ωs assumed rigid and at rest, i.e. v(x ∈ ωs) = 0, sep-
arated by the fluid domain ωf where the Newtonian fluid
flows. To be consistent with the definition of Darcy’s perme-
ability (also called intrinsic or geometric permeability), it is
assumed that the fluid occupies the entire volume between
solid inclusions.

In [17], the postulated macroscopic Darcy model was
upscaled from the microscopic Stokes model by assuming
that:

– There exists a localization tensor M(x,X) such that,
when the macroscopic velocity V(X) is prescribed at
the boundary ∂ω(X) of ω(X), the microscopic velocity
v(x) at each point x ∈ ω(X) solution of the resulting
Stokes problem in ω(x), can be obtained from

v(x) = M(x,X) · V(X), (25)

with 〈v(x)〉 = 1
|ω(X)|

∫
ω(X)

v(x)dx = V(X).
– The power dissipated at both scales must be the same

for any velocity V(X). As shown in [17], this yields

〈2ηD : D〉 = ∇P(X) · V(X). (26)

In view of macroscopic Darcy’s law, we thus have

2η〈D : D〉 = VT (X) · K−1(X) · V(X). (27)

Introducing Eq. 25 in the left-hand side of Eq. 27 and
developing the contraction product yields:

〈D : D〉 = 〈Dij · Dij 〉 = 1

4
〈(vi,j + vj,i

) · (
vi,j + vj,i

)〉,
(28)
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with

vi = Mik · Vk (29)

with i = 1,2,3 and k = 1,2,3, in the general 3D case.
Thus, as soon as the localization tensor M is deter-

mined, from the macroscopic velocity V we can compute
the microscopic velocity v(x) at each position x within the
representative volume ω(X), and then evaluate the average
of their derivatives according to Eq. 27 in order to identify
K−1 and from it K.

For calculating the localization tensor M(x,X) in the
general 3D case, we solve three Stokes flow problems in the
microscopic domain ω(X):
{ ∇pi(x) = η∇2vi (x)

∇ · vi (x) = 0
, (30)

for three different boundary conditions on ∂ω(X), which is
considered fully-contained in the fluid phase, i.e. ∂ω(X) ∩
ωs = ∅:
⎧
⎨

⎩

v1(x ∈ ∂ω(X)) = (1, 0, 0)T

v2(x ∈ ∂ω(X)) = (0, 1, 0)T

v3(x ∈ ∂ω(X)) = (0, 0, 1)T
. (31)

These are compatible with the incompressibility constraint.
Thus, the localization tensor M(x,X) is finally obtain
as

M(x,X) =
(
v1(x) v2(x) v3(x)

)
. (32)
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