Paulo R Arantes Gilz
email: prarante@laas.fr

A non-linear simulator written in C for orbital spacecraft rendezvous applications

Brief introduction

This document details the models and equations (sec. 2) used in the core of a non-linear simulator written in C for orbital spacecraft rendezvous applications. It additionally explains the relation between the C functions and the mathematical models (sec. 4) and presents a practical example of how to simulate a given rendezvous scenario (sec. 3).

The simulator here discussed is a modified version of the Matlab R /Simulink R simulator developed by Mounir Kara-Zaitri during his PhD thesis at the LAAS-CNRS. The implemented modifications were performed in order to obtain a better-suited tool for simulating and developing control algorithms for the orbital spacecraft rendezvous without using the Matlab R environment.

For a given orbital rendezvous scenario, the output of the simulator is the evolution of the relative position and velocity between the two spacecrafts, obtained by simulating the evolution of their trajectories via the integration of the Gauss equations for the orbital motion under the disturbances provoked by the Earth's flatness (the J 2 -effect) and the atmospheric drag.

Models and equations

Hereafter we introduce some variables, state representations and coordinate system changes that will be further employed in the equations modelling the evolution of the spacecrafts trajectories and the disturbances provoked by the atmospheric drag and the Earth's flatness.

Remark: the following references are strongly recommended to help the reader to understand the nomenclature and notations used in the sequel: -Mounir's PhD thesis: http://thesesups.ups-tlse.fr/1026/1/Kara%2DZaitri_Mounir.pdf -Gerogia's PhD thesis: http://thesesups.ups-tlse.fr/2105/1/2013TOU30170.pdf

State representations

• The classical orbital elements state:

X OEc = [a, e, i, Ω, ω, ν] t (2.1)
where:

a is the semi-major axis of the orbit;

e is the eccentricity the orbit;

i is the inclination;

-Ω is the longitude of ascending node;

ω is the argument of perigee;

ν is the true anomaly;

• The equinoctial orbital elements state:

X OEeq = [p, f, g, h, k, L] t (2.2)
• The inertial state:

X I = [x I , y I , z I , ẋI , ẏI , żI] t (2.3)
representing the position and the velocity in the Earth's inertial frame.

• The LVLH state:

X LVLH = [x LVLH , y LVLH , z LVLH , ẋLVLH , ẏLVLH , żLVLH] t (2.4)
representing the position and the velocity in the LVLH frame.

• The RSW state:

X RSW = [x RSW , y RSW , z RSW , ẋRSW , ẏRSW , żRSW] t (2.5)
representing the position and the velocity in the RSW frame.

Coordinate system changes

2.2.1 Classical orbital elements state to equinoctial orbital elements state

p = a(1 -e 2) f = e cos(Ω + ω) g = e sin(Ω + ω) h = tan(i/2) cos Ω k = tan(i/2) sin Ω L = Ω + ω + ν (2.6)
2.2.2 Equinoctial orbital elements state to inertial state

x I = r s 2 (cos L + α 2 cos L + 2hk sin L) y I = r s 2 (sin L -α 2 sin L + 2hk cos L) z I = 2r s 2 (h sin L -k cos L) ẋI = -1 s 2 µ p (sin L + α 2 sin L -2hk cos L + g -2f hk + α 2 g) ẏI = -1 s 2 µ p (-cos L + α 2 cos L -2hk sin L -f + 2ghk + α 2 f) żI = 2 s 2 µ p (h cos L + k sin L + f h + gk) (2.7)
where µ : Earth's gravitational constant

s 2 = 1 + h 2 + k 2 w = 1 + f cos L + g sin L r = p/w α 2 = h 2 -k 2 (2.8) 2.2.3 RSW state to LVLH state / LVLH state to RSW state x LVLH = y RSW y LVLH = z RSW z LVLH = -x RSW and ẋLVLH = ẏRSW ẏLVLH = żRSW żLVLH = -ẋRSW
(2.9)

Computing the RSW basis in function of the inertial state

The following computations must be performed in order to express the RSW orthonormal basis (R, S, W) in the Earth's inertial frame in function of the inertial state

X I = [x I , y I , z I , ẋI , ẏI , żI] t : R = 1 √ x 2 I +y 2 I +z 2 I (x I , y I , z I) W = 1 U U S = 1 V V where T = 1 √ ẋ2 I + ẏ2 I + ż2 I (ẋI , ẏI , żI) U = -T × R V = U × R
(2.10)

Computing the relative LVLH state

Hereafter we show how to compute the relative state between two spacecrafts in the LVLH frame of the leader spacecraft (Xl LVLH) in function of the inertial states of each spacecraft (X f I and X l I) and the equinoctial orbital elements of the leader spacecraft (X l OEeq):

First we define the inertial relative state XI = [x I , ȳI , zI , ẋI , ẏI , żI] t as:

XI = X f I -X l I (2.11)
and the inertial relative position and velocity vectors p I and v I :

p I = (x I , ȳI , zI) and v I = (ẋI , ẏI , żI) (2.12)

After that, the RSW orthonormal base of the leader spacecraft (R l , S l , W l) is computed in function of the inertial state of the leader satellite (X l I) via (2.10). The relative state in the LVLH frame of the leader spacecraft is then computed as follows:

Xl LVLH =            xl LVLH ȳl LVLH zl LVLH ẋl LVLH ẏl LVLH żl LVLH            =            S l , p I W l , p I -R l , p I S l , v I -νl R l , p I W l , v I + -R l , v I -νl S l , p I            (2.13)
where •, • is the dot product in R 3 and

νl = µp l 1 + f l cos L l + g l sin L l p l 2 (2.

14)

Remark: the terms -νl R l , p I and -νl S l , p I are due to the relative velocity between frames.

Dynamical equations

The dynamics of the spacecrafts movement is modelled by a non-classical form of the Gauss planetary equations. We choose this different representation because the classical one presents singularities for low eccentricity (e) and inclination (i) values. However, by rewriting these equations in function of the equinoctial orbital elements, these singularities are eliminated.

Given that, the dynamics of the equinoctial orbital elements is given by:

dX OEc dt = A u + B (2.15)
where u = u c + u J 2 + u d is the combined acceleration induced by a possible control law and the disturbances (J 2 -effect and atmospheric drag) expressed in the RSW coordinate system and:

A = p µ    0 2p w 0 sin L (w + 1) cos L + f w - g(h sin L -k cos L) w -cos L (w + 1) sin L + g w f (h sin L -k cos L) w 0 0 s 2 cos L 2w 0 0 s 2 sin L 2w 0 0 h sin L -k cos L w   
(2.16) B = 0, 0, 0, 0, 0,

w 2 p 2 √ µp t (2.17) 2.4 J 2 disturbance
The effect of the Earth's flatness is modelled as a external disturbance that provokes an acceleration on the satellite. This acceleration is given in the RSW coordinates system by:

u J 2 = - 3µJ 2 R 2 e 2r 4            1 - 12(h sin L -k cos L) 2 (1 + h 2 + k 2) 2 8(h sin L -k cos L)(h cos L + k sin L) (1 + h 2 + k 2) 2 4(h sin L -k cos L)(1 -h 2 -k 2) (1 + h 2 + k 2) 2            (2.18)
where J 2 is the second degree term in Earth's gravity potential and R e is the Earth's radius.

Atmospheric drag disturbance

The effect of the atmospheric drag is also modelled as a external disturbance that provokes an acceleration on the satellite. This acceleration is given in the RSW coordinates system by:

u d = - ρSC d 2m µ p 1 + 2(g sin L + f cos L) + f 2 + g 2            f sin L -g cos L 1 + f cos L + g sin L 0            (2.19)
where ρ is the atmospheric density and m, S and C d are respectively the mass, the cross sectional area and the drag coefficient of the spacecraft. In this equation, ρ is not a constant, and the model used for it is discussed in the next subsection.

Atmospheric density model

The atmospheric density model initially used by Mounir in the first version of the simulator was given in function of the distance between the satellite and the center of the Earth by the following equation:

ρ(x I , y I , z I) = ρ LH exp R e + 400000 -x 2 I + y 2 I + z 2 I) 46830 (2.20)
where ρ LH is a constant that depends of the solar activity (2.2644 × 10 -12 for low and 3.5475 × 10 -11 for high solar activity). The author himself admitted in his work that this model was an approximation and should be modified in order to obtain a better verisimilitude.

The main problem noticed by using this model during simulations is that as the distance between the satellite and the Earth decreases, ρ grows exponentially and the intensity of the drag disturbance increase too much.

In order to avoid this behaviour, the new simulator uses the following equation instead:

ρ(x I , y I , z I) = min ρ LH exp R e + 400000 -x 2 I + y 2 I + z 2 I) 46830 , ρ LH (2.21)

Simulation parameters

The integration of the differential equation (2.15) is performed by a simple first-order Euler scheme with fixed-step. In this context, the user only need to inform the initial and final times and the integration step for the execution of the following loop:

t * = t 0 While (t * < t f) do X OEeq (t * + step) = X OEeq (t *) + (step) dX OEeq dt t * t * = t * + step Loop
3 How to use it?

The file Simulator.zip contains five files that must be extracted to a same directory:

• Makefile, the file containing the script for the compilation routines;

• main.c, the main C file;

• library.c, the C file containing the functions;

• inputs, the file where the user inputs the rendezvous scenario parameters;

• plot_trajectory.m, an auxiliary function to plot the obtained results in Matlab R .

In order to run the simulator, the user has to compile the C code to obtain the executable, define the scenario parameters and run the executable.

Compilation

To compile the C code, the user has to open a terminal, go to the directory where the files where extracted and run the make command:

The executable file rdvz_simulator will be created.

Defining the rendezvous scenario

The rendezvous scenario must be declared by the user in the file inputs. This file should contains one parameter of the simulation in each line, in the following order:

In order to illustrate what the inputs should look like, we give hereafter an example:

Running the simulation

To run the simulation, the user must run the command rdvz_simulator:

The time the simulation took to be performed will be displayed and the file outputs will be generated.

Plotting

The file outputs contains the relative positions and velocities between spacecrafts in the leader's LVLH frame. In order to plot the obtained relative trajectory, the user must run the Matlab R script plot_trajectory.m:

4 Understanding the role of each function

The file library.c contains all the C functions used to perform the simulation. The role of each function is described hereafter:

• tic: used to measure the elapsed time, stocks the initial time;

• toc: used to measure the elapsed time, computes the difference between the current time and a stocked initial time and displays the difference in milliseconds;

• read inputs: read the parameters in the inputs file and assign it to global variables;

• eq2in: converts the equinoctial orbital elements to inertial state (equation (2.7));

• c2eq: converts the classical orbital elements to equinoctial orbital elements (equation (2.6));

• accJ2: computes the J 2 acceleration in the RSW frame (equation (2.18));

• accAD: computes the atmospheric drag acceleration in the RSW frame (equation (2.19));

• rho: computes the value of the air density (equation (2.21))

• deq: computes the derivatives of the equinoctial orbital elements (equation (2.15))

• lvlh rel: computes the relative state between spacecrafts in the leader's LVLH frame (equation (2.2.5));

• integrate: performs the loop described in section 2.7