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ABSTRACT
This paper presents a new wave fitting approach to estimate the frequency depen-
dent material properties of thin isotropic plate structures from an experimentally
obtained vibrational field, exciting the plate at a single point. The method projects
the measurement data on to an analytical image source model, in which Hankel’s
functions are used for a description of the wave fields emanating from the point
of excitation, including the reflected wave fields from the edges of the finite plate.
By minimizing the error between the projected field and the measured field, vary-
ing the complex wave number and the source strengths of the image sources, an
optimum fit is searched for. Thus the source strengths of the image sources do
not need to be determined theoretically, but are estimated from the fit on to the
experimental data instead (thus avoiding difficulties in theoretically assessing the
reflection coefficient of the edges of the plate). The approach uses a complex
wavenumber fit, enabling the determination of the dynamic stiffness of the plate
structure and its damping properties as function of frequency. The method is es-
pecially suited for plates with a sufficient amount of damping, excited at high
frequencies.
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1 Introduction
In literature the wave number fitting approach is well-known. However, the com-
bination of the Hankel’s functions with the image source method to describe the
(full or partial) wave field of a point excited plate, to pursue a wave fitting pro-
cedure on to this vibrational field with the aim to assess the isotropic material
properties of the plate, is new. To put the proposed approach into perspective,
below the relevant literature is discussed briefly.

Wave fitting approaches often consider plane damped waves of the form
exp (±ikx), sometimes referred to as inhomogeneous wave, where k is the (com-
plex valued) wavenumber, and x is a spatial coordinate. For instance, McDaniel
et al. [1] use these types of waves to estimate the dispersion relations of waves in
damped 1D structures (i.e. a beam).

Berthaut et al. [2] consider plane waves of the form exp {±ik (θ) (x cos (θ) + y sin (θ))},
to identify θ-dependent dispersion equation of anisotropic panels. Here x and y
are the plate coordinates, and θ is the angle of propagation. They demonstrate
for a rib-stiffened panel that the wavenumber k is indeed dependent upon propa-
gation angle θ (considering the real part of the wavenumber only). Even though
they also tested a steel panel with a bonded porous layer, damping factors were
not presented in their paper, which was apparently more difficult.

Very recently, Cherif et al. [3] used plane waves of the same form, i.e.
exp {±ik (θ) (x cos (θ) + y sin (θ))}, to estimate the flexural wavenumber and the
damping loss factor of plate structures in two dimensions from a displacement
field measurement, which is essentially the same approach as followed by the pre-
viously described references. They applied the method to an isotropic aluminum
panel and to orthotropic sandwich composite panels with a honeycomb core. Both
flexural wavenumbers and damping loss factors were determined successfully.

Going back a bit further in time, Grosh and Williams [4] used the Prony
method up to a frequency of 20kHz to estimate the dispersion relationships of a
point driven cylindrical shell from the measured vibrational field. Basically, this
also comes down to the use of waves of the form exp (±ikxx± ikyy).

The basic problem with planar waves of the type exp (±ikxx± ikyy) is that
the actual vibrational field of a structure significantly deviates from a plane wave
field near the point(s) of excitation. Some of the cited papers indeed mention
that it is required to measure the steady state response at points not too close to
the point(s) of excitation. Obviously, this is necessary because of the plane wave
assumption, which is only valid in the far field. This requirement, however, is
not necessary for the approach presented in this paper. The Green’s function of a
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point excited plate that are used in this paper are also valid relatively close to the
point of excitation, as it includes both propagating and evanescent waves.

The approach of Cuenca et al. [5] combines the use of the image source
method and Hankel’s functions to construct the Green’s function of a finite plate
with simply supported boundary conditions. Such a model is much better suited
to represent the vibrational field of a point excited plate, especially in the higher
frequency range, as the accuracy of the image source method is known to increase
with frequency and damping [6]. Indeed, Cuenca and Simon [7] estimated the
material properties of a point excited plate (with free boundary conditions) on
the basis of a point mobility measurement, fitting the point mobility measurement
data on to the image source method model.

The approach discussed in this paper is different from the approach used by
Cuenca and Simon in that the (complete or partial) vibrational field of the plate is
used in the fit procedure to extract the material properties. Green’s functions are
constructed on the basis of Hankel’s functions (in two spatial dimensions), using
the image source method.

Using the image source method to theoretically describe the wave field of
a plate with a boundary condition which is different from a simply supported or
roller boundary condition, is a difficult task (albeit not impossible, see [6, 8]).
Moreover, in practice the reflection coefficients deviate from the theoretical pre-
diction, because of non-modelled dissipation effects, introducing an uncertainty in
the theoretical models. For this reason, in the present paper the source strengths
of the image sources are not determined analytically, but are determined by fitting
an image source model on the experimental data.

Contrarily to the classical spatial Fourier transform, the intrinsic advantage
of the wave number domain fit procedure is a wavenumber resolution that is no
longer limited by the length of the scan. This advantage of wave fitting procedures
will be illustrated by means of experimental results in Section 4.2. Moreover, it is
shown that the approach is capable of extracting both stiffness and damping prop-
erties of the plate, using only a limited number of image sources. The advantages
of the Bayesian regularization is illustrated as well.

The paper is organized as follows. Section 2 deals with the theory of image
sources for a point excited plate. Hankel’s functions are used to approximate the
Green’s function of a finite plate with arbitrary boundary condition. In section
3 the validity of the image source method combined with the use of Hankel’s
functions is verified for a point excited rectangular plate with simply supported
boundary conditions as well as for a plate with free edges. In section 4 the theory
is applied to a sandwich plate, estimating both the real and imaginary parts of the
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wavenumber of the plate.

2 Theory of the wave fitting methodology for a point
excited finite plate

The basic idea presented in this paper is to fit the measured vibrational field of
a point excited finite plate, by means of an image source model, with the aim to
identify the material properties of the plate. This theoretical section starts with
a brief summary of the theory of Green’s functions of an infinite plate and the
construction of the Green’s function of a finite plate by means of the image source
method. After that, the projection of the measurement data onto an image source
model of a finite plate is given.

2.1 Green’s functions of a point excited plate
The equations of motion of an isotropic homogeneous plate of constant thickness,
excited by a point force δ at (x, y) = (x0, y0) in normal direction of the plate, is
given by Kirchhoff’s thin plate theory [9] as

D
(
∇4 − k4f

)
w (x, y) = δ (x− x0, y − y0) (1)

where w (x, y) is the transverse motion of the plate, kf is the flexural wave num-
ber, defined by

kf =

(
ω2ρh

D

)1/4

(2)

where ω denotes the exciting angular frequency, D is the dynamic flexural rigidity
defined by

D =
Eh3

12 (1− ν2)
(3)

where h is the plate thickness, E is the Young’s modulus and ν is the Poisson’s
ratio.

For a plate with infinite lateral dimensions, the solution of Eq. (1) is given
by [5]

G∞ (x− x0, y − y0) =
1

8k2fD

(
H

(1)
0 (kfr)−H(1)

0 (ikfr)
)

(4)
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Figure 1: The image source method.

where G∞ is the Green’s function of the infinite plate, H(1)
0 is the cylindrical

Hankel’s function of the first kind of order 0, and r = ‖(x − x0, y − y0)‖ is the
source-to-receiver distance.

For a finite plate, the Green’s function can be approximated by means of the
image source method [6,10]. The image source method is basically a methodology
to enforce the boundary conditions that should be satisfied at the edges of the finite
plate. When dealing with a plate with straight edges, being excited by a point force
F at the coordinates (x0, y0) (see Fig. 1), the image sources are fictitious point
forces F ′ at the coordinates (ximage, yimage), such that the distances d and d′ are
equal. For point excitated plates the response of the individual image sources is
given by the Green’s function G∞, Eq. (4). This procedure is repeated for all
edges of the finite plate. The response of the finite plate is equal to the sum of
the individual contributions of the image sources. In case of opposing edges, this
imaging procedure needs to be applied in a recursive manner. Depending on the
magnitude of all image sources F ′, certain boundary conditions can be satisfied
along the edge of the plate. In papers from Gunda the procedure is outlined for
several types of boundary conditions [6, 8].
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2.2 Projecting the measured vibrational field on an image source
model of a finite plate

Consider the measured out-of-plane displacement w(xj, yj, ω) of an harmonically
excited, finite plate, at discrete measurement positions (xj, yj), j = 1...M , on the
plate surface. The vibrational field of the plate in the measurement area (being a
partial area or the complete area of the plate) is approximated by means of a linear
combination of image sources:

w̃(xj, yj, ω) =
N∑
n=1

αn(ω)φn(xj, yj) (5)

where αn is the strength of each image source and φn the Green’s function of an
infinite plate:

φn(xj, yj) = G∞ (xj − x0(n), yj − y0(n)) (6)

where x0(n) and y0(n) are the x and y-locations of the n-th image source. This
Green’s function includes both propagating and evanescent waves. Considering
all M measurement positions on the plate and N image sources, Eq. (5) can be
written in matrix notation as

w̃ = Φα (7)

where w̃ is a vector containing the projected displacements w̃(xj, yj, ω), Φ is a
matrix containing the vectors of the image source Green’s functions, φn, and α is a
vector containing the contribution strengths αn(ω). For brevity, the dependence of
the variables on ω and (measurement) position will be dropped. For the practical
implementation of the method it should be mentioned that the factor 1/(8k2fD) in
G∞ (Eq. (4)) can safely be ignored to construct matrix Φ.

As the number of measurement points (i.e. the length of vector w) con-
sidered in this work is much larger than the number of unknown contribution
strengths (i.e. the length of vector α), the vector of contribution strengths α needs
to be determined by means of a generalized inverse approach:

α = Φ+w = (Φ∗Φ)−1Φ∗w (8)

where Φ+ is the pseudo inverse of matrix Φ. This approach finds the solution in
the least squares sense, i.e. the solution of the following minimization problem

α = argmin(‖w −Φα‖2) (9)
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However, in some situations, the condition number of matrix Φ can be relatively
high, inducing a strong sensitivity of the approach. This is typically the case when
increasing the number of image sources to be quantified. For instance, if the waves
originating from two image sources have almost equal incidence angles upon the
measurement area, their contributions to the vibration field will be too similar to be
distinguished. In such a situation, the condition number can increase dramatically,
leading to strong (non physical) overestimations of the recovered source strengths.
A classical solution to overcome this issue is to use regularisation. The Tikhonov
regularisation adds a term to the minimization problem (9), proportional to the
solution’s norm:

α = argmin(‖w −Φα‖2 + λ2‖α‖2), (10)

giving a solution that is obtained using the regularized pseudo-inverse:

α = Φ+λw = (Φ∗Φ + λ2I)−1Φ∗w. (11)

The choice of the regularization parameter λ results from a trade-off between the
fidelity to measurements and the minimisation of the source strengths. Its de-
termination can be processed using various approaches, one can cite L-curve or
generalized cross-validation (GCV) methods that have been successfully imple-
mented in dynamic load identification problems [11]. In this work, a criterion
based on a Bayesian formalism of the inverse problem is used. This approach has
been developed for acoustic imaging applications [12], and has been found to be-
have more robustly than other approaches [13]. The Bayesian formalism, as well
as the resulting cost function that has been used in this work are briefly described
in appendix A.

Finally, the projected vibrational field w̃ can be computed using

w̃ = ΦΦ+λw. (12)

The adequacy between matrix Φ and measurements w is quantified by the follow-
ing normalized reconstruction error

e =
‖w − w̃‖2

‖w‖2
, (13)

where ‖...‖ denotes the Euclidean norm of a matrix. Note that w and w̃ are a
function of both frequency and space. The error e is only a function of frequency.

The solution of Eq. (11) gives the (complex valued) source strengths of the
image sources and the main source, that fits the measurement data best (with the
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regularization constraint that enforces the amplitudes of the source strengths not
to be too high). The error e also depends upon the (complex valued) flexural wave
number kf used to build the ’test wave’ fitting function matrix Φ. The numerical
procedure encompasses the minimization of the reconstruction error e, selecting
an optimal value for kf from a large set of candidate values for kf sampled in the
complex plane.

Using this approach, a single wavenumber kf is found for each exciting
angular frequency ω, as it is assumed that a single flexural wave is propagating.
This is at one hand a limitation of the approach, on the other hand it allows a very
accurate estimation of the wavenumber kf , provided the assumption of a single
flexural wave is valid for the studied case. The wavenumber domain resolution
dk thus obtained is much better by far, as compared to the wavenumber domain
resolution that can be obtained with the spatial Fourier method [14], which is
limited by the fundamental relationship dkx,y ∝ 2π/Lx,y, where Lx and Ly are
the dimensions of the measurement area in x− and y−direction, respectively, as
will be shown in Section 4.2.

Once the optimum values for the image source strengths and the wavenum-
ber kf are found, the dynamic flexural rigidity D of the plate can be determined
as function of frequency (cfr. Eq. (2)):

D =
ω2ρh

k4f
(14)

The structural damping is included in the dynamic flexural rigidity D by writing
(using the exp(−iωt) convention):

D = D0 (1− iη) (15)

where η is the structural loss factor. From Eq. (14) and (15) it can be derived that
the loss factor η is related to the complex wavenumber kf as follows [15]:

η =
=(k4f )

<(k4f )
(16)

3 Validation of the image source method
The approach presented in this paper relies on an image source model, using Han-
kel’s functions as a basis of the image source responses, describing the vibrational
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a) b)

Figure 2: Rectangular plate. Excitation point in normal direction at x0=0, y0=8.7
cm, as indicated. Vibrational data obtained on a mesh as indicated, from x=6.17
cm to 17.86 cm, in 41 steps, from y=11.08 cm to 22.19 cm, in 39 steps. Total
number of points (i.e. the length of vector w): 1599. a) Simply supported plate of
dimension 60 x 40 x 0.15 cm (dashed line indicates simply supported boundary
condition); b) plate with free edges of dimension 30 x 40 x 0.15 cm.

field of a point excited finite plate. In this section the validity of the image source
method combined with the use of Hankel’s functions is discussed.

The magnitude of the image sources are particularly simple for a point ex-
cited rectangular plate with simply supported boundary conditions. In this case
the sources should be the same in magnitude (and changing 180 degrees in phase
each time when passing an edge of reflection), as can be proven by theory [10].
The fitting procedure outlined in Section 2 will first be applied to this case, as a
validation of the approach. However, as in practice a free boundary condition is
much more easy to realize, a plate with free edges will be discussed as well.

For the simply-supported rectangular plate an analytical model was used to
generate the vibrational field (employing Green’s kernel of a simply supported
rectangular damped plate [16]). The configuration is shown in Fig 2a. The vi-
brational field due to a point force excitation at (x, y) = (x0, y0) was calculated
analytically on a discrete mesh as shown in this figure as well. Using this discrete
set of (complex valued) vibrational data, the fitting procedure of Section 2 was
used to determine the strengths of the image sources. An image source model
with 9 sources was employed for this purpose (ID’s 1-9 in Fig 3a).

The vibrational field that computed analytically, w, as well as the projected
vibrational field, w̃ (see Eq. (7)), are shown in Figure 4 for a frequency of 15kHz.
This figure shows that the typical variation of the amplitude of the vibration due
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Figure 3: (color online) The image source model. a) Point excited simply sup-
ported plate (cfr. Fig 2a). b) Point excited free plate (cfr. Fig 2b). The red dots
indicate the position of the (image) sources. The black area indicates the physical
plate (its edges giving rise to first reflections). The dark blue areas indicate the
areas from which the second reflection occurs. The light blue areas indicate the
areas from which the third reflection occurs.

to constructive and destructive interference of the direct waves and the reflected
waves is very well reproduced by the fitted image source model with 9 sources.
Regularization was not required in this case as the analytical ’measurement’ data
was exact. The error e (Eq. (13)) is as low as 0.0024.

As can be seen from Figure 5, all the source strengths have about the same
magnitude, as it should be, whilst the phase of the sources are in-phase or out-of-
phase with each other. This is in line with theory, thus validating the approach
to determine the source strengths from the vibrational field of a simply supported
plate, employing an image source model on the basis of Hankel’s functions. The
amplitudes of the sources are inversely proportional with frequency, as the analyt-
ical model assumes a constant force. This is also in agreement with theory.

For a rectangular plate with free edges, analytical solutions are difficult to
find. For practical reasons we resorted to the finite element method (FEM). The
geometry of the plate and the point of excitation are indicated in Fig. 2b. A
structural loss factor η of 5% was specified in the FEM model, which is of the
same order of magnitude as the structural loss factor of the sandwich plate that
was examined experimentally (to be discussed in Section 4). As the frequencies
of interest are rather high, a FEM model was employed with a large amount of
elements (56040 quadrilateral shell elements) and a significant number of degrees
of freedom (339126). The vibrational field w as calculated by the FEM model is
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Figure 4: (color online) Contour lines of absolute vibration levels of a simply
supported plate (Fig 2a), in normal direction, at 15kHz. a) Analytical data; b)
Projection of the analytical data on an image source model with 9 sources, without
regularization (error e=0.0024).
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Figure 5: (color online) Source contributions α for the reconstruction of the an-
alytically generated data of a simply supported plate (Fig 2a), using an image
source model with 9 sources. a) Absolute value [a.u.]; b) Phase [rad].

shown in Fig. 6e for a frequency of 15kHz.
The projected field, w̃ (see Eq. (7)), for a frequency of 15kHz, is shown

in Fig. 6a-d for a varying number of image sources, illustrating the convergence
behavior as function of the number of the Hankel’s function image sources. For
the case of an image source model with 9 sources, reference is made to Fig 3b,
which shows the location of the 9 sources. The typical interference pattern in
the magnitude of the vibrational field can very well be described with the image
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Figure 6: (color online) Contour lines of absolute vibration levels (a.u.) of a plate
with free edges, in normal direction, at 15kHz. Projection of the numerically
obtained data on an image source model, using Bayesian regularization, with a) 1
source (ID 1, error e=0.11); b) 2 sources (ID’s 1-2, error e=0.039); c) 4 sources
(ID’s 1-4, error e=0.033); d) 9 sources (ID’s 1-9, error e=0.032). e) Numerically
obtained FEM data. f) Error e as function of frequency, as defined by Eq. (13).

source method for this free boundary case as well. The convergence behavior in
terms of the reconstruction error e (Eq. (13)) as function of frequency is shown in
Fig. 6f.

The error e (Eq. (13)) appears to be higher as compared to the error of the
simply supported plate when using an analytical model. To investigate this in
more detail, the FEM simulations were also performed for the simply supported
plate, and the result were fitted on the image source Hankel model. Whilst for the
analytical solution the error was 0.0024, it was found that the fitting error for the
FEM data was about 0.03, using the same number of image sources. So, it can be
concluded that the increase in error from approximately 0.003 to approximately
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0.03 is indeed due to the noise on the numerically generated data.
It can be concluded that nine sources are sufficient to describe the vibrational

field of a point excited plate with the given geometry and boundary conditions, in
the frequency range of interest. Analytically generated data gives a lower projec-
tion error e as compared to data generated by a FEM model.
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Figure 7: (color online) Image source strengths |α| of the 9 image sources model,
as function of frequency, using the numerically obtained vibration patterns of a
plate with free edges. a) Without regularization; b) with Bayesian regularization.
Note that the y-axes are different.

Due to the numerical inaccuracies that are introduced by the FEM-model,
regularization was required. To illustrate this, Fig. 7 shows the source strengths
of the image sources for the image source model with nine image sources, with
and without regularization. Without regularization, problems especially occur for
the image sources that are relatively far away from the point of excitation. For
instance, from Fig. 7a it can be seen that, without regularization, the image source
strengths of the image sources further away from the main source (high ID num-
ber) are much larger than the strength of the main source (ID 1). This is caused
by the fact that their contributions to the vibrations in the measurement area are
very similar to each other (plane waves), causing a bad conditioning of the matrix
Φ to be inverted. When using Bayesian regularization, this non-physical behavior
can be suppressed effectively, resulting in a reduction of the image source strength
with distance from the main source (see Fig. 7b).

The purpose of this paper is to estimate the material properties of the plate,
from the projection of the measurement data on a numerical (image source) model.
Basically the optimum value of the complex wavenumber k, from which the mate-
rial properties can be determined, is searched for to minimize the projection error
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Figure 8: The influence of the number of image sources on the estimate of the
real (top) and imaginary (bottom) wavenumber for a point excited plate with free
edges. a) with Bayesian regularization; b) Without regularization.

e. The influence of the number of image sources on the estimate of the complex
wavenumber is shown in Fig. 8a for the same point excited plate, with Bayesian
regularization. For the real part and the imaginary part of the wavenumber the
maximum variation of the estimate is approximately less than 0.2 rad/m and 0.7
rad/m, respectively. For the real part of the wavenumber this is relatively speaking
very small (less than 0.5 ‰), whilst for the imaginary part it is more significant
(less than 10%). Thus, giving the relationships between the wavenumber estimate
and the material properties, as given in Eqs. (15) and (16), the influence on the
estimate of the Young’s modulus and the loss factor, will be less than 4× 0.5 ‰ =
2 ‰ and 10%, respectively. It shows that the number of images used in the image
source model does not have a profound impact upon the estimate of the Young’s
modulus. The influence on the estimate of the loss factor, is more significant, but
less than 10%.

Figure 8b shows the influence of the number of image sources on the es-
timate of the complex wavenumber, when not using regularization. The errors
are approximately of the same order of magnitude as compared to Fig. 8a, albeit
that the convergence is slower. For instance the imaginary part of the wavenum-
ber stays relatively high for the case without regularization, whilst with Bayesian
regularization the imaginary part converges to a lower value when increasing the
number of image sources. A lower value of the imaginary part of the wavenumber
is believed to be physically more correct.

In summary it can be concluded that regularization does not have a signifi-
cant effect on the estimate of the flexural wavenumbers, which makes the method
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not very sensitive to the regularization approach taken. This does not, however,
alter the fact that the use of proper regularization is highly preferable in order to
allow for a proper description of the physical behavior of the system. Although in
our specific application the regularization did not have a strong effect, it could be
the case in other situations, with different plate geometry, boundary conditions,
etc.

4 Experiments

4.1 Test set-up
To illustrate how the methodology proposed in this paper can be easily applied to
common engineering problems which may arise in the vibroacoustic community,
we made the choice to conduct measurements on a typical three layer sandwich
plate used in vehicle industry. The plate under consideration consists of a thin steel
layer of 0.18 mm thickness, a polymer layer of 0.69 mm thickness and a thin steel
layer of 0.18 mm thickness. The overall dimensions of the plate are 30 x 40 cm2.
The plate was hanging on two thin nylon wires (for which two small holes were
drilled in the plate), thus realizing a practically free boundary condition. The plate
was excited at its edge by means of a Bruel&Kjaer mini-shaker type 4810. The
shaker was driven by a white noise signal (5-20 kHz). The structural vibrations of
the plate were measured by means of a scanning laser Doppler vibrometer, con-
sisting of a Polytec PSV-400 scanning head and a Polytec OFV-5000 controller.
Only a part of the plate was measured by means of the scanning laser Doppler vi-
brometer, as indicated in Fig. 2b and in Fig 9 (scanning area approximately 11.7
x 11.1 cm2). The measurements were taken sequentially in time, using the signal
that was sent to the shaker as a reference signal, allowing the measurement of both
the amplitude and phase of the vibrational response of the plate. Alternatively, a
force cell could have been used for this purpose. However, it is not a necessity to
do so, as our interest was the measurement of the vibrational field of the plate to
extract wavenumber properties from it. This does not require the excitation force
to be known.

The image source model is schematically depicted in Fig. 3b, showing the
main excitation source (ID number 1) and a number of image sources. An image
source model with 9 sources is used in this section, as it was concluded in Section
3 that for this type of excitation and plate geometry with free edges, 9 images
sources are sufficient.
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Figure 9: (color online) Measurement test set-up. Plate hanging on thin wires,
excited by mini-shaker. The black line on the plate indicates the measurement
area.

4.2 Results
The measured vibrational field is shown in Fig. 10a for one frequency only (15
kHz), as an example. Varying the real and imaginary parts of the wavenumber of
the fitting functions contained in Φ, the optimum value that was found using an
image source model is k=(436.3 + 6.1 i) m−1 for this frequency. The projected
vibrational field w̃(xi, yi) at 15 kHz is presented in Fig. 10b. The typical ampli-
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Figure 10: (color online) Contour lines and surface plots of experimentally ob-
tained absolute vibration levels of a plate with free edges (Fig 2b), in normal di-
rection, at 15kHz. a) Experimental data; b) Projection of the data using an image
source model with 9 sources (ID 1-9, error e=0.11) using Bayesian regularization.
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tude variation due to interference effects of the direct vibrational field of the main
source and the vibrational field resulting from the plate edge reflections (which are
described by the image sources), are reasonably represented by the image source
approach, as expected from the results that were shown in Section 3.

Using Bayesian regularization, the optimum value of the complex wavenum-
ber k of the fitting functions contained in Φ is searched for, minimizing the error
e of Eq. (13). The error e as function of frequency and as function of the real part
of the test wavenumber k (for the optimum value of the imaginary part of k), is
shown in Fig. 11a. The error e as function of frequency and as function of the
imaginary part of the test wavenumber k (for the optimum value of the real part of
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Figure 11: (color online) Fitting error e (defined in Eq. (13)) as function of fre-
quency and as function of a) the real part of k (for the optimum value of the
imaginary part of k), and c) as function of the loss factor η (for the optimum value
of the real part of k). Resulting optima of b) the real part of the wavenumber k,
and d) the loss factor η.
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Figure 12: Plate stiffness estimations. a) Dynamic flexural rigidity D divided by
ρh; b) Equivalent Young’s modulus E.

k), is shown in Fig. 11c. The corresponding optima of the real and imaginary parts
of the wavenumber k are shown in Fig. 11b and Fig. 11d, respectively. Here, the
structural loss factor η is shown, instead of the imaginary part of the wavenumber
k, exploiting relationship given by Eq. (16).

Having an estimate of the wavenumber k as function of frequency, the dy-
namic flexural rigidity D can be computed using Eq. (14). When applied to
composite panels, the Kirchhoff’s thin plate theory (Eq. (1)) can still be used if
the vibrational behavior of the plate is assumed to be governed by flexural waves.
However, the structure being composed of several layers of materials with dif-
ferent moduli, the relationship between the rigidity D and Young’s modulus E
is not valid anymore. A Young’s modulus can still be estimated using Eq. (3),
but it correspond to the Young’s modulus of an equivalent homogeneous plate of
same thickness and mass per unit area, that would exhibit the same dynamic flex-
ural rigidity at one given frequency. This Young’s modulus, that we call in this
study the “equivalent Young’s modulus” , is not expected to be independent of the
frequency anymore, as it was the case for homogeneous plates.

The estimate of the dynamic flexural rigidity D is shown in Fig. 12a. As-
suming a density ρ of 3055 kg/m3 and a thickness of 1.05 mm (measured values),
the equivalent Young’s modulus of the three-layer plate is computed by means of
Eq. (3), shown in Fig. 12b.

The confidence in the least squares fit results can be estimated as follows.
Let’s assume that each data point, as measured by the laser Doppler vibrometer,
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is drawn from a Gaussian distribution. Defining a (reduced, i.e. corrected with a
factor 1/(M − P )) goodness-of-fit parameter χ2:

χ2 =
1

M − P
Σi,j

{
[w(xi, yj)− w̃(xi, yj)]

2

σ2
ij

}
(17)

where w(xi, yj) is the measured data at measurement point (xi, yj), having a stan-
dard deviation σij , w̃(xi, yj) is the fitted data at that point, M is the number of
measurement data points and P is the number of fit parameters. Since the χ2

function is minimum at the best fitting parameter values, it can be approximated
to second order as [17]

χ2 =
(ak − aoptk )2

(M − P )σ2
k

+ C (18)

where ak is the k-th fitting variable, aoptk is the optimum value of the k-th fitting
variable that minimizes χ2, σk is the standard deviation of the k-th fitting variable,
and C is some constant, depending upon the other fitting variables. In case of
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Figure 13: (color online) Error e = (wij − w̃(xi, yj))/wij as function of fitting param-
eter k (real part) and as function of η, for a frequency of 15kHz.
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Figure 14: Uncertainty estimate in k (real part). a) absolute uncertainty. b) relative
uncertainty.

no systematic errors, it can be expected that the deviations (w(xi, yj)− w̃(xi, yj))
for the best fitting parameters are of the order of the expected standard deviations
σij , so that C, the minimum value of χ2, is of the order of unity. In this study
it is assumed that the minimum value of χ2 equals 1. From statistical theory it
is know that an increase of 1 standard deviation (σk) in the parameter from the
value aoptk at the minimum increases χ2 by 1/(M −P ) [17]. Thus, the uncertainty
in the fitting parameter k, σk, can be determined by plotting the error function
e = {w(xi, yj)− w̃(xi, yj)}/w(xi, yj) as function of this fitting parameter, and searching
for the values of ak for which e is increased by a factor 2 relative to the minimum
of e. The standard standard deviation (σk) can be obtained by dividing this range
by
√
M − P .
Figure 13 shows the error e (defined in Eq. (13)) as function of the fitting

parameters k (real part) and η, for only one frequency: 15kHz. Following the
above described procedure, it can be seen that at this frequency the least squares
uncertainty in the wavenumber estimate is about ± 13/

√
(M − P ) ≈ 0.3 m−1,

with M = 39× 41 = 1599 (the number of measurement points of the LDV-grid)
and P = 2 + 18 (2 fitting parameters for the complex valued wavenumber k and
the real and imaginary part of the source and the 9 image sources). Evaluating the
uncertainty for all frequencies gives the result as shown in Fig. 14.

When only one parameter is varied, and the others are kept at the best fitting
value, a least squares parabola is retrieved for each fitting variable, as shown in
Fig. 13. From the shape of the contour lines, being an oval with principal axes
along the two fitting parameters k and η, it can be concluded that there is not a
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Figure 15: (color online) Spatial Fourier transform amplitude (logarithmic scale)
of the measurement data, frequency 15kHz. The dotted circle indicates the esti-
mate of the real part of the wavenumber at this frequency, using the wavenumber
fitting approach.

significant pair-wise correlation between the fitting parameters, making a most
squares analysis [18, 19] unnecessary in this specific case.

Using the wavenumber fitting approach based upon the Hankel’s functions
and image source method, the obtained wavenumber domain resolution (of the
real part of k) outperforms the wavenumber domain resolution that can be ob-
tained by means of a classical 2D spatial Fourier transform. Figure 15 shows the
wavenumber domain spectrum for a frequency of 15kHz, as an example. The
typical wavenumber domain resolution of the spatial Fourier transform equals
dk = 2π/L [14], where L is a typical dimension of the measurement area in ei-
ther the x or the y-direction. In this specific case with a measurement area of 11.7
x 11.1 cm2, the wavenumber resolution of the spatial Fourier transform equals
51 m−1 and 57 m−1 in x and y-direction, respectively. The uncertainty, and
thus the resolution of the real part of the wavenumber using the Hankel-function
based wavenumber fitting approach is better than 1 m−1, and a relative uncer-
tainty of less than 2%, as can be seen from Fig. 14. This is an improvement of the
wavenumber resolution by a factor 50. Giving the relationship in Eq. (14), this
relative uncertainty of about 2% in the estimate of k when using the wavenumber
fitting approach, gives a relative uncertainty in the estimate of Young’s modulus
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which is in the order of 4 × 2% = 8%. The uncertainty due to the influence of
the image source model (as discussed in Section 3) is much less (for the Young’s
modulus it was estimated at only 2 ‰).

The imaginary part of the wavenumber (or, equivalently, the loss factor η
of the plate) is more difficult to estimate, because of the fact that the imaginary
wavenumbers are much smaller in magnitude as compared to the real part of k.
This makes that the relative error is much bigger. Nevertheless, the loss factor η of
the plate can be estimated reasonably well, up to very high frequencies (see Fig.
11d).

5 Conclusions
A new wave fitting approach was presented to estimate the frequency dependent
material properties of thin plate structures from an experimentally obtained vibra-
tional field of a point excited plate. An image source model was successfully ap-
plied, using Hankel’s functions, to describe the vibrational field of a point excited
plate with free boundary conditions. Bayesian regularization is used to determine
the strengths of the image sources. The (complex valued) wavenumber is varied
to minimize the error between the measured and predicted vibrational field. Using
this wave fitting procedure, the complex wavenumber is determined as function of
frequency, from which the material properties of the plate can be extracted. The
complex wavenumber fitting procedure outperforms the classical spatial Fourier
transform approach in terms of the wavenumber resolution by a factor 50, in this
experiment.

The method is applied to a sandwich plate. From the estimated wavenumber,
the Young’s modulus of an “equivalent” Kirchhoff plate was estimated. This ap-
proach can be helpful for the modeling of composite plates in the high frequency
range, without the need to use onerous 3D elements or composites theory. In-
stead, a relatively simple (Kirchhoff) 2D plate model with a frequency dependent
“equivalent Young’s modulus” can be used.

The method is specifically suited for the higher frequency range, where the
wavelength is sufficiently small as compared to the dimension of the plate, and
where the damping is sufficiently high to ensure that the vibration field can be
explained by a limited number of image sources. Whilst a sufficient number of
image sources is required to project the measured data on to the image source
model with sufficient accuracy, it was found that the estimation of the (complex)
wavenumber and thus the estimation of the Young’s modulus and loss factor is not
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significantly affected by the chosen number of image sources.
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A Bayesian regularization
A bayesian formalism [13] is used to find a solution α to the linear system

w = Φα + β (19)

where w is the observation, Φ the basis on which w has to be expanded, α the
unknown projection coefficients and β the unknown projection error. Let’s con-
sider the following a priori probability density functions (pdfs), where Nc(µ,C)
stands for a multivariate complex normal distribution with an expected value µ
and covariance matrix C.

[β] = Nc(0, b2I)

[α] = Nc(0, a2I)

The first pdf [β] assumes that the noise is gaussian, centred, and of same energy
on all dimensions. The second one [α] assumes that the unknown α also follows a
centred gaussian law. This a priori assumption puts a higher probability to values
of α close to zero, whilst larger values of α are a priori assumed to be less prob-
able. A third pdf is formulated for w considering the two former ones and Eq.
(19):

[w|α] = Nc(Φα, b2I)

The Bayes rule allows to invert this conditional pdf as follows

[α|w] ∝ [w|α][α]

An estimate of the unknown α can be obtained by maximizing this posterior
pdf, leading to the standard Tikhonov solution:

α̂ = argmin
(
‖w − Φα‖2 + λ2‖α‖2

)
=
(
Φ∗Φ + λ2I

)−1
Φ∗w
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where λ2 = b2/a2 and where ∗ denotes the complex conjugate transpose. The
benefits of the bayesian frameworks is that the meta parameters (a2, λ2) can also
be considered as random variables and inferred from the measurement data. As-
suming no a priori information on (a2, λ2), i.e. [a2] = [λ2] ∝ 1, the Bayes rule
gives

[a2, λ2|w] ∝ [w|a2, λ2] = Nc(0, a2(ΦΦ∗ + λ2I))

The value of λ2 maximizing this probability density function is expressed through
a singular value decomposition of Φ =

∑N
k=1 skukvk

′ (with N the dimension of
α) :

λ̂2 = argmin

(
N∑
k=1

ln(s2k + λ2) +N ln

(
N∑
k=1

|uk
′w|2

s2k + λ2

))
The minimization is realized numerically in this work. A set of candidate values
of λ2 is sampled between bounds defined as a function of the minimum and maxi-
mum values of squared singular values s2k, and the value minimizing this function
is selected.
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