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Résumé— The extended finite element method (XFEM) introduced by Belytschko [1] allows
discontinuities to be arbitrarily present in the domain, i.e, discontinuities can be independent of
the mesh. However this complicates the numerical integration of the stiffness matrix, because it
requires sub-division of elements cut by discontinuity, which in 3D may be computationally costly.
In this paper, we address this issue by proposing a new method named as the Smoothed eXtended
Finite Element Method (SmXFEM) [4]. This method combines the strain smoothing technique
proposed by Liuet al., [6] for finite element method, coined as Smoothed Finite Element Method
(SFEM) with the XFEM. The SmXFEM shares the properties of both the SFEM [9] and XFEM.
The SmXFEM alleviates the need to compute the derivative of shape functions and numerical
integration of singular functions, commonly encountered in linear elastic fracture mechanics. This
is achieved by transforming the surface integration to line integration along the boundary of an
element. The effectiveness of the method is illustrated by a few benchmark examples taken from
linear elastic fracture mechanics. The results obtained with SmXFEM compare well with those of
the standard XFEM.

Mots clés — strain smoothing, extended finite element method, boundary integration, isopara-
metric mapping

1 Introduction

The eXtented Finite Element Method (XFEM) is a numerical method to model arbitrary dis-
continuities in continuous bodies that does not require the mesh to conform to the discontinui-
ties [2, 3]. Recently smoothed finite element method (SFEM) has been proposed by Liuet al. [6]
by means of combining the strain smoothing technique with the conventional FEM technology
and further extended by Nguyenet al.[9]. In this method, strain smoothing operation is performed
on an entire or part of an element to replace the conventional strains obtained using displacement-
compatible equations in FEM. Due to the presence of strain projection process, only shape function
is involved in the calculation of field gradients and no isoparametric transformation is required.
Hence, the element is allowed to be of arbitrary shape and thus the field domain can be discreti-
sed in a more flexible way. Interested readers can refer to work of Nguyen et al. [9] for detailed
description about the SFEM. The SFEM is based on strain smoothing stabilization, originally in-
troduced by Chen [5] for meshfree mthods. Refer to [8] for a recent review on meshfree methods.
The SFEM was subsequently extended to plate and shell analyses [10, 7].
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We present a technique to combine the strain smoothing technique to the XFEM, to get the
Smoothed eXtended Finite Element Method (SmXFEM) [4]. Section 2 briefly discusses the basics
behind the XFEM and section 3 gives an overview of the proposed method and numerical results
are presented in section 4.

2 Extended Finite Element Method

The main idea in XFEM is to extend the approximation basis by set of enrichment functions,
that are chosen based on the local behavior of the problem. For the case of linear elastic fracture
mechanics, two such functions are used : Heaviside jump function to capture the jump across the
crack face and asymptotic branch functions that span the two-dimensional asymptotic crack tip
fields. The enriched approximation for fracture mechanics problems takes the form [1, 2, 3] :

uh(x) = ∑
I∈N fem

NI(x)qI + ∑
J∈N c

NJ(x)H(x)aJ + ∑
K∈N f

NK(x)
4

∑
α=1

Bα(x)bα
K (1)

whereaJ andbK are nodal degrees of freedom corresponding to the Heaviside functionH and the
near-tip functions,{Bα}1≤α≤4. Nodes in setN c are such that there support is split by the crack
and nodes in setN f belong to the elements that contain a crack tip. These nodes are enriched with
the Heaviside and near-tip (branch functions) fields, respectively.

This modification of the displacement field approximation doesn’t introduce a new form of the
discretised finite element equilibrium equation, but leads to an enlarged problem to solve :

[
Kuu Kua

Kau Kaa

]{
u
a

}
=

{
fu
fa

}
(2)

In the XFEM, the discontinuities are independent of the mesh, i.e., the discontinuities can lie
anywhere within or on the element. And the numerical integration of the above equation involves
sub-division of elements, over which the integration can be done. Since it is not the scope of the
present work, it is suffice to say that the numerical integration in XFEM is cumbersome. For more
detailed information, interested readers can refer to the XFEM literature.

3 Smoothed eXtended Finite Element Method

The SmXFEM is a novel technique that combines the strain smoothing technique proposed by
Chen for meshless [5] with the XFEM to model discontinuities without having to remesh locally.
SmXFEM uses a similar approximation for the displacement field as the XFEM Equation (1).

The element stiffness matrix writes as the sum of the contributions from each of thencsubcells
of the elemente

K̃e =
nc

∑
C=1

Z

ΩC

B̃T
CDB̃CdΩ (3)

whereC ∈ {1,2, . . . ,nc} is the number of the subcellΩC.
All entries in matrixB̃C in Equation (3) are constants over each subcellΩC –each of these

entries are line integrals calculated along the boundaries of the subcells. From the displacement
approximation Equation (1), the strain field is deduced by differentiation of Equation (1)

εh(x) = ∑
I∈N fem

BI fem(x)qI + ∑
J∈N enr

BJenr(x)aJ = [Bfem‖Benr][q]

εh(x) = [Bxfem][q]

(4)
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TheBxfem matrix in Equation (4) includes two termsBfem andBenr corresponding to the standard
nodes (FEM) and enriched nodes (ERN).
The smoothed enriched stiffness matrix for subcellC, K̃C

xfem is computed by

K̃C
xfem =

Z

ΩC

B̃T
CDB̃CdΩ = B̃T

CDB̃CAC (5)

whereB̃C ≡ B̃xfem, AC is the area of the subcell. And the smoothed enriched element stiffness
matrix K̃e

xfem is the sum of thẽKC
xfem, for all subcells,C

K̃e =
nc

∑
C=1

B̃T
CDB̃C

Z

ΩC

dΩ =
nc

∑
C=1

B̃T
CDB̃CAC (6)

wherenc is the number of smoothing subcells of the element.

4 Numerical Examples

The effectiveness of the proposed method is illustrated by taking two benchmark problems
from linear elastic fracture mechanics. We first consider a plate with an edge crack and then exa-
mine the case of plate with shear traction.

4.1 Edge crack under tension

A plate of dimension 1×2 is loaded by a tensionσ = 1psi over the top edge. The displacements
along y-axis is fixed at the bottom right corner and plate is clamped at the bottom left corner. The
geometry, loading, boundary conditions and domain discretisation are shown in Figure 1. The
reference mode I SIF is given by

KI = F(
a
b
)σ
√

πa (7)

where a is the crack length,b is the plate width andF(a
b) is an empirical function given as

(For (a
b) ≤ 0.6)

F(
a
b
) = 1.12−0.231(

a
b
)+10.55(

a
b
)2−21.72(

a
b
)3 +30.39(

a
b
)4 (8)

Tableau 1 – Normalized stress intensity factorKI for edge crack under tension for different crack
sizes

Crack Size
Number 0.1 0.2 0.3 0.4 0.5
of nodes
288 1.0721 1.0027 1.0058 0.9554 0.8885
1152 0.9715 0.9567 0.9119 1.0478 0.9603
3444 1.0554 1.0302 1.0194 1.0087 0.9864
4608 0.9762 1.0061 1.0466 0.9658 0.9904
5000 0.9622 0.9710 0.9781 0.9886 0.9916

Table 1 shows the normalized stress intensity factor for various discretizations and crack sizes.
Note that even for the coarsest meshes, the error is around a few percent and decreases with mesh
refinement although the convergence is not absolutely monotonic.

3



L
=

2
.0

H=1.0

σ=1.0

σ=1.0

a

Figure 1 – Plate with edge crack under tension

4.2 Edge crack under shear stress

As a last example, in order to demonstrate the capabilities of proposed method for a general
case with mixed-mode loading, we consider an edge cracked plate subjected to shear load. The
plate is clamped at the bottom edge and loaded by a shear tractionτ = 1psi over the top edge.
The material parameters are Young’s modulus,E = 3× 107 and Poisson’s ratioν = 0.25. The
geometry, loading and boundary conditions are shown in Figure 2. The reference mixed mode
stress intensity factors are :

KI = 34.0 psi
√

in (9)

KII = 4.55 psi
√

in (10)

Tableau 2 – Normalized stress intensity factors for edge crack under shear for different mesh sizes,
ExactKI = 34.0 andKII = 4.55

Number of nodes KI KII

288 0.8921 0.9302
1152 0.9634 0.9630
3444 0.9894 0.9924
4608 0.9929 0.9968
5000 0.9941 0.9980

Table 2 gives the SIFs for various mesh refinement. It is evident that with mesh refinement,
the computed SIFs converge to the reference mixed mode SIFs.
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Figure 2 – Plate with edge crack under shear

5 Conclusion

In this paper, we presented a method to couple the strain smoothing technique with the XFEM
to obtain the SmXFEM and to solve linear elastic fracture mechanics problems. The main ad-
vantage of this method is that it avoids the need to integrate the singular functions present in the
XFEM stiffness matrix in linear elastic fracture mechanics problems. With the help of a few nume-
rical analysis, we have shown the effectiveness of the proposed method. And since isoparametric
mapping is eliminated, the elements can take any arbitrary shape.
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