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Abstract Robust multi-stage linear optimization is hard computationally and only small problems can
be solved exactly. Hence, robust multi-stage linear problems are typically addressed heuristically through
decision rules, which provide upper bounds for the optimal solution costs of the problems. We investigate
in this paper lower bounds inspired by the perfect information relaxation used in stochastic programming.
Specifically, we study the uncapacitated robust lot-sizing problem, showing that different versions of the
problem become tractable whenever the non-anticipativity constraints are relaxed. Hence, we can solve
the resulting problem efficiently, obtaining a lower bound for the optimal solution cost of the original
problem. We compare numerically the solution time and the quality of the new lower bound with the
dual affine decision rules that have been proposed by Kuhn et al. (2011).
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1 Introduction

Lot-sizing optimization problems appear in a wide range of applications where products have to be made
to attend demands along a planning horizon. In these problems, the future demands are usually not
known with precision before being reached. To be relevant in practice, optimization models must model
the uncertainty explicitly so that the decisions are taken to optimize the benefit over the whole planning
horizon. Different models of uncertainty exist in the literature, each of which having its advantages and
drawbacks. In this paper, we focus on robust lot-sizing, therefore assuming that the demand uncertainty
is modeled by a convex set. Thus, the objective is to optimize the cost of the production plan in the
worst-case scenario represented by the set. This model, used in Agra et al (2016); Bienstock and Özbay
(2008); Bertsimas and Dunning (2014); Bertsimas and Thiele (2006); Kuhn et al (2011); Ben-Tal et al
(2004); Gorissen and den Hertog (2013), among others, is relevant when historical data are not accurate
enough to draw probabilistic distributions of the uncertain demands.

Robust optimization is often known as being an easy approach to handle uncertainty since, for
instance, a robust linear program with polyhedral uncertainty sets can be reformulated as a robust
linear program whose dimension does not grow much with respect to the dimensions of the deterministic
problem (Ben-Tal and Nemirovski, 1998). While this is true for static problems, where decisions are taken
before revealing the uncertain parameters, the situations with adjustable problems is far more complex.
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Adjustable robust optimization problems suppose that the uncertainty is revealed as time goes and one
can adjust the values of some of the decision variables according to the current knowledge of the uncertain
parameters. Hence, the adjustable optimization variables become functions of the uncertain parameters.
Robust lot-sizing problems can be modeled either as static or adjustable robust optimization problems.
In the static version, it is assumed that the production plan is fixed before the planning horizon starts.
In contrast, the adjustable version supposes that the production and other decisions can be adjusted
according to the values taken by past demands, thus becoming functions of the past demands. In this
paper, we consider the adjustable situation.

Adjustable robust optimization is known for being NP-hard, even in the case of a linear program
with only two decision stages (Ben-Tal et al, 2004). In spite of its theoretical difficulty, the problem can
be solved exactly by decomposition approaches whenever some assumptions hold (Ayoub and Poss, 2016;
Billionnet et al, 2014; Zeng and Zhao, 2013). These approaches consider finite subsets of the uncertainty
sets and dynamically increase the number of elements in the subsets by solving separation problems. The
numerical tractability of the resulting algorithms highly depends on the complexity of the separation
problem. For instance, the separation problem for the robust vehicle routing problem can be solved in
polynomial time (Agra et al, 2013), while those related to facility location or network design problems
require solving MILP with big-M coefficients (Ayoub and Poss, 2016; Billionnet et al, 2014; Zeng and
Zhao, 2013). These decomposition approaches do not extend to multi-stage problems, because of the non-
anticipativity constraints present in these problems. Stated simply, non-anticipativity constraints model
the fact that optimization variables can only depend on past realizations of the uncertain parameters;
they cannot adjust their decision to unknown realizations.

Given the difficulty of adjustable multi-stage robust problems, many researchers have developed
heuristic approaches that try to provide feasible solutions for these problems. The bottom line of all
these approaches is to restrict the set of feasible functions for the adjustable variables. The seminal paper
in this line of research is Ben-Tal et al (2004) which restricts adjustable variables to affine functions of
the uncertainties, which they call affine decision rules. Subsequent authors have studied more complex
decision rules that offer more flexibility than affine decision rules while providing more or less tractable
optimization problems. Among others, Chen and Zhang (2009) propose to define affine decision rules built
from extended descriptions of the uncertainty set and Goh and Sim (2010) introduce complex piece-wise
linear decision rules defined through the lifting of the uncertainty set. More complex decision rules have
also been considered, such as Bertsimas and Georghiou (2015) which proposes piece-wise decision rules
modeled with the help of binary optimization variables, or Bertsimas and Dunning (2014); Postek and
den Hertog (2016) which dynamically partition the uncertainty set and selects constant policies for each
element of the partition.

The heuristic solutions yield upper bounds for minimization problems. Since the optimal solution
of the underlying optimization problem is unknown, one needs lower bounds to evaluate the quality
of the aforementioned upper bounds. Up to our knowledge, the literature is scarce when it comes to
proposing lower bounds and we are aware of only two previous methods along that direction. In the
first one, the authors have considered the simple lower bound that consists of selecting a finite subset of
the uncertainty set and solving exactly the resulting finite linear program. This approach has been used
by Bertsimas and Dunning (2014), among others, in the course of their partitioning algorithm. In the
second one, Kuhn et al (2011) have introduced dual affine decision rules, which provide lower bounds for
multistage problems. While the latter work targets more specifically multistage stochastic optimization,
their approach is also applicable to robust optimization.

The contributions of this paper follow that line of research by providing another way to compute
lower bounds for multistage robust optimization problems. Our approach relaxes the non-anticipativity
constraints of the problem, thus yielding a relaxation of the original problem. This relaxation is well-
known in the stochastic programming literature as the perfect information relaxation. The first mention
of the associated optimization problem in the stochastic programming literature, called the expected value
of the perfect information, can be traced back to Avriel and Williams (1970). It has then been further
studied in several papers (e.g. C. C. Huang (1977)) and has become a well-known concept in stochastic
programming (Birge and Louveaux, 2011). However, up to our knowledge it has never been used in
robust optimization. The interest of studying the perfect information relaxation in robust optimization
is two-fold. First, it helps the decision maker in assessing how much gain could be obtained by reducing
the uncertainty on the uncertain parameters (e.g. Oostenbrink et al (2008)). Second, it can be used as
a lower bound for the optimal value of the true uncertain problem. We argue that this second aspect
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is particularly relevant for robust optimization problems for which many papers have studied upper
bounds while good lower bounds are rarely mentioned. As we show in the paper, the perfect information
relaxation of the robust lot-sizing problems can be solved efficiently either through polynomial-time
algorithms or MILP reformulations. Our experiments realized on lot-sizing instances inspired by the
literature seem to indicate that the perfect information relaxation can be quite tight. Throughout the
paper, we pay a particular attention to the budget uncertainty set introduced by Bertsimas and Sim
(2004) and widely used in the mixed-integer linear robust optimization literature.

The remaining sections of this paper are organized as follows. In Section 2, we formally present the
problems we tackle and the uncertainty model used. In Section 3, we recall the primal and dual affine
decision rules from the literature, and introduce the problem obtained by relaxing the non-anticipativity
constraints. In section 4, which contains the main methodological contributions of our paper, we present
combinatorial algorithms and (integer or continuous) linear programming formulations to solve the re-
laxations based on perfect information. In Section 5, we present numerical experiments to evaluate the
quality of the bounds empirically. We conclude the paper in Section 6 and delay to the Appendix technical
derivations.

2 Problem description

2.1 Deterministic model

We describe below the problem studied in this paper. Let H = {1, . . . , n} denote the planning horizon
composed of n periods; ci, hi and pi denote the production, holding and backlogging unitary cost at period
i, respectively. The objective of the lot-sizing problem, denoted by LS, is to provide a production plan
(information about the amount produced, stored and backlogged in each period i ∈ H) that fulfills the
client demand di at each period i, either by producing at that period or by producing in an earlier/later
period, in which case we must pay a fee represented by the holding/backlogging cost. Also, we have to
pay a fixed cost gi in each period i where production takes place. To keep notations simple, we consider
herein problems with a single item and a single producer; one can readily generalize our approach to
problems with multiple items and producers. Let us denote the the setup, production, stock and backlog
variables as, respectively, yi, xi, si and ri. The mathematical formulation of problem LS follows.

(LS) min κ

s.t κ ≥
∑
i∈H

(cixi + giyi + hisi + piri) (1)

si+1 = xi − di + si − ri−1 + ri ∀i ∈ H, (2)
xi ≤Myi ∀i ∈ H, (3)
y ∈ {0, 1}n, x, s, r ≥ 0,

s1 = rn = 0.

Constraint (1) imposes that κ be not smaller than the cost of the production plan represented by x,
which is formulated in the right-hand side of the constraint. Constraints (2) are equilibrium constraints
linking the production, stock and backlog variables. Constraints (3) state that if we produce in a period,
then we must pay a fixed cost (setup cost gi). The other constraints state that y is a binary vector
while the other variables are non-negative, and set initial and final conditions for s and r, respectively.
Notice that the objective function could be substituted with the right-hand side of constraint (1) in the
above formulation. However, we prefer to keep the formulation as it is presented here because it can be
translated more naturally to the robust context described in the next subsection.

2.2 Robust model

We assumed so far that demands are known with precision when solving problem LS described earlier.
This is unrealistic in many applications where one has to face uncertainty about the exact values of the
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demands. To model this issue, we consider an uncertainty polytope Ξ and we suppose that the demand
at time period i is defined by the affine function di(ξ) defined over Ξ:

di(ξ) = d̄i +
∑
j∈H

D̂ijξj , (4)

where d̄i can be seen as the mean value of the clients demands for time period i and D̂ is the devia-
tion matrix (which can be estimated from historical data) that represents all temporal relations among
demands. We typically have that D̂ij = 0 for j > i since these relations link current demands to the
previous ones. We also assume that the demand functions are non-negative, more precisely, di(ξ) ≥ 0 for
all i ∈ H and ξ ∈ Ξ.

In the robust context, backlog and holding variables depend on the specific scenario ξ. Hence, they
are represented by functions si(ξ) and ri(ξ) for each time period i. The situation is more complex with
production and setup variables. One could suppose that they are independent of ξ, which would model
the fact that all decisions must be taken at the beginning of the planning horizon, see for instance Agra
et al (2016); Bienstock and Özbay (2008); Bertsimas and Thiele (2006). In this paper, we consider a more
subtle approach where the productions and setups can be adjusted according to past demand realizations.
Hence, these decisions are modeled by functions xi(ξ) and yi(ξ) for each time period i. Notice that, for
each time period i, these functions must depend only on the demand revealed up to time period i. This
is modeled by the non-anticipativity constraints

xi(ξ) = xi(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′),

yi(ξ) = yi(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′),

ri(ξ) = ri(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′),

si(ξ) = si(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′).

where Proj[1...i](ξ) denotes the projection of ξ on its first i components. Said differently, the non-
anticipativity constraints model the fact that the adjustable optimization variables do not depend on
future knowledge of the uncertainty. The mathematical formulation for the robust model follows.

(P) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ,

(5)

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ,
(6)

xi(ξ) ≤Myi(ξ) ∀i ∈ H,∀ξ ∈ Ξ,
(7)

xi(ξ) = xi(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′), ∀i ∈ H, (8)

yi(ξ) = yi(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′), ∀i ∈ H, (9)

si(ξ) = si(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′), ∀i ∈ H ∪ {n+ 1}, (10)

ri(ξ) = ri(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′), ∀i ∈ H, (11)

y(ξ) ∈ {0, 1}n, x(ξ), s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ,
s1(ξ) = rn(ξ) = 0 ∀ξ ∈ Ξ.

Constraints (5)–(7) play the same role as constraints (1)–(3) for each element ξ ∈ Ξ. Constraints (8)–
(11) are the non-anticipativity constraints mentioned previously. Notice that the above problem contains
an infinite number of constraints and variables.

In this paper, we study bounding procedures for problem P as well as for the following two simpli-
fications of problem P. The first one considers that the setup decisions must be taken before knowing
anything about the demand; that is, y becomes a vector of optimization variables that are independent
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of ξ. The second one looks at the problem without setup costs, which can be modeled by setting all com-
ponents of y and g to 1 and 0, respectively. We denote these simplifications as P1 and P0, respectively.
Each of the three models is relevant for specific applications. For instance, P0 is close to the classical
supply chain model addressed in most papers from the robust lot-sizing literature (e.g. Bertsimas and
Thiele (2006); Ben-Tal et al (2004); Gorissen and den Hertog (2013)). In contrast, models P1 and P
are relevant for applications that involve fixed costs for the production due, for instance, to machine
configurations.

In general, we assume that Ξ can be any non-empty polytope, described by the matrix W with m
rows and |H| = n columns

Ξ = {ξ |Wξ ≤ q} . (12)

In addition to general polytopes, we will also take a closer look at the complexity of the optimization
problems obtained when using the budgeted uncertainty polytope introduced in Bertsimas and Sim (2004).
Given a positive real Γ , the budgeted polytope is defined as

ΞΓ =

{
ξ |
∑
i∈H
|ξi| ≤ Γ, −1 ≤ ξi ≤ 1,∀i ∈ H

}
. (13)

3 Bounds

We present in Subsections 3.1 and 3.2 approaches from the literature that provide upper and lower
bounds for the optimal solution of the adjustable robust problems. Notice that these approaches cannot
be applied to robust multi-stage optimization problems that contain adjustable integer variables, such
as P. Hence, in the following two sections, we assume that y does not depend on ξ, either because it is
a nonadjustable vector of optimization variables (as in P0) or because each of its components has been
fixed to 1 (as in P1).

3.1 Affine decision rules

The classical upper bound for multi-stage robust optimization problems is based on the so-called affine
decision rules. The main idea of the approach is to impose that functions si, ri and xi depend affinely
on ξ. Formally, these restrictions are modeled with constraints

xi(ξ) = x0i +

i∑
j=1

xji ξj , (14)

si(ξ) = s0i +

i∑
j=1

sji ξj , (15)

ri(ξ) = r0i +

i∑
j=1

rji ξj . (16)

where x0i , s0i , r0i and xji , s
j
i , r

j
i for i, j ∈ H are optimization variables. The right-hand side of (14)–(16)

involves only the components of Proj[1...i](ξ). Hence, the equation models implicitly the non-anticipativity
constraints introduced in the previous section. Substituting xi(ξ), si(ξ), and ri(ξ) with the rhs of (14)–
(16) for each i ∈ H, we obtain an upper bound for P0 and P1, see Appendix A. Then, one can apply
classical tools from robust optimization to the formulation from Appendix A to reformulate the upper
bound as a compact linear program.
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3.2 Dual affine decision rules

Recently, Kuhn et al (2011) have proposed lower bounds for problems P0 and P1, which they call dual
affine decision rules. To be more precise, their approach is developed to provide lower bounds for multi-
stage stochastic linear programs. To apply the technique to robust multi-stage programs, one needs to
introduce artificial probability weights for the scenarios in Ξ. These probability weights are then used to
formulate a lower bounding problem where the robust constraints are relaxed to expectation constraints.
Then, a subtle reformulation allows them to provide a compact linear mixed integer formulation for
the lower bounding problem. The reformulation is based on the use of convex duality and probability
theory. One of the main difficulties of the method relies in the computation of the expectation matrix
M = E(ξξT ). The approach is sketched in Appendix B, we redirect the interested reader to Kuhn et al
(2011) for full details.

3.3 Perfect information relaxation

The major impediment to the efficient solutions of problems P, P0 and P1 lies in the presence of the non-
anticipativity constraints. Expressing non-anticipativity constraints is not easy in general and strongly
depends on the particular structure of the considered set Ξ. In what follows, we propose a lower bound-
ing problem for P that relaxes the non-anticipativity constraints from P, which we call the problem
with perfect information. Unlike the affine decision rules and the dual version presented in the previous
sections, the perfect information relaxation can be applied to P regardless to the dependency of y on ξ.
The associated optimization problems are denoted by PI, PI1, and PI0, for P, P1 and P0 respectively.

(PI) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ,
xi(ξ) ≤Myi(ξ) ∀i ∈ H,∀ξ ∈ Ξ,
y(ξ) ∈ {0, 1}n, x(ξ), s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ,
s1(ξ) = rn(ξ) = 0 ∀ξ ∈ Ξ.

Hence, a formulation for problem PI1 can be obtained from the above formulation by removing the
dependency of ξ from y, while a formulation for PI0 is obtained by removing the variables y and con-
straints associated with it. This approach is well-known in stochastic optimization to examine the quality
of proposed solutions. In particular, it is used to compute the so-called expected value of perfect infor-
mation which defines the maximum price that one would be ready to pay to obtain perfect information
about the actual scenario, see Birge and Louveaux (2011).

We discuss in the next section how to solve problems PI0, PI1 and PI.

4 Solving the problem with perfect information

Let us first introduce some useful definitions. The cumulative cost wij represents the unitary cost of
producing at time period i to satisfy the demand of time period j:

wij = ci +

j−1∑
l=i

hl +

i−1∑
l=j

pl.

Notice that the above is well-defined, since for a fixed period i, i 6= j, only one of the two summations is
not empty. Next, we denote by ωj the minimum cumulative cost for period j, the smallest among values
{wij , i ∈ H}, and we denote by opt(X) the optimal solution cost of any optimization problem X.

In the following, we discuss how to solve the optimization problems obtained by relaxing the non-
anticipativity constraints. We first focus on problem PI0, then we address problem PI1, and we finish
with problem PI. For each problem, we present a generic solution algorithm that can handle general
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uncertainty poltyopes and more efficient algorithms that are tailored for the budgeted uncertainty poly-
tope.

4.1 No setup

We first deal with the robust problem without setup costs PI0, which can be formulated as follows

(PI0) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ,
x(ξ), s(ξ), r(ξ) ≥ 0 ∀i ∈ H,∀ξ ∈ Ξ,
s1(ξ) = rn(ξ) = 0 ∀ξ ∈ Ξ.

We show that PI0 is equivalent to problem

max
ξ∈Ξ

∑
i∈H

ωidi(ξ),

where ωi is the minimum cumulative cost of period i as defined previously. Hence, the result shows that
the complexity of PI0 is related to the complexity of optimizing an affine function over Ξ.

Theorem 1 Let Ξ be any uncertainty set. Then,

opt(PI0) = max
ξ∈Ξ

∑
i∈H

ωidi(ξ)

Proof Because there is no capacity constraint, one readily verifies the following. For each time period
i, there exists a unique time period j for which all demand of i is produced, which corresponds to the
period that provides the minimum cumulative cost to serve the demand of time period i. Hence, given
any ξ ∈ Ξ, we have to pay the total cost ∑

i∈H
ωidi(ξ)

Then, the absence of setup costs implies that the time period yielding the minimum production cost does
not depend on ξ, proving the result. ut

Theorem 1 implies that PI0 is polynomially solvable in the input since linear programming is poly-
nomially solvable. We show in the next result that we can get faster algorithms for ΞΓ .

Corollary 1 Let Ξ = ΞΓ and define the subset Γ(ωT D̂) ⊆ H that contains the indices of the Γ largest
elements of the vector ωT D̂, and Γ′(ωT D̂) that denotes the (Γ+1)-largest element of that vector. The
following holds:

opt(PI0) =
∑
i∈H

ωid̄i +
∑

i∈Γ(ωT D̂)

(ωT D̂)i + (Γ − bΓ c)ωT D̂Γ′(ωT D̂).

Moreover, opt(PI0) can be computed in O(n2).
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M

M

Fig. 1: Reduction of the partition problem to PI1.

Proof We obtain immediately from Theorem 1 that

opt(PI0) = max
ξ∈ΞΓ

∑
i∈H

ωidi(ξ)

= max
ξ∈ΞΓ

∑
i∈H

ωid̄i +
∑
j∈H

ωiD̂ijξj


=
∑
i∈H

ωid̄i + max
ξ∈ΞΓ

∑
i,j∈H

ωiD̂ijξj

=
∑
i∈H

ωid̄i + max∑
i∈H

ξi≤Γ

−1≤ξi≤1

∑
i,j∈H

ωiD̂ijξj

=
∑
i∈H

ωid̄i +
∑

i∈Γ(ωT D̂)

(ωT D̂)i + (Γ − bΓ c)ωT D̂Γ′(ωT D̂)

Regarding the complexity, we must first compute all cumulative costs, which takes O(n2). Then,
we must compute the minimum cumulative cost for every period, which takes O(n2). Finally, we must
compute the product ωT D̂, which takes O(n2) and choose the Γ larger values of it, which takes O(Γ log n).
Hence, the complexity of this strategy is O(3n2 + Γ log n) = O(n2). ut

4.2 Non-adjustable setup

In this section, we address problem PI1, which can be formulated as

(PI1) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ,
xi(ξ) ≤Myi ∀i ∈ H,∀ξ ∈ Ξ,
x(ξ), s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ,

y ∈ {0, 1}n,
s1(ξ) = rn(ξ) = 0 ∀ξ ∈ Ξ.

As in the previous section, we first address PI1 for general polytopes and show that the problem
is NP-hard and can be reformulated as mixed-integer linear program. We present then a polynomial
approach that is applicable to Ξ assuming that D̂ is a diagonal matrix. We address first the complexity
of PI1, using a reduction from the partition problem.

Theorem 2 The problem PI1 is NP-hard.

8



Proof Let R = {1, . . . , r} and consider a set of positive integers {ai, i ∈ R}. The partition problem looks
for a subset S ⊂ R such that ∑

i∈S
ai =

∑
i∈R\S

ai. (17)

Finding out whether such a subset S exists is NP-complete, see for instance Garey and Johnson (2002).
We define the corresponding instance of PI1 by considering H = {1′, 1′′, . . . , r′, r′′}, setting the produc-
tion costs c to 0, the fixed costs g to K (to be defined later), the holding and backlogging costs between
i′ and i′′ to 1 for each i ∈ R, while those between periods i′′ and (i + 1)′ are set to a large number M
(to be defined later), for each i = 1, . . . , r − 1. Finally, d = 0, D̂ is the identity matrix, and Ξ ⊂ R2r

+ is
defined as the convex hull of the two vectors ξ′ = (a1, 0, a2, 0, . . . , ar, 0) and ξ′′ = (0, a1, 0, a2, . . . , 0, ar),
see Figure 1. One readily verifies that the above polytope Ξ can be obtained through 4r + 2 linear
inequalities: the first 4r inequalities characterize the line joining ξ′ and ξ′′ while the last two inequalities
bound the line to obtain the required segment. It is well-known (e.g. Ayoub and Poss (2016)) that we
can restrict ourselves to the two extreme points of Ξ when analyzing the optimal solution of the problem
and its cost.

Let A =
∑r
i=1 ai. Choosing M large enough and K = maxi=1...,r ai + 1, we prove below that there

exists a subset S of R that satisfies (17) if and only if the optimal solution cost of the above instance
of PI1 is equal to rK + A

2 . Let us first show that, in any optimal solution to PI1, either yi′ = 1 and
yi′′ = 0, or yi′ = 0 and yi′′ = 1, for each i ∈ R. Specifically, setting yi′ = 1 and yi′′ = 0 yields a cost of
ai for scenario ξ′ and 0 for scenario ξ′′, in addition to the fixed cost K. Similarly, setting yi′′ = 1 and
yi′ = 0 yields a cost of 0 for scenario ξ′ and ai for scenario ξ′′, in addition to the fixed cost K. Hence,
both approaches cost K + ai in the worst-case. This is always less costly than setting yi′ = yi′′ = 0,
which costs at least Mai in both scenarios, or setting yi′ = yi′′ = 1, which costs 2K in both scenarios.

Let S ⊆ R denote the elements for which yi′ = 1, so that R \ S contains the elements of R for which
yi′′ = 1. We see that the cost of the solution described by S is equal to

rK + max

∑
i∈S

ai,
∑
i∈R\S

ai

 .

Hence, the cost of S in minimized if and only if (17) holds, proving the result ut

The above result is in line with classical results on robust combinatorial optimization problems (e.g.
Kouvelis and Yu (2013)) which show that the robust counterparts of polynomially solvable optimization
problems turn NP-hard for arbitrary uncertainty sets. This being said, it is possible to solve LS1 for
general uncertainty polytopes through a mixed-integer linear programming reformulation The first step
to obtain the reformulations relies on reformulating LS1 as static robust optimization problem, hence,
removing the adjustable variables from the problem.

Lemma 1 Problem PI1 can be reformulated as

min

max
ξ∈Ξ

∑
i,j∈H

wijvijdj(ξ) +
∑
i∈H

giyi


s.t.

∑
i∈H

vij = 1 ∀j ∈ H, (18)

vij ≤ yi ∀i, j ∈ H, (19)
y ∈ {0, 1}n, v ≥ 0. (20)

Proof Let us define the binary variable vij(ξ) that is equal to 1 iff the demand of period j is produced at
period i. Using a reasoning similar to the one used in the proof of Theorem 1, we can reformulate PI1
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as

min
y∈{0,1}n

max
ξ∈Ξ

min
v(ξ)

∑
i,j∈H

wijvij(ξ)dj(ξ) +
∑
i∈H

giyi

s.t.
∑
i∈H

vij(ξ) = 1 ∀j ∈ H,∀ξ ∈ Ξ, (21)

vij(ξ) ≤ yi ∀i, j ∈ H,∀ξ ∈ Ξ, (22)
vij(ξ) ∈ {0, 1} ∀i, j ∈ H,∀ξ ∈ Ξ.

where the first term of the objective function represents the cost of attending the demand of all periods
while the second term represents the fixed costs. Notice then that, for any y ∈ {0, 1}n, we always have
that vij(ξ) = 1 iff

wij = min
i′∈H
{wi′j : yi′ = 1},

which does not depend on ξ. Hence, vij(ξ) = vij(ξ
′) for each pair ξ, ξ′ ∈ Ξ and we can remove the

dependency on ξ from vij(ξ). Moreover, we can remove the binary restrictions on v because constraints
(21) and (22) are formed by a totally unimodular matrix. Applying von Neumann’s minmax theorem,
we can exchange the maximization over ξ and the minimization over v obtaining the desired result. ut

Let θ ∈ Rm denote the dual variables associated to the constraints that characterize Ξ. Dualizing
the inner maximization problem obtained in Lemma 1, we obtain immediately a MILP reformulation for
PI1.
Corollary 2 Let Ξ be the uncertainty polytope defined in (12). The problem PI1 can be solved by the
following mixed integer linear program

opt(PI1) = min

m∑
l=1

qlθl +
∑
i,j∈H

vijwijdj +
∑
i∈H

giyi

s.t

m∑
l=1

Wlkθl ≥
∑
i,j∈H

vijwijD̂jk ∀k ∈ H,

∑
i∈H

vij = 1 ∀j ∈ H,

vij ≤ yi ∀i, j ∈ H,
y ∈ {0, 1}n, v ≥ 0.

We devote the rest of the section to the study of uncertainty set ΞΓ , further assuming that D̂ is
a diagonal matrix. We show that, under these assumptions, problem PI1 can be solved in polynomial
time. Our approach requires the following extension of a classical result from Bertsimas and Sim (2003)
that shows how some robust combinatorial optimization problems can be solved by solving a polynomial
number of times the deterministic counterpart. The result considers generic optimization problems defined
by the optimization variables z ∈ {0, 1}|L| and the uncertainty polytope ΞΓ ⊂ R|K|, where K and L are
arbitrary index sets. Its proof is similar to the proof of Theorem 2 from Bougeret et al (2016) and is
therefore deferred to Appendix C.

Lemma 2 Consider the index sets K and L, and consider the subset K(l) ⊆ K for each l ∈ L. Let
Z ⊆ {0, 1}|L| be the feasibility set and α ∈ R|L|+ and β ∈ R|K|×|L|+ be the cost vectors that characterize
the robust optimization problem

min
z∈Z

max
ξ∈ΞΓ

∑
l∈L

αl +
∑

k∈K(l)

βklξk

 zl. (23)

Define the subset L(k) = {l ∈ L : k ∈ K(l)} for each k ∈ K. If any element z ∈ Z satisfies the constraints∑
l∈L(k)

zl = 1, k ∈ K,

10



then the optimal solution cost to problem (23) is given by

min
{(k′,l′):k′∈K,l′∈L(k)}∪{(0,0)}

Gk′l′

where

Gk′l′ = Γβk′l′ + min
z∈Z

∑
l∈L

αl +
∑

k∈K(l)

max(0, βkl − βk′l′)

 zl

for each {(k′, l′) : k′ ∈ K, l′ ∈ L(k)} and where β00 = 0.

To use Lemma 2, we should reformulate problem PI1 as a special case of problem (23). In this aim,
we use the shortest path formulation for the deterministic problem LS, presented in Pochet and Wolsey
(2013), and modify that formulation to handle the robust aspect as required. This is presented in the
following theorem.

Theorem 3 Let Ξ = ΞΓ and assume that D̂ is a diagonal matrix. Then, problem PI1 can be solved by
solving O(n2) shortest path problems in an acyclic digraph that contains n nodes.

Proof Let us first consider the case without backlog. Consider the digraph G = (V,A), where V =
{1, . . . , n + 1} and A = {(i, j)|i < j; i, j ∈ V }. When the demand is known with precision (d(ξ) = d),
it is known (see Section 7.4 from Pochet and Wolsey (2013)) that the optimization problem stated in
Lemma 1 can be reformulated as a shortest path problem between vertices 1 and n+ 1 in G where the

cost of taking arc (i, j) is equal to gi +
j∑
k=i

wikdk, which means that all demands i ≤ k ≤ j are attended

by producing at time period i ∈ H. Letting Z ⊂ {0, 1}|A| be the set of incidence vectors of all paths
from 1 to n+ 1 in G, the deterministic problem can thus be reformulated as

min
z∈Z

∑
(i,j)∈A

(
gi +

j∑
k=i

wikdk

)
zij . (24)

Since any demand k ∈ H is attended by producing at a unique period i ∈ H, we see that any z ∈ Z
must satisfy the constraints ∑

(i,j)∈A
i≤k≤j

zij = 1, ∀k ∈ H.

Thanks to Lemma 1, one readily verifies that the robust counterpart of the problem can be similarly
reformulated as the min max robust counterpart of problem (24), namely

min
z∈Z

max
ξ∈Ξ

∑
(i,j)∈A

(
gi +

j∑
k=i

wikdk(ξ)

)
zij = min

z∈Z
max
ξ∈Ξ

∑
(i,j)∈A

(
gi +

j∑
k=i

wikdk +

j∑
k=i

wikD̂kkξk

)
zij , (25)

where the equality follows from the diagonal assumption on D̂. The result follows directly from applying
Lemma 2 to (25).

To extend this reasoning to PI1 with backlog, we replace the simple digraph G defined above by the
multi digraph H = (V,A′) where A′ = {(i, `, j)|i < j; i, j ∈ V ; i ≤ ` ≤ j}. Then, the deterministic cost of

each arc (i, `, j) is given by g` +
j∑
k=i

w`kdk(ξ), which represents the fact that we fulfill the demands from

period i to j by producing at period `. The rest of the proof is similar, yielding the result. ut

4.3 Adjustable setup

In this section we present a linear program that computes the value of opt(PI) for general polytopes
Ξ. Similarly to Theorem 1, we show that the complexity of problem PI is related to the complexity of
optimizing a linear function over Ξ. This time however, the linear program to be solved contains O(n3)
constraints in addition to those describing Ξ. Let us first recall a well-known dynamic programming
algorithm to solve the deterministic problem LS, taken from Pochet and Wolsey (2013).
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Lemma 3 Problem LS can be solved by the following recursive function

opt(LS) = G(n)

where

G(j) = min
{i,k|i<k≤j}

(
G(i) + gk +

j∑
l=i+1

wkldl

)
, (26)

where G0 = 0.

To compute PI, it will be useful to reformulate the above dynamic program as the linear program
provided in the next lemma.

Lemma 4 The optimal solution cost of LS is equal to the optimal solution cost of the following linear
program, with optimization variables ui for each i ∈ H

max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl ∀i < k ≤ j, i ∈ H ∪ {0}, j ∈ H.

u0 = 0

Proof We introduce optimization variable ui to represent the value of G(i). The counterpart of equation
(26) for u is

uj = min
{i,k|i≤k≤j}

(
ui + gk +

j∑
l=i

wkldl

)
. (27)

Then, we relax the equality in (27) to

uj ≤ min
{i,k|i≤k≤j}

(
ui + gk +

j∑
l=i

wkldl

)
, (28)

and ensure that the objective function of the linear program maximizes the value of uj . Constraint (28)
can be linearized to

uj ≤ ui + gk +

j∑
l=i

wkldl ∀i ≤ k ≤ j, i ∈ H. (29)

Combining linear constraints (29) with the objective function that maximizes un and adding the initial
condition u0 yields the result. ut

Using the above results, we propose a linear programming reformulation for PI.

Theorem 4 For any uncertainty set Ξ, problem PI can be solved by the following linear program in
optimization vectors u and ξ

PI = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H,

u0 = 0,

ξ ∈ Ξ.

Proof We define PI(ξ), as the problem PI restricted to a fixed element ξ ∈ Ξ. One readily sees that

opt(PI) = max
ξ∈Ξ

opt(PI(ξ))

12



and moreover, PI(ξ) is a deterministic lot-sizing problem. Hence, we can apply Lemma 4 to solve PI(ξ)
as the linear program

opt(PI(ξ)) = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H, (30)

u0 = 0.

Now, as opt(PI) = max
ξ∈Ξ

opt(PI(ξ)) we have that

opt(PI) = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H,

ξ ∈ Ξ,
u0 = 0.

Recalling that d(ξ) is an affine function of ξ ends the proof. ut

5 Numerical experiments

In this section, we present the experimental results obtained with the relaxation presented in the last
sections for problems P1 and P0. We use the budgeted polytope ΞΓ as uncertainty set due to its impor-
tance in the literature and the identity as the deviation matrix, so that the demand can be expressed as
di(ξ) = d̄i + d̂iξi.

We compare the quality of our lower bound with the one provided by dual affine decision rules from
Kuhn et al (2011), recalled in Section 3.2. We also compare these lower bounds with the upper bound
provided by the affine decisions rules (called primal affine decision rules in Kuhn et al (2011)), recalled
in 3.1. We do not carry out experiments for problem P because the primal and dual affine decision rules
methods cannot be applied to this problem so that we have no comparison possible for our method.

Concerning the probabilistic distribution used in dual affine decision rules, we use a uniform distri-
bution over the extremes points of the uncertainty polytope. The reasons for that are two-fold: first we
need a distribution that allows us to easily compute matrixM (the expectation matrix); second, we do
not have a dominating element among the extreme points of the considered polytope, contrasting with
the problem studied in Kuhn et al (2011).

The tests were carried out on an Intel(R) Core(TM) i7 CPU M60, 2.6Hz 4GB Ram machine and all
formulations and algorithms were coded in C++, compiled with a GNU G++ 4.5 compiler and IBM
CPLEX 12.3. In the next subsection, we explain how the instances are built and which experiments are
carried out.

5.1 Instances

We start with the description of the instances. We consider two sets of instances: DYN and DOWN. The
instances in the set DYN represent lot-sizing problems in which the costs associated are seasonal. The
instances of that set are inspired by Ben-Tal et al (2004) and they fulfill a criteria known as Wagner-
Within, which has been introduced in Pochet and Wolsey (1994). Roughly speaking, this criteria implies
that it is always cheaper to produce the client demands of each period at the period itself. More precisely,
we have for each period i that ci = 20 + 5 sin( iπ12 ), hi = 5 + 2 sin( iπ12 ), pi = 7 + 2 sin( iπ12 ), and gi =

30 + 10 sin( iπ12 ).
To contrast with that set of instances, we use a second set of instances that do not fulfill the Wagner-

Within criteria. In the set of instances named DOWN, for each each period i is cheaper to produce the
client demand at period 3b i3c. More precisely, we have that ci = 10 + 5(i mod 3), hi = 3, pi = 4, and
gi = 50.
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We consider the deviations fixed as 20% of the nominal demand, and the nominal deviations are given
by the formula 100 + 50 sin( iπ12 ) for each period i. We consider horizons of planning that have 20, 30, 40,
50, 60, 70, 80, 90 and 100 periods. We tested two different values of the parameter Γ for each number
of periods in the horizon of planning, each of them inspired by the probabilistic bounds computed in
Bertsimas and Sim (2004), see also Poss (2013). Table 1 presents the values used for the experiments.

H Γ 0.01 Γ 0.1

10 5 8
20 7 11
30 8 14
40 9 16
50 10 17
60 11 19
70 12 20
80 12 22
90 13 23
100 14 24

Table 1: Values of parameter Γ inspired by the probabilistic bounds from Bertsimas and Sim (2004).

5.2 Lot-Sizing problem without setup costs

We report below a comparison of the two lower bounds and as well as their solution times. Let AFFINE
stand for the affine decision rules presented in the Section 3.1, PI for the perfect information proposed
and DUAL for the dual affine decision rules presented in Section 3.2. We compare the optimality gaps
of PI and DUAL using the solution of the approach AFFINE as upper bound. Specifically, we define
the approximative optimality gap for PI for the instance I as

opt(AFFINE(I))− opt(PI(I))

opt(AFFINE(I))
.

We define similarly the approximative approximation gap for the problem DUAL concerning the instance
I as

opt(AFFINE(I))− opt(DUAL(I))

opt(AFFINE(I))
.

In the following, we report the approximative optimality gap and the solution times, computed for each
number of periods and each set of instances.
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Fig. 2: The optimality gaps for PI0 for the instances in DOWN.
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Fig. 3: Elapsed time of PI0 for the instances in DOWN.

The approximation obtained by PI is nearly constant at 8% while the one of DUAL is slightly
decreasing with the number of periods, see Figure 2. In any case, approach PI still provides a reliable
approximation with a computation time much smaller than the one required by DUAL as presented in
Figure 3

5.2.2 Instances DYN
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Fig. 4: The optimality gaps for PI0 for the instances in DYN.

The bound provided by PI can prove the optimality of the affine decisions rules while the dual affine
decision rules decrease to reach a gap of 5%, see in Figure 4. It seems that the Wagner-Within criteria,
where it is also always cheaper to produce the demand of some period i at the period itself, strongly
reduces the impact of the non-anticipativity constraints. As for the computation time, our approach is
much faster than the other two, as reported in Figure 5. One can also notice that the dual affine decision
rules are more time consuming for the instance set DYN than they are for the instance set DOWN.

5.3 Lot-Sizing problem with setup costs

As before, AFFINE stands for the affine decision rules presented in the Section 3.1, PI for the perfect
information proposed in this paper and DUAL for the dual affine decision rules presented in Section 3.2.
We compare the optimality gaps of PI and DUAL using the solution cost of AFFINE as upper bound.

In the following, we report the approximative optimality gap and the solution times, computed for
each number of periods and each set of instances. Two remarks must be done at this point. First, we solve
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Fig. 5: Elapsed time of PI0 for the instances in DYN.

the problem PI with the MILP proposed in Corollary 2 instead of the polynomial algorithm described in
Theorem 3. We do that because unreported results show the MILP to be much faster than the dynamic
programming algorithm proposed in Theorem 3 for our instances. Specifically, the dynamic programming
algorithm roughly has the same running time as the dual affine decision rules, while the MILP is much
faster, as reported below. Second, we impose a time limit of 20 minutes for all problems. The affine
decision rules formulations are only able to solve problems with 50 periods or less in that amount of
time, so that we only report the results for the instances having up to 50 periods.

5.3.1 Instances DOWN
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Fig. 6: The optimality gaps for PI0 for the instances in DOWN.

The approximation obtained by PI is nearly constant at 11% while the one of DUAL is decreasing
with the number of periods, see Figure 6. Figure 7 then shows that PI can be solved much faster than
DUAL.

5.3.2 Instances DYN

Although we are not able to prove the optimality of the affine decision rules, the lower bound provided
by PI is really close to the solution cost provided by AFFINE (roughly 1%). And again, concerning
the elapsed time, the proposed method is 2 or 3 magnitude orders faster than the dual affine decision
rules, see Figure 9.
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Fig. 7: Elapsed time of PI0 for the instances in DOWN.
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Fig. 8: The optimality gaps for PI0 for the instances in DYN.
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Fig. 9: Elapsed time of PI0 for the instances in DYN.

6 Concluding remarks

We have adapted in this paper the perfect information relaxation, well-known in the stochastic pro-
gramming literature, to the robust lot-sizing problem, yielding a lower bound for the robust problem.
We could prove that computing the bound can be done in polynomial time for several variants of the
problem, using dedicated combinatorial algorithms or linear programs. Our numerical results, realized
on instances inspired by the literature, suggest that the new lower bound can be tight and can be
solved much faster than the bounds based on decision rules. In addition, our approach can handle binary
adjustable variables, which is not the case of primal and dual affine decision rules.

17



The tractability of our lower bound is highly problem-dependent. Hence, it would be interesting to
investigate its tractability for other class of multi-stage robust optimization problems and other uncer-
tainty sets. Concerning the extensions of the problems under study, we think it may be interesting to
consider problems with capacities on the production and the storage. An alternative extension would
consider problems with multiple items. Concerning the uncertainty set, it could be interesting to look
for dedicated algorithms for ellipsoidal uncertainty sets, which have recently been the topic of several
papers in the combinatorial robust optimization literature (e.g. Baumann et al (2014)).

Another interesting aspect of the perfect information relaxation is that it turns multi-stage problems
into two-stages problems, for which several papers have recently proposed exact solution algorithms
based on variants of the Benders decomposition (e.g. Ayoub and Poss (2016); Billionnet et al (2014);
Zeng and Zhao (2013)). Hence, one could use these algorithms to solve the relaxation for much more
general problems than the variants of the lot-sizing considered herein, and assess the quality of the
obtained lower bound.

References

Agra A, Christiansen M, Figueiredo RMV, Hvattum LM, Poss M, Requejo C (2013) The robust vehicle
routing problem with time windows. Computers & OR 40(3):856–866, DOI 10.1016/j.cor.2012.10.002,
URL http://dx.doi.org/10.1016/j.cor.2012.10.002

Agra A, Santos MC, Nace D, Poss M (2016) A dynamic programming approach for a class of robust
optimization problems. SIAM Journal on Optimization 26(3):1799–1823

Avriel M, Williams A (1970) The value of information and stochastic programming. Operations Research
18(5):947–954

Ayoub J, Poss M (2016) Decomposition for adjustable robust linear optimization subject to uncertainty
polytope. Computational Management Science 13(2):219–239

Baumann F, Buchheim C, Ilyina A (2014) Lagrangean decomposition for mean-variance combinatorial
optimization. In: Combinatorial Optimization - Third International Symposium, ISCO 2014, Lisbon,
Portugal, March 5-7, 2014, Revised Selected Papers, pp 62–74

Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Mathematics of Operations Research
23(4):769–805

Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with
uncertain data. Mathematical Programming 88(3):411–424, DOI 10.1007/PL00011380, URL http:
//dx.doi.org/10.1007/PL00011380

Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain
linear programs. Math Program 99(2):351–376

Bertsimas D, Dunning I (2014) Multistage robust mixed integer optimization with adaptive partitions
Bertsimas D, Georghiou A (2015) Design of near optimal decision rules in multistage adaptive mixed-

integer optimization. Operations Research 63(3):610–627, DOI 10.1287/opre.2015.1365, URL http:
//dx.doi.org/10.1287/opre.2015.1365

Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Mathematical
Programming 98(1):49–71, DOI 10.1007/s10107-003-0396-4, URL http://dx.doi.org/10.1007/
s10107-003-0396-4

Bertsimas D, Sim M (2004) The price of robustness. Operations Research 52(1):35–53
Bertsimas D, Thiele A (2006) A robust optimization approach to inventory theory. Oper Res 54(1):150–

168
Bienstock D, Özbay N (2008) Computing robust basestock levels. Discrete Optimization 5(2):389 – 414,

in Memory of George B. Dantzig
Billionnet A, Costa M, Poirion P (2014) 2-stage robust MILP with continuous recourse variables. Discrete

Applied Mathematics 170:21–32
Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer Science & Business

Media
Bougeret M, Pessoa A, Poss M (2016) Robust scheduling with budgeted uncertainty Available online at

https://hal.archives-ouvertes.fr/hal-01345283/document
C C Huang WTZ I Vertinsky (1977) Sharp bounds on the value of perfect information. Operations

Research 25(1):128–139

18

http://dx.doi.org/10.1016/j.cor.2012.10.002
http://dx.doi.org/10.1007/PL00011380
http://dx.doi.org/10.1007/PL00011380
http://dx.doi.org/10.1287/opre.2015.1365
http://dx.doi.org/10.1287/opre.2015.1365
http://dx.doi.org/10.1007/s10107-003-0396-4
http://dx.doi.org/10.1007/s10107-003-0396-4
https://hal.archives-ouvertes.fr/hal-01345283/document


Chen X, Zhang Y (2009) Uncertain linear programs: Extended affinely adjustable robust counterparts.
Operations Research 57(6):1469–1482

Garey MR, Johnson DS (2002) Computers and intractability, vol 29. wh freeman New York
Goh J, Sim M (2010) Distributionally robust optimization and its tractable approximations. Oper Res

58(4-Part-1):902–917
Gorissen BL, den Hertog D (2013) Robust counterparts of inequalities containing sums of maxima of

linear functions. European Journal of Operational Research 227(1):30–43
Kouvelis P, Yu G (2013) Robust discrete optimization and its applications, vol 14. Springer Science &

Business Media
Kuhn D, Wiesemann W, Georghiou A (2011) Primal and dual linear decision rules in stochastic and

robust optimization. Mathematical Programming 130:177–209
Oostenbrink JB, Al MJ, Oppe M, Rutten-van Mölken MP (2008) Expected value of perfect information:

an empirical example of reducing decision uncertainty by conducting additional research. Value in
Health 11(7):1070–1080

Pochet Y, Wolsey L (2013) Production Planning by Mixed Integer Programming. Springer Science &
Business Media

Pochet Y, Wolsey LA (1994) Polyhedra for lot-sizing with wagner-whitin costs. Math Program 67:297–
323, DOI 10.1007/BF01582225, URL http://dx.doi.org/10.1007/BF01582225

Poss M (2013) Robust combinatorial optimization with variable budgeted uncertainty. 4OR 11(1):75–92,
DOI 10.1007/s10288-012-0217-9, URL http://dx.doi.org/10.1007/s10288-012-0217-9

Postek K, den Hertog D (2016) Multistage adjustable robust mixed-integer optimization via iterative
splitting of the uncertainty set. INFORMS Journal on Computing 28(3):553–574, DOI 10.1287/ijoc.
2016.0696, URL http://dx.doi.org/10.1287/ijoc.2016.0696

Zeng B, Zhao L (2013) Solving two-stage robust optimization problems by a constraint-and-column
generation method. Operations Research Letters 41(5):457–461

19

http://dx.doi.org/10.1007/BF01582225
http://dx.doi.org/10.1007/s10288-012-0217-9
http://dx.doi.org/10.1287/ijoc.2016.0696


A Reformulation of affine decision rules

Plugging (14)–(16) into P and enforcing that y does not depend on ξ, we obtain the formulation below.

min
κ

κ

s.t κ ≥
∑
i∈H

giyi + ci(x
0
i +

i∑
j=1

xji ξj) + hi(s
0
i +

i∑
j=1

sji ξj) + pi(r
0
i +

i∑
j=1

rji ξj)

 ∀ξ ∈ Ξ

s0i +

i∑
j=1

sji ξj ≥
i∑

k=1

x0k − d̄k +

lxk∑
j=1

xjkξj −
n∑
l=1

D̂klξl

 ∀i ∈ H, ∀ξ ∈ Ξ

r0i +
i∑

j=1

rji ξj ≥
i∑

k=1

d̄k − x0k − lxk∑
j=1

xjkξj +
n∑
l=1

D̂klξl

 ∀i ∈ H, ∀ξ ∈ Ξ

x0i +
i∑

j=1

xji ξj ≤ yiM ∀i ∈ H, ∀ξ ∈ Ξ

x0i +

i∑
j=1

xji ξj ≥ 0 ∀i ∈ H, ∀ξ ∈ Ξ

s0i +

i∑
j=1

sji ξj ≥ 0 ∀i ∈ H,∀ξ ∈ Ξ

r0i +

i∑
j=1

rji ξj ≥ 0 ∀i ∈ H, ∀ξ ∈ Ξ

yi ∈ {0, 1} ∀i ∈ H,

Although the number of variables in the problem described above is polynomial, we still have to deal with an infinite
number of constraints. As said already, one easily sees that we can restrict ourselves to the extreme points of Ξ; yet, this
typically leads to an exponential number of constraints. An alternative and more compact approach applies classical tools
from robust optimization to reformulate each robust constraint as a polynomial number of deterministic constraints plus a
polynomial number of additional real variables, see Ben-Tal and Nemirovski (2000). We skip the details of that approach
and provide below the resulting MILP.
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min
κ

κ

s.t κ−
∑
i∈H

(
giyi + cix

0
i + his

0
i + pir

0
i

)
≥

m∑
i=1

qiθi

θTWi ≥
n∑
j=i

(cjxj + hjsj + pjrj) ∀i, 0 ≤ i ≤ m

s0i −
i∑

k=1

(
x0k − d̄k

)
≥

m∑
j=1

qjα
i
j ∀i ∈ H

αTWj ≥ sji +

i∑
k=i

xk ∀i, j, 0 ≤ j ≤ i, i ∈ H

r0i −
i∑

k=1

(
d̄k − x0k

)
≥

m∑
j=1

qjβ
i
j ∀i ∈ H

βTWj ≥ rji −
i∑
k=i

xk ∀i, j, 0 ≤ j ≤ i, i ∈ H

x0i + yiM ≥
m∑
j=1

qjπ
i
j ∀i ∈ H

πTWj ≥ xji ∀i, j, 0 ≤ j ≤ i, i ∈ H

x0i ≥
m∑
j=1

qjθ
x,i
j ∀i ∈ H

(θx)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i, i ∈ H

s0i ≥
m∑
j=1

qjθ
s,i
j ∀i ∈ H

(θr)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i, i ∈ H

r0i ≥
m∑
j=1

qjθ
r,i
j ∀i ∈ H

(θs)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i, i ∈ H
yi ∈ {0, 1} ∀i ∈ H,

We can obtain similarly the formulation for the problem without setup by removing the variable y from the above
formulation.

B Reformulation of dual affine decision rules

In this appendix, we sketch how to obtain a MILP reformulation for the lower bound of the robust lot-sizing following
the method presented in Kuhn et al (2011). The method requires to introduce an artificial probability measure with our
uncertainty set Ξ. To keep the presentation simple, we will exemplify the framework from Kuhn et al (2011) with the
discrete probability measure P(ξ) defined over the set of extreme points of Ξ. Hence, P is any vector in R| ext(Ξ)|

+ that
satisfies ∑

ξ∈ext(Ξ)

P(ξ) = 1.

The first step of the approach of Kuhn et al (2011) relaxes the robust constraints to expectation constraints as follows.
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min
κ

κ

s.t E

κ−∑
i∈H

(giyi + cixi(ξ) + hisi(ξ) + piri(ξ) + π(ξ))

 ξ
 = 0

E

([
si(ξ)−

i∑
k=1

(xk(ξ)− di(ξ)) + αi(ξ)

]
ξ

)
= 0 ∀i ∈ H,

E

([
ri(ξ) +

i∑
k=1

(xk(ξ)− di(ξ)) + βi(ξ)

]
ξ

)
= 0 ∀i ∈ H,

E ([xi(ξ)− yiM + ψi(ξ)] ξ) = 0 ∀i ∈ H,
E ([xi(ξ) + θxi (ξ)] ξ) = 0 ∀i ∈ H,
E ([si(ξ) + θsi (ξ)] ξ) = 0 ∀i ∈ H,
E ([ri(ξ) + θri (ξ)] ξ) = 0 ∀i ∈ H,
yi ∈ {0, 1} ∀i ∈ H,

where ψ and θ are additional slack variables. One readily verifies that, for any probability distribution P(ξ), the above
problem provides a lower bound for the optimal solution of problem PI1.

Then, using advanced dualization techniques inspired by the dualization used in classical robust optimization, the
authors of Kuhn et al (2011) are able to reformulate the above lower bound as the following mixed-integer linear program,
where matrixM is defined asM = E(ξξT ), W is the matrix defined as W = (W − qeT1 )M, and e1 is the vector with all
entries equals to one. Specifically, the following mixed-integer linear program is obtained by applying reformulation (4.6)
from Kuhn et al (2011) to PI1.

min
κ

κ

s.t κ−
∑
i∈H

(
giyi + cix

0
i + his

0
i + pir

0
i

)
+ π0 = 0

− πj =
∑
i∈H

(
cix

j
i + his

j
i + pir

j
i

)
∀j ∈ H

s0i =

i∑
k=1

(x0k − d̄k) + α0
i ∀i ∈ H

sji =

i∑
k=1

xjk −
n∑
l=1

D̂jl + αji ∀i, j ∈ H

r0i =

i∑
k=1

(d̄k − x0k) + β0
i ∀i ∈ H

rji =
i∑

k=1

(−x0k) +
n∑
l=1

D̂jl + βji ∀i, j ∈ H

My − x0i + π0
i = 0 ∀i ∈ H

− xji + πji = 0 ∀i, j ∈ H

x0i + θx,0i = 0 ∀i ∈ H

sji + θs,ji = 0 ∀i ∈ H, ∀j ∈ H ∪ {0}

rji + θr,ji = 0 ∀i ∈ H, ∀j ∈ H ∪ {0}

WαT = 0

WβT = 0

WπT = 0

W(θx)T = 0

W(θs)T = 0

W(θr)T = 0

yi ∈ {0, 1} ∀i ∈ H.

We can obtain similarly the formulation for the problem without setup by removing the variable y from the above
formulation.
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C Proof of Lemma 2

Let us detail the inner maximization of (23) as∑
l∈L

αlzl + max
∑
k∈K

ξk
∑

l∈L(k)

βklzl

s.t.
∑
k∈K

ξk ≤ Γ,

ξk ≤ 1, k ∈ K,
ξk ≥ −1, k ∈ K. (31)

By definition, βkl ≥ 0 for each k ∈ K, l ∈ L(k), so that we can relax constraints (31) to ξ ≥ 0 without affecting the optimal
solution. Thanks to the strong duality in linear programming, the optimal solution cost of the above problem is equal to
the optimal solution cost of its dual, given by

min Γθ +
∑
k∈K

ϕk

s.t. θ + ϕk ≥
∑

l∈L(k)

βklzl, k ∈ K

θ, y ≥ 0.

Substituting ϕk by max(0,
∑
l∈L(k) βklzl − θ) for each k ∈ K, we can further reformulate (23) as

min
x∈Z,θ≥0

Γθ +
∑
l∈L

αlzl +
∑
k∈K

max

0,
∑

l∈L(k)

βklzl − θ

 . (32)

The crucial step of our proof (which differs from Theorem 3 from Bertsimas and Sim (2003)) is that, because the constraint∑
l∈L(k) xl = 1 holds for each k ∈ K, we can further reformulate (32) as

min
x∈Z,θ≥0

Γθ +
∑
l∈L

αlzl +
∑
k∈K

∑
l∈L(k)

zl max(0, βkl − θ).

The rest of the proof is identical to the proof of Theorem 3 from Bertsimas and Sim (2003).
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