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Abstract

Robust multi-stage optimization is hard computationally and only small problems can be solved
exactly. These problems are typically addressed heuristically through decision rules, which
provide upper bounds for the optimal solution costs of the problems. We investigate in this
paper lower bounds inspired by the perfect information model used in stochastic programming.
Specifically, we study the uncapacitated robust lot-sizing problem, showing that different versions
of the problem become tractable whenever the non-anticipativity constraints are relaxed. Hence,
we can solve the resulting problem efficiently, obtaining a lower bound for the optimal solution
cost of the original problem. We compare numerically the solution time and the quality of the
new lower bound with the dual affine decision rules that have been proposed by Kuhn et al.
(2011).

Keywords: multi-stage robust optimization, perfect information, lot-sizing problem

1. Introduction

Lot-sizing optimization problems appear in a wide range of applications where products
have to be made to attend demands along with a planning horizon. In these problems, the
future demands are usually not known with precision until the current period is reached. To
be relevant in practice, optimization models must model the uncertainty explicitly so that the
decisions are taken so as to optimize the benefit over the whole planning horizon. Different
models of uncertainty exist in the literature, each of which having its advantages and drawbacks.
In this paper, we focus on robust lot-sizing, therefore assuming that the demand uncertainty is
modeled by a convex set. Thus, the objective is to optimize the cost of the production plan in
the worst-case scenario. This model, used in [2, 15, 9, 14, 25, 6, 23], among others, is relevant
when historical data are not accurate enough to draw probabilistic distributions of the uncertain
demands.

Robust optimization is often known as being a natural approach to uncertainty since, for
instance, a robust linear program with polyhedral uncertainty sets can be reformulated as a
robust linear program whose dimension does not grow much with respect to the dimensions of
the deterministic problem [8]. While this is true for static problems, where decisions are taken
before revealing the uncertain parameters, the situations with adjustable problems is far more
complex. Adjustable robust optimization problems suppose that the uncertainty is revealed as
time goes by and one can adjust the values of some of the decision variables according to the
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current knowledge of the uncertain parameters. Hence, the adjustable optimization variables
become functions of the uncertain parameters. Robust lot-sizing problems can be modeled either
as static or adjustable robust optimization problems. In the static version, it is assumed that the
production plan is fixed before the planning horizon starts. In contrast, the adjustable version
supposes that the production and other decisions can be adjusted according to the values taken
by past demands, thus becoming functions of the past demands. In this paper, we consider the
adjustable situation.

Adjustable robust optimization is known for being NP-hard, even in the case of a linear
program with only two decision stages [6]. In spite of its theoretical difficulty, the problem can be
solved exactly by decomposition approaches whenever some assumptions hold [4, 16, 29]. These
approaches consider finite subsets of the uncertainty set and dynamically increase the number of
considered scenarios by solving separation problems. The numerical tractability of the resulting
algorithms highly depends on the complexity of the separation problem. For instance, the
separation problem for the robust vehicle routing problem can be solved in polynomial time
[1], while the one related to facility location or network design problems require solving MILP
with big-M coefficients [4, 16, 29]. These decomposition approaches do not extend to multi-
stage problems, because of the non-anticipativity constraints present in these problems. Stated
simply, non-anticipativity constraints model the fact that optimization variables can only depend
on past realizations of the uncertain parameters; they cannot adjust their decision to unknown
realizations.

Given the difficulty of adjustable multi-stage robust problems, many researchers have devel-
oped heuristic approaches that try to provide feasible solutions for these problems. The bottom
line of all these approaches is to restrict the set of feasible functions for the adjustable variables.
The seminal paper in this line of research is [6] which restricts adjustable variables to affine
functions of the uncertainties, which they call affine decision rules. Subsequent authors have
studied more complex decision rules that offer more flexibility than affine decision rules while
providing more or less tractable optimization problems. Among others, [20] propose to define
affine decision rules built from extended descriptions of the uncertainty set and [22] introduce
complex piece-wise linear decision rules defined through the lifting of the uncertainty set. More
complex decision rules have also been considered, such as [10] which proposes piece-wise deci-
sion rules modeled with the help of binary optimization variables, or [9, 28] which dynamically
partition the uncertainty set and selects constant policies for each element of the partition.

The heuristic solutions typically yield upper bounds for minimization problems. Since the
optimal solution of the underlying optimization problem is unknown, one needs lower bounds to
evaluate the quality of the aforementioned upper bounds. Up to our knowledge, the literature
is scarce when it comes to proposing lower bounds. Specifically, we are aware of only two
previous works. First, authors have considered the simple lower bound that consists of selecting
a finite subset of the uncertainty set and solving exactly the resulting finite linear program. This
approach is used by [9], among others, in the course of their partitioning algorithm. Second, [25]
have introduced dual affine decision rules, which provide lower bounds for multistage problems.
While that work targets more specifically multistage stochastic optimization, their approach is
also applicable to robust optimization.

The contributions of this paper follow that line of research by providing another way to
compute lower bounds for multistage robust optimization problems. Our approach relaxes the
non-anticipativity constraints of the problem, thus yielding a relaxation of the original problem.
This relaxation is well-known in the stochastic programming literature as the perfect informa-
tion relaxation. The first mention of the associated optimization problem in the stochastic
programming literature, called the expected value of the perfect information, can be traced back
to [3]. It has then been further studied in seveal papers e.g. [19] and has become a well-known
concept in stochastic programming [17]. However, up to our knowledge it has never been used
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in robust optimization. The interest of studying the perfect information relaxation in robust
optimization is two-fold. On the one hand, it helps the decision maker in assessing how much
gain could be obtained by reducing the uncertainty on the uncertain parameters (e.g. [26]). On
the other hand, it can be used as a lower bound for the optimal value of the true uncertain
problem. We argue that this second aspect is particularly relevant in robust optimization in
which few papers have been proposing lower bounds. As we show in the paper, the perfect
information relaxation of the robust lot-sizing problems can be solved efficiently either through
polynomial-time algorithms or MILP reformulations. Our experiments realized on lot-sizing in-
stances inspired by the literature seem to indicate that the perfect information relaxation can be
very tight. Throughout the paper, we pay a particular attention to the budget uncertainty set
introduced by [13] and widely used in the mixed-integer linear robust optimization literature.

The remaining sections of this paper are organized as follows. In Section 2, we formally
present the problems we tackle and the uncertainty model used. In Section 3, we present the
bounds known in the literature, as well as the problem obtained by relaxing the non-anticipativity
constraints. In section 4, which provides the main methodological contributions of our paper, we
present combinatorial algorithms and (integer or continuous) linear programming formulations
to solve the relaxations based on the perfect information. In Section 5, we present numerical
experiments to evaluate the quality of the bounds empirically. We conclude the paper in Section
6.

2. Problem description

2.1. Deterministic model
We describe below the problem studied in this paper. LetH = {1, . . . , n} denote the planning

horizon composed of n periods; ci, hi and pi denote the production, holding and backlogging
unitary cost at period i, respectively. The objective of the lot-sizing problem, denoted by LS, is
to provide a production plan (information about the amount produced, stored and backlogged in
each period i ∈ H) that fulfills the client demand di at each period i, either by producing at that
period or by producing in an earlier/later period, in which case we must pay a fee represented
by the holding/backlogging cost. Also, we have to pay a fixed cost gi in each period i where
production takes place. To keep notations simple, we consider herein problems with a single
item and a single producer; one can readily generalize our approach to problems with multiple
items and producers. The mathematical formulation of problem LS follows.

(LS) min κ

s.t κ ≥
∑
i∈H

(cixi + giyi + hisi + piri) (1)

si+1 = xi − di + si − ri−1 + ri ∀i ∈ H, (2)
xi ≤Myi ∀i ∈ H, (3)
y ∈ {0, 1}n, x, s, r ≥ 0.

Constraint (1) imposes that κ be not smaller than the cost of the production plan repre-
sented by x, which is formulated in the right-hand side of the constraint. Constraints (2) are
equilibrium constraints linking the production, stock and backlog variables, respectively xi, si
and ri. Constraints (3) state that if we produce in a period, then we must pay a fixed cost
(setup cost gi). The other constraints state that y (setup variables) is a binary vector while the
other variables are non-negative, M is a large predefined value which is larger than the sum of
all clients demands. Notice that the objective function could be substituted with the right-hand
side of constraint (1) in the above formulation. However, we prefer to keep the formulation as
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it is presented here because it can be translated more naturally to the robust context described
in the next subsection.

2.2. Robust model
We assumed so far that demands are known with precision when solving problem LS de-

scribed earlier. This is unrealistic in many applications where one has to face uncertainty around
the exact values of the demands. To model this issue, we consider an uncertainty polytope Ξ and
we suppose that the demand at time period i is defined by the affine function di(ξ) defined over
Ξ:

di(ξ) = d̄i +
∑
j∈H

D̂ijξj , (4)

where d̄i can be seen as the mean value of the clients demands for time period i among demands.
We also assume that the demand functions are non-negative, more precisely di(ξ) ≥ 0 for all
i ∈ H and ξ ∈ Ξ.

In the robust context, backlog and holding costs depend on the specific scenario ξ. Hence,
they are represented by functions si(ξ) and ri(ξ) for each time period i. The situation is more
complex with production and setup costs. One could suppose that these features are independent
of ξ, which would model the fact that all decisions must be taken at the beginning of the planning
horizon, see for instance [2, 15, 14]. In this paper, we consider a more subtle approach where
the productions and setups can be adjusted according to past demand realizations. Hence, these
decisions are modeled by functions xi(ξ) and yi(ξ) for each time period i. Notice that, for each
time period i, these functions must depend only on the demand revealed up to time period i.
This is modeled by the non-anticipativity constraints

xi(ξ) = xi(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′)

yi(ξ) = yi(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′).

where Proj[1...i](ξ) denotes the projection of ξ on its first i components. Said differently, the
non-anticipativity constraints model the fact that x and y do not depend on future knowledge
of the uncertainty. The mathematical formulation for the robust model follows.

(P) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ (5)

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ (6)
xi(ξ) ≤Myi(ξ) ∀i ∈ H,∀ξ ∈ Ξ (7)
xi(ξ) = xi(ξ

′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ
′) ∀i ∈ H, (8)

yi(ξ) = yi(ξ
′) ∀ξ, ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′) ∀i ∈ H, (9)

y(ξ) ∈ {0, 1}n, x(ξ), s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ.

Constraints (5)–(7) play the same role as constraints (1)–(3) for each element ξ ∈ Ξ. Con-
straints (8) and (9) are the non-anticipativity constraints mentioned previously. Notice that the
above problem contains an infinite number of constraints and variables.

In this paper, we study bounding procedures for problem P as well as for the following
two simplifications of problem P. The first one considers that the setup decisions must be
taken before knowing anything about the demand; that is, y becomes a vector of optimization
variables that are independent of ξ. The second one looks at the problem without setup costs,
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which can be modeled by setting all components of y and g to 1 and 0, respectively. We denote
these simplifications as P1 and P0, respectively. Each of the three models is relevant for specific
applications. For instance, P0 is close to the classical supply chain model addressed in most
papers from the robust lot-sizing literature (e.g. [14, 6, 23]). In contrast, models P1 and P are
relevant for applications that involve fixed costs for the production due, for instance, to machine
configurations.

In general, we assume that Ξ can be any non-empty polytope, described by the matrix W
with m rows and |H| = n columns

Ξ = {ξ |Wξ ≤ q} . (10)

In addition to general polytopes, we will also take a closer look at the complexity of the op-
timization problems when using the budgeted uncertainty polytope introduced in [13]. Given a
positive real Γ, the budgeted polytope is defined as

ΞΓ =

{
ξ |
∑
i∈H
|ξi| ≤ Γ, −1 ≤ ξi ≤ 1,∀i ∈ H

}
. (11)

3. Bounds

We present in Subsections 3.1 and 3.2 approaches from the literature that provide upper
and lower bounds for the optimal solution of the adjustable robust problems. Notice that
these approaches cannot be applied to robust multi-stage optimization problems that contain
adjustable integer variables, such as P. Hence, in the following two sections, we assume that y
does not depend on ξ, either because it is a nonadjustable vector of optimization variables (as
in P0) or because each of its components has been fixed to 1 (as in P1).

3.1. Affine decision rules
The classical upper bound for multi-stage robust optimization problems is based on the so-

called affine decision rules. The main idea of the approach is to impose that functions si, ri and
xi depend affinely on ξ. Formally, these restrictions are modeled with constraints

xi(ξ) = x0
i +

i∑
j=1

xji ξj , (12)

si(ξ) = s0
i +

n∑
j=1

sji ξj , (13)

ri(ξ) = r0
i +

n∑
j=1

rji ξj . (14)

where x0
i , s

0
i , r

0
i and xji , s

j
i , r

j
i for i, j ∈ H are optimization variables. The right-hand side of

(12) involves only the components of Proj[1...i](ξ) = Proj[1...i](ξ). Hence, the equation models
implicitly the non-anticipativity constraints introduced in the previous section. Substituting
xi(ξ), si(ξ), and ri(ξ) with the rhs of (5)–(7) for each i ∈ H, we obtain an upper bound for P0

and P1, see Appendix A. Then, one can apply classical tools from robust optimization to the
formulation from Appendix A to reformulate the upper bound as a compact linear program.
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3.2. Dual affine decision rules
Recently, the authors of [25] have proposed lower bounds for problems P0 and P1, which they

call dual affine decision rules. To be more precise, their approach is developed to provide lower
bounds for multi-stage stochastic linear programs. To apply the technique to robust multi-stage
programs, one needs to introduce artificial probability weights for the scenarios in Ξ. These
probability weights are then used to formulate a lower bounding problem where the robust
constraints are relaxed to expectation constraints. Then, a subtle reformulation allows them
to provide a compact linear mixed integer formulation for the lower bounding problem. The
reformulation is based on the use of convex duality and probability theory. One of the main
difficulties of the method relies in the computation of the expectation matrixM = E(ξT ξ). The
approach is sketched in Appendix B, we redirect the interested reader to [25] for full details.

3.3. Perfect information relaxation
The major impediment to the efficient solutions of problems P, P0 and P1 lies in the presence

of the non-anticipativity constraints. Expressing non-anticipativity constraints is not easy in
general and strongly depends on the particular structure of the considered set Ξ. In what follows,
we propose a lower bounding problem for P that relaxes the non-anticipativity constraints from
P, which we call the problem with perfect information. Unlike the affine decision rules and the
dual version presented in the previous sections, the perfect information relaxation can be applied
to P regardless to the dependency of y on ξ. The associated optimization problems are denoted
by PI, PI1, and PI0, for P, P1 and P0 respectively.

(PI) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ

xi(ξ) ≤ yi(ξ)M ∀i ∈ H,∀ξ ∈ Ξ

y(ξ) ∈ {0, 1}n, x(ξ), s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ.

Hence, a formulation for problem PI1 can be obtained from the above formulation by re-
moving the dependency of ξ from y, while a formulation for PI0 is obtained by removing the
variables y and constraints associated with it. This approach is well-known in stochastic opti-
mization to examine the quality of proposed solutions. In particular, it is used to compute the
so-called expected value of perfect information which defines the maximum price that one would
be ready to pay to obtain perfect information about the actual scenario, see [17].

We discuss in the next section how to solve problems PI0, PI1 and PI.

4. Solving the problem with perfect information

Let us first introduce some useful definitions. The cumulative cost wij represents the unitary
cost of producing at time period i to satisfy the demand of time period j:

wij = ci +

j−1∑
l=i

hl +
i−1∑
l=j

pl.

Notice that the above is well-defined, since for a fixed period i, i 6= j, only one of the two
summations is not empty. For the sake of simplicity, we denote by ωj the minimum cumulative
cost for period j, the smallest among values {wij , i ∈ H}. Finally, we denote by opt(X) the
optimal solution cost of any optimization problem X.
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In the following, we discuss how to solve the optimization problems obtained by relaxing the
non-anticipativity constraints. We first focus on problem PI0, then we address problem PI1,
and we finish with problem PI. For each problem, we present a generic solution algorithm that
can handle general uncertainty poltyopes and more efficient algorithms that are tailored for the
budgeted uncertainty polytope.

4.1. No setup
We first deal with the robust problem without setup costs PI0, which can be formulated as

follows

(PI0) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ

x(ξ), s(ξ), r(ξ) ≥ 0 ∀i ∈ H,∀ξ ∈ Ξ.

We show that PI0 is equivalent to problem

max
ξ∈Ξ

∑
i∈H

ωidi(ξ),

where ωi is the minimum cumulative cost of period i as defined previously. Hence, the result
shows that the complexity of PI0 is related to the complexity of optimizing an affine function
over Ξ.

Theorem 1. Let Ξ be any uncertainty set. Then,

opt(PI0) = max
ξ∈Ξ

∑
i∈H

ωidi(ξ)

Proof. Because there is no capacity constraint, one readily verifies the following. For each time
period i, there exists a unique time period j for which all demand of i is produced, which
corresponds to the period that provides the minimum cumulative cost to serve the demand of
time period i. Hence, given any ξ ∈ Ξ, we have to pay the total cost∑

i∈H
ωidi(ξ)

Then, the absence of setup costs implies that the time period yielding the minimum production
cost does not depend on ξ, proving the result.

Theorem 1 implies that PI0 is polynomially solvable in the input since linear programming
is polynomially solvable. We show in the next result that we can get faster algorithms for ΞΓ

when Γ is integer.

Corollary 1. Let Ξ = ΞΓ and define the subset Γ(ωT D̂) ⊆ H that contains the indices of the Γ
largest elements of the vector (

∑
i∈H ωiD̂ij , j ∈ H), and Γ′(ωT D̂) that denotes the (Γ+1)-largest

element of that vector. The following holds:

opt(PI0) =
∑
i∈H

ωid̄i +
∑

i∈Γ(ωT D̂)

ωT D̂i + (Γ− bΓc)ωT D̂Γ′(ωT D̂).

Moreover, opt(PI0) can be computed in O(n2).
7



Proof. We obtain immediately from Theorem 1 that

opt(PI0) = max
ξ∈ΞΓ

∑
i∈H

ωidi(ξ)

= max
ξ∈ΞΓ

∑
i∈H

ωid̄i +
∑
j∈H

ωiD̂ijξj


=
∑
i∈H

ωid̄i + max
ξ∈ΞΓ

∑
i,j∈H

ωiD̂ijξj

=
∑
i∈H

ωid̄i + max∑
i∈H

ξi≤Γ

−1≤ξi≤1

∑
i,j∈H

ωiD̂ijξj

=
∑
i∈H

ωid̄i +
∑

i∈Γ(ωT D̂)

ωT D̂i + (Γ− bΓc)ωT D̂Γ′(ωT D̂)

Regarding the complexity, notice that we must calculate all cumulative costs, which takes
O(n2). Then, we must calculate the minimum cumulative cost for every period, which takes
O(n2). Finally, we must compute the vector (

∑
i∈H ωiD̂ij , j ∈ H), which takes O(n2) and

chooses the Γ larger values of it, which takes O(Γ log n). Hence, the complexity of this strategy
is O(3n2 + Γ log n) = O(n2).

4.2. Non-adjustable setup
In this section, we address problem PI1, which can be formulated as

(PI1) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ

xi(ξ) ≤ yiM ∀i ∈ H,∀ξ ∈ Ξ

x(ξ), s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ

y ∈ {0, 1}n.

As in the previous section, we first address PI1 for general polytopes and show that the
problem is NP-hard and can be reformulated as mixed-integer linear program. We present then
a polynomial approach that is applicable to Ξ assuming that D̂ is a diagonal matrix. We address
first the complexity of PI1, using a reduction from the partition problem.

Theorem 2. The problem PI1 is NP-hard.

Proof. Let R = {1, . . . , r} and consider a set of positive integers {ai, i ∈ R}. The partition
problem looks for subset S ⊂ R such that∑

i∈S
ai =

∑
i∈R\S

ai. (15)

Finding out whether such a subset S exists is NP-complete, see for instance [21]. We define
the corresponding instance of PI1 by considering H = {1′, 1′′, . . . , r′, r′′}, setting the production
costs c to 0, the fixed costs g toK (to be defined later), the holding and backlogging costs between
i′ and i′′ to 1 for each i ∈ R, while those between periods i′′ and (i+ 1)′ are set to a very large
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· · ·

(a1, 0) (0, a1) (a2, 0) (0, a2) (ar, 0) (0, ar)

1

1

1

1

1

1

1′ 1′′ 2′ 2′′ r′ r′′

0 0 0 0 0 0
M

M

Figure 1: Reduction of the partition problem to PI1.

number M (to be defined later), for each i = 1, . . . , r − 1. Finally, d = 0, D̂ is the identity
matrix, and Ξ ⊂ R2r

+ is defined as the convex hull of the two vectors ξ′ = (a1, 0, a2, 0, . . . , ar, 0)
and ξ′′ = (0, a1, 0, a2, . . . , 0, ar), see Figure 1. One readily verifies that the above polytope Ξ
can be obtained through 4r + 2 linear inequalities: the first 4r inequalities characterize the line
joining ξ′ and ξ′′ while the last two inequalities bound the line to obtain the required segment.
It is well-known (e.g. [4]) that we can restrict ourselves to the two extreme points of Ξ when
analyzing the optimal solution of the problem and its cost.

Let A =
∑r

i=1 ai. Choosing M large enough and K = maxi=1...,r ai + 1, we prove below that
there exists a subset S of R that satisfies (15) if and only if the optimal solution cost of the
above instance of PI1 is equal to rK+ A

2 . Let us first show that, in any optimal solution to PI1,
either yi′ = 1 and yi′′ = 0, or yi′ = 0 and yi′′ = 1, for each i ∈ R. Specifically, setting yi′ = 1
and yi′′ = 0 yields a cost of ai for scenario ξ′ and 0 for scenario ξ′′, in addition to the fixed cost
K. Similarly, setting yi′′ = 1 and yi′ = 0 yields a cost of 0 for scenario ξ′ and ai for scenario
ξ′′, in addition to the fixed cost K. Hence, both approaches cost K + ai in the worst-case. This
is always less costly than setting yi′ = yi′′ = 0, which costs at least Mai in both scenarios, or
setting yi′ = yi′′ = 1, which costs 2K in both scenarios.

Let S ⊆ R denote the elements for which yi′ = 1, so that R \ S contains the elements of R
for which yi′′ = 1. We see that the cost of the solution described by S is equal to

rK + max

∑
i∈S

ai,
∑
i∈R\S

ai

 .

Hence, the cost of S in minimized if and only if (15) holds, proving the result

The above result is in line with classical results on robust combinatorial optimization prob-
lems (e.g. [24]) which show that the robust counterparts of polynomially solvable optimization
problems turn NP-hard for arbitrary uncertainty sets. This being said, it is possible to solve
LS1 for general uncertainty polytopes through a mixed-integer linear programming reformu-
lation The first step to obtain the reformulations relies on reformulating LS1 as static robust
optimization problem, hence, removing the adjustable variables from the problem.

Lemma 1. Problem PI1 can be reformulated as

min

max
ξ∈Ξ

∑
i,j∈H

wijvijdj(ξ) +
∑
i∈H

giyi


s.t.

∑
i∈H

vij = 1 ∀j ∈ H (16)

vij ≤ yi ∀i, j ∈ H (17)
y ∈ {0, 1}n, v ≥ 0. (18)
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Proof. Let us define the binary variable vij(ξ) that is equal to 1 iff the demand of period j is
produced at period i. Using a reasoning similar to the one used in the proof of Theorem 1, we
can reformulate PI1 as

min
y∈{0,1}n

max
ξ∈Ξ

min
v(ξ)

∑
i,j∈H

wijvij(ξ)dj(ξ) +
∑
i∈H

giyi

s.t.
∑
i∈H

vij(ξ) = 1 ∀j ∈ H,∀ξ ∈ Ξ (19)

vij(ξ) ≤ yi ∀i, j ∈ H,∀ξ ∈ Ξ (20)
v ≥ 0,

where the first term of the objective function represents the cost of attending the demand of all
periods while the second term represents the fixed costs. Notice then that, for any y ∈ {0, 1}n,
we always have that vij(ξ) = 1 iff

wij = min
i′∈H
{wi′j : yi′ = 1},

which does not depend on ξ. Hence, vij(ξ) = vij(ξ
′) for each pair ξ, ξ′ ∈ Ξ and we can re-

move the dependency on ξ from vij(ξ). Moreover, we can remove the binary restrictions on v
because constraints (19) and (20) are formed by a totally unimodular matrix. Applying von
Neumann’s minmax theorem, we can exchange the maximization over ξ and the minimization
over v obtaining the desired result.

Let θ ∈ Rm denote the dual variables associated to the constraints that characterize Ξ.
Dualizing the inner maximization problem obtained in Lemma 1, we obtain immediately a
MILP reformulation for PI1.

Corollary 2. Let Ξ be the uncertainty polytope defined in (10). The problem PI1 can be solved
by the following mixed integer linear program

opt(PI1) = min
m∑
l=1

qlθl +
∑
i,j∈H

vijwijdj +
∑
i∈H

giyi

s.t

m∑
l=1

Wlkθl ≥
∑
i,j∈H

vijwijD̂jk ∀k ∈ H,

∑
i∈H

vij = 1 ∀j ∈ H

vij ≤ yi ∀i, j ∈ H
y ∈ {0, 1}n, v ≥ 0.

We devote the rest of the section to the study of uncertainty set ΞΓ, further assuming that
D̂ is a diagonal matrix. We show that, under these assumptions, problem PI1 can be solved
in polynomial time. Our approach requires the following extension of a classical result from
Bertsimas and Sim [11] that shows how some robust combinatorial optimization problems can
be solved by solving a polynomial number of times the deterministic counterpart. The result
considers generic optimization problems defined by the optimization variables x ∈ {0, 1}|L| and
the uncertainty polytope ΞΓ ⊂ R|K|, where K and L are arbitrary index sets. Its proof is similar
to the proof of Theorem 2 from [18] and is therefore deferred to Appendix C.
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Lemma 2. Consider the index sets K and L, and consider the subset K(l) ⊆ K for each l ∈ L.
Let X ⊆ {0, 1}|L| be the feasibility set and α ∈ R|L|+ and β ∈ R|L|×|K|+ be the cost vectors that
characterize the robust optimization problem

min
x∈X

max
ξ∈ΞΓ

∑
l∈L

αl +
∑

k∈K(l)

βlkξk

xl. (21)

Define the subset L(k) = {l ∈ L : k ∈ K(l)} for each k ∈ K. If any element x ∈ X satisfies the
constraints ∑

l∈L(k)

xl = 1, k ∈ K,

then the optimal solution cost to problem (21) is given by

min
{(k′,l′):k′∈K,l′∈L(k)}∪{(0,0)}

Gk′l′

where

Gk′l′ = Γβk′l′ + min
x∈X

∑
l∈L

αl +
∑

k∈K(l)

max(0, βlk − βk′l′)

xl

for each {(k′, l′) : k′ ∈ K, l′ ∈ L(k)} and where β00 = 0.

To use Lemma 2, we should reformulate problem PI1 as a special case of (21). In this
aim, we use the shortest path formulation for the deterministic problem LS, presented in [27],
and modify that formulation to handle the robust aspect as required. This is presented in the
following theorem.

Theorem 3. Let Ξ = ΞΓ and assume that D̂ is a diagonal matrix. Then, problem PI1 can be
solved by solving O(n2) shortest path problems in an acyclic digraph that contains n nodes.

Proof. Consider the digraph G = (V,A), where V = {1, . . . , n + 1} and A = {(i, j)|i < j; i, j ∈
V }. When the demand is known with precision (d(ξ) = d), it is known (see Section 7.4 from [27])
that the optimization problem stated in Lemma 1 can be reformulated as a shortest path problem

between vertices 1 and n + 1 in G where the cost of taking arc (i, j) is equal to gi +
j∑
k=i

wikdk,

which means that all demands i ≤ k ≤ j are attended by producing at time period i ∈ H.
Letting Z ⊂ {0, 1}|A| be the set of incidence vectors of all paths from 1 to n + 1 in G, the
deterministic problem can thus be reformulated as

min
z∈Z

∑
(i,j)∈A

(
gi +

j∑
k=i

wikdk

)
zij . (22)

Since any demand k ∈ H is attended by producing at a unique period i ∈ H, we see that any
z ∈ Z must satisfy the constraints ∑

(i,j)∈A
i≤k≤j

zij = 1, ∀k ∈ H.

Thanks to Lemma 1, one readily verifies that the robust counterpart of the problem can be
similarly reformulated as the min max robust counterpart of problem (22), namely

min
z∈Z

max
ξ∈Ξ

∑
(i,j)∈A

(
gi +

j∑
k=i

wikdk(ξ)

)
zij = min

z∈Z
max
ξ∈Ξ

∑
(i,j)∈A

(
gi +

j∑
k=i

wikdk +

j∑
k=i

wikD̂kkξk

)
zij ,

(23)
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where the equality follows from the assumption on D̂. The result follows directly from applying
Lemma 2 to (23).

4.3. Adjustable setup
In this section we present a linear program that computes the value of opt(PI) for general

polytopes Ξ. Similarly to Theorem 1, we show that the complexity of problem PI is related to
the complexity of optimizing an affine function over Ξ. This time however, the linear program
to be solved contains O(n3) constraints in addition to those describing Ξ. Let us first recall a
well-known dynamic programming algorithm to solve the deterministic problem LS, taken from
[27].

Lemma 3. Problem LS can be solved by the following recursive function

opt(LS) = G(n)

where

G(j) = min
{i,k|i<k≤j}

(
G(i) + gk +

j∑
l=i+1

wkldl

)
, (24)

where G0 = 0.

To compute PI, it will be useful to reformulate the above dynamic program as the linear
program provided in the next lemma.

Lemma 4. The optimal solution cost of LS is equal to the optimal solution cost of the following
linear program, with optimization variables ui for each i ∈ H

max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl ∀i < k ≤ j, i ∈ H ∪ {0}, j ∈ H.

u0 = 0

Proof. We introduce optimization variable ui to represent the value of G(i). The counterpart of
equation (24) for u is

uj = min
{i,k|i≤k≤j}

(
ui + gk +

j∑
l=i

wkldl

)
. (25)

Then, we relax the equality in (25) to

uj ≤ min
{i,k|i≤k≤j}

(
ui + gk +

j∑
l=i

wkldl

)
, (26)

and ensure that the objective function of the linear program maximizes the value of uj . Con-
straint (26) can be easily linearized to

uj ≤ ui + gk +

j∑
l=i

wkldl ∀i ≤ k ≤ j, i ∈ H. (27)

Combining linear constraints (27) with the objective function that maximizes un yields the
result.
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Using the above results, we propose a linear programming reformulation for PI.

Theorem 4. For any uncertainty set Ξ, problem PI can be solved by the following linear program
in optimization vectors u and ξ

PI = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H

ξ ∈ Ξ

Proof. We define PI(ξ), as the problem PI restricted to a fixed element ξ ∈ Ξ. One readily
sees that

opt(PI) = max
ξ∈Ξ

opt(PI(ξ))

and moreover, PI(ξ) is a deterministic lot-sizing problem. Hence, we can apply Lemma 3 and
use the following dynamic program for solving problem PI(ξ)

opt(PI(ξ)) = Gξ(n)

where

Gξ(j) = min
{i,k|i≤k≤j}

(
Gξ(i) + gk +

j∑
l=i

wkldl(ξ)

)
.

Using Lemma 4, PI(ξ) has the same optimal solution as the linear program

opt(PI(ξ)) = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H. (28)

Now, as opt(PI) = max
ξ∈Ξ

opt(PI(ξ)) we have that

opt(PI) = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H

ξ ∈ Ξ

Recalling that d(ξ) is an affine function of ξ ends the proof.

5. Numerical experiments

In this section, we present the experimental results obtained with the relaxation presented in
the last sections for problems P1 and P0. We use the budgeted polytope ΞΓ as uncertainty set due
to its importance in the literature and the identity as the deviation matrix, so d(ξ)i = d̄i + d̂iξi.

We compare the quality of our lower bound with the one provided by dual affine decision
rules from [25], recalled in Section 3.2. We also compare these lower bounds with the upper
bound provided by the affine decisions rules (called primal affine decision rules [25]). We do not
carry out experiments for problem P because the primal and dual affine decision rules methods
cannot be applied to this problem so that we have no comparison possible for our method.

One point that must be clarified before we proceed concerns the probabilistic distribution
used in dual affine decision rules. We use a uniform distribution over the extremes points of
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the uncertainty polytope. The reasons for that are two-fold: first we need a distribution that
allows us to calculate matrix M (the exception matrix) in a simple way, otherwise we would
spend a lot of time and computational effort to obtain such a matrix; second, as we do not
have a dominating element for our instances it is not clear whether using a distribution that is
concentrated in a single point of the uncertainty polytope as the authors did in [25].

The tests were carried out on an Intel(R) Core(TM) i7 CPU M60, 2.6Hz 4GB Ram machine
and all formulations and algorithms were coded in C++, compiled with a GNU G++ 4.5 compiler
and IBM CPLEX 12.3. In the following, we explain how the instances are built and which
experiments were carried out. We also comment the results presented.

5.1. Instances
We start by the description of the instances. We consider two set of instances:DOWN and

DYN. The instances in the set DYN represent lot-sizing problems in which the costs associated are
seasonal. Such test of instances is inspired by [6] and they fulfill a criteria know as Wagner-
Within, which can be seen in [? ]. Roughly, this criteria implies that is always cheaper to
produce the client demands of each period in the period itself. More precisely, we have for each
period i that ci = 20 + 5 sin( iπ12),hi = 5 + 2 sin( iπ12) and pi = 7 + 2 sin( iπ12)

To contrast with such set of instances, we use a second set of instances that do not fulfill the
Wagner-Within criteria. In the set of instances named DOWN, for each each period i is cheaper
to produce the client demand in the period b i3c. More precisely, we have that ci = 10 + 5(i
mod 2), hi = 3 and pi = 4.

We consider the deviations fixed as 20% of the nominal demand, and the nominal deviations
are given for 100 + 50 sin( iπ12) for each period i.

We consider horizons of planning that have 20, 30, 40, 50, 60, 70, 80, 90 and 100 periods.
We consider the amount of deviations fixed as 20% of the nominal demand, and the nominal
deviations are given for 100 + 50 sin( iπ12) for each period i.

We tested two different values of the parameter Γ for each number of periods in the horizon of
planning, each of them depending on a given probability level (which come from the probabilistic
bounds computed in [13]). Table 1 presents the values used for the experiments.

H Γ0.01 Γ0.1

10 5 8
20 7 11
30 8 14
40 9 16
50 10 17
60 11 19
70 12 20
80 12 22
90 13 23
100 14 24

Table 1: Values of parameter Γ.

5.2. Lot-Sizing problem without setup costs
We present not only a comparison between the value of the bound properly stated but we

also report the difference in execution time.
Let AFFINE represent the dual affine rules presented in the Section 3.2, PI the perfect

information proposed and DUAL the affine decision rules presented in Section 3.1. We compare
an approximation of the optimality gap of PI and DUAL using the solution of the approach
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AFFINE as an upper bound. We define the approximative optimality gap for PI concerning
the problem AFFINE in the instance I with t periods as

opt(AFFINE(t, I))− opt(PI(t, I))

opt(AFFINE(t, I))
.

In the same way we define the approximative approximation gap for the problem DUAL con-
cerning the problem AFFINE in the instances I with t periods as

opt(AFFINE(t, I))− opt(DUAL(t, I))

opt(AFFINE(t, I))
.

In the following, we report the approximative optimality gap and the solution times, com-
puted for each number of periods and each set of instances.

5.2.1. Instances DOWN
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Figure 2: The optimality gaps for PI0 for the instances in DOWN.
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Figure 3: Logarithm of the elapsed time for PI0 to instances in DOWN.

Concerning the instances in the set DOWN, the approximation obtained by our approach is
nearly constant at 8% while the dual affine rules are decreasing with the number of periods,
Figure 2. Such behavior is understandable, because in this set of instances, the impact of the
non-anticipativity constraints is bigger since the client demand is usually produced in early
periods. Regardless that, our approach still provides a quite reliable approximation with a
computation time much smaller as presented in Figure 3
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5.2.2. Instances DYN
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Figure 4: The optimality gaps for PI0 for the instances in DYN.

1e+000

1e+001

1e+002

1e+003

1e+004

1e+005

1e+006

1e+007

1e+008

 10  20  30  40  50  60  70  80  90  100

E
la

ps
ed

 T
im

e(
m

ill
is

ec
on

ds
)

Periods

AFFINE
DUAL

PI

(a) Γ0.1 over DOWN.

1e+000

1e+001

1e+002

1e+003

1e+004

1e+005

1e+006

1e+007

1e+008

 10  20  30  40  50  60  70  80  90  100

E
la

ps
ed

 T
im

e(
m

ill
is

ec
on

ds
)

Periods

AFFINE
DUAL

PI

(b) Γ0.01 over DOWN.

Figure 5: Logarithm of the elapsed time for PI0 to instances in DYN.

Concerning the instances in the set DYN, the approximation obtained by our approach can
prove the optimality of the affine decisions approach while the dual affine rules, although de-
creasing the number of periods, still maintain a gap of 5% as we can see in Figure 4. Due to
the Wagner-Within criteria, the non-anticipativity constraints have little impact in the solution,
which explains the results obtained. As for the computation time, our approach is, being a
simple combinatorial algorithm, much faster than the other two as reported in Figure 5, it is
also interesting to notice that the dual affine decision rules approach is more time consuming in
the instance set DYN.

6. Concluding remarks

We propose in this paper to adapt the perfect information relaxation to a robust lot-sizing
problem to obtain a lower bound for the problem. The lower bound seems to perform very well
numerically, especially for large problems for which primal and dual decision rules require large
numbers of variables. One advantage of our approach is that it can handle binary adjustable
variables, which is not the case of primal and dual affine decision rules. The tractability of our
lower bound is highly problem-dependent. Hence, it would be interesting to investigate other
class of multi-stage robust optimization problems and other uncertainty sets. Concerning the
extensions of the problems under study, we think it may be interesting to consider problems with
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capacities on the production and the storage. An alternative extension would consider problems
with multiple items. Concerning the uncertainty set, it could be interesting to look for dedicated
algorithms for ellipsoidal uncertainty sets, which have recently been the topic of several papers
in the combinatorial robust optimization literature (e.g. [5]). Another aspect of the relaxation
with perfect information is that it turns the multi-stage problems into a two-stages problems,
for which several papers have recently proposed exact solution algorithms based on variants of
the Benders decomposition (e.g. [4, 16, 29]). Hence, one could use these algorithms to solve the
relaxation for much more general problems than the variants of the lot-sizing considered herein,
and assess the quality of the obtained lower bound.
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Appendix A. Reformulation of affine decision rules

Plugging (12)–(14) into P and enforcing that y does not depend on ξ, we obtain the formu-
lation below.

min
κ

κ

s.t κ ≥
∑
i∈H

giyi + ci(x
0
i +

i−f∑
j=1

xji ξj) + hi(s
0
i +

i−f∑
j=1

sji ξj) + pi(r
0
i +

i−f∑
j=1

rji ξj)

 ∀ξ ∈ Ξ

s0
i +

i−f∑
j=1

sji ξj ≥
i∑

k=1

x0
k − d̄k +

lxk∑
j=1

xjkξj −
n∑
l=1

D̂klξl

 ∀i ∈ H,∀ξ ∈ Ξ

r0
i +

i−f∑
j=1

rji ξj ≥
i∑

k=1

d̄k − x0
k −

lxk∑
j=1

xjkξj +
n∑
l=1

D̂klξl

 ∀i ∈ H,∀ξ ∈ Ξ

x0
i +

i−f∑
j=1

xji ξj ≤ yiM ∀i ∈ H,∀ξ ∈ Ξ

x0
i +

i−f∑
j=1

xji ξj ≥ 0 ∀i ∈ H,∀ξ ∈ Ξ

s0
i +

i−f∑
j=1

sji ξj ≥ 0 ∀i ∈ H,∀ξ ∈ Ξ

r0
i +

i−f∑
j=1

rji ξj ≥ 0 ∀i ∈ H,∀ξ ∈ Ξ

yi ∈ {0, 1} ∀i ∈ H,

Although the number of variables in the problem described above is polynomial, we still
have to deal with an infinite number of constraints. As said already, one easily sees that we can
restrict ourselves to the extreme points of Ξ; yet, this typically leads to an exponential number
of constraints. An alternative and more compact approach apply classical tools from robust
optimization to reformulate the robust constraints as a polynomial number of deterministic
constraints plus a polynomial number of additional real variables, see [7]. We reproduce the
steps of this method in the following.
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min
κ

κ

s.t κ−
∑
i∈H

(
giyi + cix

0
i + his

0
i + pir

0
i

)
≥

m∑
i=1

qiθi

θTWi ≥
n∑

j=i+f

(cjxj + hjsj + pjrj) ∀i, 0 ≤ i ≤ m

s0
i −

i∑
k=1

(
x0
k − d̄k

)
≥

m∑
j=1

qjα
i
j ∀i ∈ H

αTWj ≥ sji +
i∑

k=i+f

xk ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

r0
i −

i∑
k=1

(
d̄k − x0

k

)
≥

m∑
j=1

qjβ
i
j ∀i ∈ H

βTWj ≥ rji −
i∑

k=i+f

xk ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

− x0
i + yiM ≥

m∑
j=1

qjπ
i
j ∀i ∈ H

πTWj ≥ xji ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

x0
i ≥

m∑
j=1

qjθ
x,i
j ∀i ∈ H

(θx)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

s0
i ≥

m∑
j=1

qjθ
s,i
j ∀i ∈ H

(θr)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

r0
i ≥

m∑
j=1

qjθ
r,i
j ∀i ∈ H

(θs)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i− f, i ∈ H
yi ∈ {0, 1} ∀i ∈ H,

To obtain the formulation for the cases without setup cost it suffices to remove the variable
y from the formulation and the cost associated with it.
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min
κ

κ

s.t κ−
∑
i∈H

(
cix

0
i + his

0
i + pir

0
i

)
≥

m∑
i=1

qiθi

θTWi ≥
n∑

j=i+f

(cjxj + hjsj + pjrj) ∀i, 0 ≤ i ≤ m

s0
i −

i∑
k=1

(
x0
k − d̄k

)
≥

m∑
j=1

qjα
i
j ∀i ∈ H

αTWj ≥ sji +
i∑

k=i+f

xk ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

r0
i −

i∑
k=1

(
d̄k − x0

k

)
≥

m∑
j=1

qjβ
i
j ∀i ∈ H

βTWj ≥ rji −
i∑

k=i+f

xk ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

x0
i ≥

m∑
j=1

qjθ
x,i
j ∀i ∈ H

(θx)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

s0
i ≥

m∑
j=1

qjθ
s,i
j ∀i ∈ H

(θr)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i− f, i ∈ H

r0
i ≥

m∑
j=1

qjθ
r,i
j ∀i ∈ H

(θs)TWj ≥ xji ∀i, j, 0 ≤ j ≤ i− f, i ∈ H
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Appendix B. Reformulation of dual affine decision rules

In this appendix, we sketch how to obtain the reformulation for the robust lot-sizing problem
using the method presented in [25]. First, we associate an artificial probability measure µ with
our uncertainty set Ξ. To keep the presentation simple, we will exemplify the framework from
[25] with discrete probability distributions P(ξ) defined over the set of extreme points of Ξ.
Hence, P is any vector in R| ext(Ξ)|

+ that satisfies∑
ξ∈ext(Ξ)

P(ξ) = 1.

The first step of the approach of [25] relaxes the robust constraints to expectation constraints
as follows.

min
κ

κ

s.t E

([
κ−

∑
i∈H

(giyi + cixi(ξ) + hisi(ξ) + piri(ξ) + π(ξ))

]
ξ

)
= 0

E

([
si(ξ)−

i∑
k=1

(xk(ξ)− di(ξ)) + αi(ξ)

]
ξ

)
= 0 ∀i ∈ H,

E

([
ri(ξ) +

i∑
k=1

(xk(ξ)− di(ξ)) + βi(ξ)

]
ξ

)
= 0 ∀i ∈ H,

E ([xi(ξ)− yiM + ψi(ξ)] ξ) = 0 ∀i ∈ H,
E ([xi(ξ) + θxi (ξ)] ξ) = 0 ∀i ∈ H,
E ([si(ξ) + θsi (ξ)] ξ) = 0 ∀i ∈ H,
E ([ri(ξ) + θri (ξ)] ξ) = 0 ∀i ∈ H,
yi ∈ {0, 1} ∀i ∈ H,

where ψ and θ are additional slack variables. One readily verifies that, for any probability
distribution P(ξ), the above problem provides a lower bound for the optimal solution of problem
PI1.

Then, using advanced dualization techniques inspired by the dualization used in classical
robust optimization, the authors of [25] are able to reformulate the above lower bound as the
following mixed-integer linear program, where matrixM is defined asM = E(ξT ξ), and W is
the matrix defined as W = (W − qeT1 )M, where e1 is the vector with all entries equals to one.
Specifically, the following mixed-integer linear program is ibtained by applying reformulation
(4.6) from [25] to PI1.
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min
κ

κ

s.t κ−
∑
i∈H

(
giyi + cix

0
i + his

0
i + pir

0
i

)
+ π0 = 0

− πj =
∑
i∈H

(
cix

j
i + his

j
i + pir

j
i

)
∀j ∈ H

s0
i =

i∑
k=1

(x0
k − d̄k) + α0

i ∀i ∈ H

sji =
i∑

k=1

xjk −
n∑
l=1

D̂jl + αji ∀i, j ∈ H

r0
i =

i∑
k=1

(d̄k − x0
k) + β0

i ∀i ∈ H

rji =

i∑
k=1

(−x0
k) +

n∑
l=1

D̂jl + βji ∀i, j ∈ H

My − x0
i + π0

i = 0 ∀i ∈ H
− xji + πji = 0 ∀i, j ∈ H
x0
i + θx,0i = 0 ∀i ∈ H,∀j ∈ H ∪ {0}
sji + θs,ji = 0 ∀i ∈ H,∀j ∈ H ∪ {0}
rji + θr,ji = 0 ∀i ∈ H,∀j ∈ H ∪ {0}
WαT = 0

WβT = 0

WπT = 0

W(θx)T = 0

W(θs)T = 0

W(θr)T = 0

yi ∈ {0, 1} ∀i ∈ H.

To obtain the formulation for the cases without setup cost it suffices to remove the variable
y from the formulation and the cost associated with it.
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min
κ

κ

s.t κ−
∑
i∈H

(
cix

0
i + his

0
i + pir

0
i

)
+ π0 = 0

− πj =
∑
i∈H

(
cix

j
i + his

j
i + pir

j
i

)
∀j ∈ H

s0
i =

i∑
k=1

(x0
k − d̄k) + α0

i ∀i ∈ H

sji =
i∑

k=1

xjk −
n∑
l=1

D̂jl + αji ∀i, j ∈ H

r0
i =

i∑
k=1

(d̄k − x0
k) + β0

i ∀i ∈ H

rji =

i∑
k=1

(−x0
k) +

n∑
l=1

D̂jl + βji ∀i, j ∈ H

x0
i + θx,0i = 0 ∀i ∈ H,∀j ∈ H ∪ {0}
sji + θs,ji = 0 ∀i ∈ H,∀j ∈ H ∪ {0}
rji + θr,ji = 0 ∀i ∈ H,∀j ∈ H ∪ {0}
WαT = 0

WβT = 0

WπT = 0

W(θx)T = 0

W(θs)T = 0

W(θr)T = 0
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Appendix C. Proof of Lemma 2

Let us detail the inner maximization of (21) as∑
k∈K

αkxk + max
∑
k∈K

ξk
∑
l∈L(k)

βlkxl

s.t.
∑
k∈K

ξk ≤ Γ,

ξk ≤ 1, k ∈ K,
ξk ≥ −1, k ∈ K. (C.1)

By definition, βlk ≥ 0 for each k ∈ K, l ∈ L(k), so that we can relax constraints (C.1) to ξ ≥ 0
without affecting the optimal solution. Thanks to the strong duality in linear programming, the
optimal solution cost of the above problem is equal to the optimal solution cost of its dual, given
by

min Γθ +
∑
k∈K

ϕk

s.t. θ + ϕk ≥
∑
l∈L(k)

βlkxl, k ∈ K

θ, y ≥ 0.

Substituting ϕk by max(0,
∑

l∈L(k) βlkxl− θ) for each k ∈ K, we can further reformulate (21) as

min
x∈X ,θ≥0

Γθ +
∑
l∈L

αlxl +
∑
k∈K

max

0,
∑
l∈L(k)

βlkxl − θ

 . (C.2)

The crucial step of our proof (which differs from Theorem 3 from [12]) is that, because the
constraint

∑
l∈L(k) xl = 1 holds for each k ∈ K, we can further reformulate (C.2) as

min
x∈X ,θ≥0

Γθ +
∑
l∈L

αlxl +
∑
k∈K

∑
l∈L(k)

xl max(0, βlk − θ).

The rest of the proof is identical to the proof of Theorem 3 from [12].
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