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Abstract. The use of the general dense matrix-matrix multiplication
(GEMM) is fundamental for obtaining high performance in many sci-
entific computing applications. GEMMs for small matrices (of sizes less
than 32) however, are not sufficiently optimized in existing libraries. In
this paper we consider the case of many small GEMMs for a wide range
of computer architectures, including multicore CPUs; ARM, Intel Xeon
Phi, and GPUs. This is a case that often occurs in applications like
big data analytics, machine learning, high-order FEM, and others. The
GEMMs are grouped together in a single batched routine. We present
specialized for these cases algorithms and optimization techniques to ob-
tain performance that is within 90% of the optimal. For example, on a
P100 GPU for square matrices of size 32, we achieve an execution rate
of about 1,030 Gflop/s in double precision arithmetic, which is 90% of
the theoretically derived peak for this computation on a P100 GPU. We
show that our results outperform currently available state-of-the-art im-
plementations and vendor-tuned math libraries, including Intel MKL,
Nvidia CUBLAS, and OpenBLAS.

1 Introduction

Parallelism in todays computer architectures is pervasive not only in sys-
tems from large supercomputers to laptops, but also in small portable devices
like smartphones and watches. Along with parallelism, the level of heterogeneity
in modern computing systems is also gradually increasing. Multicore CPUs are
combined with discrete high-performance GPUs, or even become integrated parts
with them as a system-on-chip (SoC) like in the NVIDIA Tegra mobile family
of devices. To extract full performance from systems like these, the heterogene-
ity makes the parallel programming for technical computing problems extremely
challenging, especially in modern applications that require fast linear algebra on
many independent problems that are of size @(100) and smaller. According to
a recent survey among the Sca/LAPACK and MAGMA [21] users, 40% of the
responders needed this functionality for applications in machine learning, big
data analytics, signal processing, batched operations for sparse preconditioners,
algebraic multigrid, sparse direct multifrontal solvers, QR types of factorizations



on small problems, astrophysics, and high-order FEM. At some point in their ex-
ecution, applications like these must perform a computation that is cumulatively
very large, but whose individual parts are very small; when such operations are
implemented naively using the typical approaches, they perform poorly. To ad-
dress the challenges, we designed a standard for Hybrid Batched BLAS [7], and
developed innovative algorithms [12], data and task abstractions [1], as well as
high-performance implementations based on the standard that are now released
through MAGMA 2.0 [6, 11]. Figure 1 illustrates how the need for batched oper-
ations and new data types arises in areas like linear algebra (Left) and machine
learning (Right). The computational characteristics in these cases are common
to many applications, as already noted: the overall computation is very large
but is made of operations of interest that are in general small, must be batched
for efficiency, and various transformations must be explored to cast the batched
small computations to regular and therefore efficient to implement operations,
e.g., GEMMs. We note that applications in big data analytics and machine
learning target higher dimension and accuracy computational approaches (e.g.,
ab initio-type) that model mutilinear relations, thus, new data abstractions,
e.g., tensors, may be better suited vs. the traditional approach of flattening the
computations to linear algebra on two-dimensional data (matrices). Indeed, we
developed these tensor data abstractions and accelerated the applications using
them significantly [1] compared to other approaches.

Tensor contractions in machine learning (Convolutional Neural Networks in computer vision)
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Fig. 1. Left: Example of a 4'"-order tensor contractions design using Einstein sum-
mation notation and a Domain Specific Embedded Language (or DSEL ). Right:
Tllustration of batched computations needed in machine learning.

There is a lack of sufficient optimizations on the batched GEMMs needed
and targeted in this paper. We show this in comparison to vendor libraries like
CUBLAS for NVIDIA GPUs and MKL for Intel multicore CPUs. Related work
on GEMM and its use for tensor contractions [1] target only GPUs and for very
small sizes (16 and below). Batched GEMM for fixed and variable sizes in the
range of O(100) and smaller were developed in [2]. The main target here are
batched GEMMs for multicore CPUs, ARM, Intel Xeon Phi, and GPU architec-
tures on matrices of sizes up to 32.

2 Contributions to the Field

The evolution of semiconductor technology is dramatically transforming the
balance of future computer systems, producing unprecedented changes at every
level of the platform pyramid. From the point of view of numerical libraries,



and the myriad of applications that depend on them, three challenges stand out:
1) the need to exploit unprecedented amounts of parallelism; 2) the need to
maximize the use of data locality and vectorized operations; and 3) the need to
cope with component heterogeneity. Below, we highlight our main contributions
related to the algorithm’s design and optimization strategies aimed at addressing
these challenges on multicore CPU, ARM, Xeon Phi, and GPU architectures.

2.1 Exploit Parallelism and Vector Instructions:

Clock frequencies are expected to stay near their current levels, or even de-
crease to conserve power; consequently, as we already see, the primary method
of increasing computational capability of a chip will be to dramatically increase
the number of processing units (cores), which in turn will require an increase of
orders of magnitude in the amount of concurrency that routines must be able to
utilize as well as increasing the computational capabilities of the floating point
units by extending it to the classical Streaming SIMD Extensions set (SSE-1, to
SSE-4) in the earlier 2000, and recently to Advanced Vector Extensions (AVX,
AVX-2, AVX-512). We developed specific optimization techniques that demon-
strate how to use the many cores (currently multisocket 10 — 20 cores for the
Haswell CPU, 4 cores for a Cortex A57 processor, 68 cores for an Intel Knights
Landing 7250 (KNL) and 56 x 64 CUDA cores for the Tesla P100 GPU) to get
optimal performance. The techniques and kernels developed are fundamental
and can be used elsewhere.

2.2 Hierarchical Communication Techniques that Maximizes the
use of Data Locality:

Recent reports (e.g., [9]) have made it clear that time per flop, memory
bandwidth, and communication latency are all improving, but at exponentially
different rates. So computation on very small matrices, that can be consid-
ered as computation-bound on old processors, is, —today and in the future—
communication-bound and depends on the communication between levels of the
memory hierarchy. We demonstrate that performance is indeed harder to get on
new manycore architectures unless hierarchical communications and optimized
memory management are considered in the design. We show that, only after we
developed algorithmic designs that feature multilevel blocking of the computa-
tions and use multilevel memory communications, our implementations reach
optimal performance.

2.3 Performance Analysis and Autotuning:

We demonstrate the theoretical maximal performance bounds that could be
reached for computation on very small matrices. We studied various instructions
and performance counters, as well as proposed a template design with different
tunable parameters in order to evaluate the effectiveness of our implementation
and optimize it to reach the theoretical limit.



3 Experimental hardware

All experiments are done on an Intel multicore system with two 10-cores Intel
Xeon E5-2650 v3 (Haswell) CPUs, a 4-cores Cortex A57 ARM CPU, a 68-cores
Intel Knights Landaing CPU 7250 and a Pascal Generation Tesla P100 GPU.
Details about the hardware are illustrated in Figure 2. We used gcc compiler
5.3.0 for our CPU code (with options -std=c++14 -O3 -avx -fma), as well as the
icc compiler from the Intel suite 2016.0.109, and the BLAS implementation from
MKL (Math Kernel Library) 16.0.0 [14]. We used CUDA Toolkit 8.0 for the GPU.
For the CPU comparison with the MKL library we used two implementations: 1)
An OpenMP loop statically or dynamically unrolled among the cores (we choose
the best results), where each core computes one matrix-matrix product at a time
using the optimized sequential MKL dgemm routine, and 2) The batched dgemm
routine that has been recently added to the MKL library.

Haswell KNL 7250
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Fig. 2. Memory hierarchies of the experimental CPU and GPU hardware

4 Methodology, Design, and Optimization : Performance
model

To evaluate the efficiency of our algorithms we derive theoretical bounds for
the maximum achievable performance Ppqr = F/Tpnin, where F is the num-
ber of operations needed by the computation and T,,;, is the fastest time to
solution. For simplicity, consider C = aAB + SC on square matrices of size n.
We have F' =~ 2n? and Tonin = minT(TRead(A,B,C) + TCompute(C) + TWrite(C’))-
Note that we have to read/write 4n? elements, or 32n? Bytes for double pre-
cision (DP) calculations. Thus, if the maximum achievable bandwidth is B (in
Bytes/second), and we assume T¢ompute(cy —+ 0 for very small computation,
then 1), = TRead(A,B,C) + TWrite(C) = 4n2/B in DP. Note that this time is
theoretically achievable if the computation totally overlaps the data transfer and
does not disrupt the maximum rate B of read/write to the GPU memory. Thus,

m3B  nB
nE e DP.

Pmaa) = aa 5 —
32n2 16



The achievable bandwidth can be obtained by benchmarks. For our measures, we
used the STREAM benchmark [19] and the Intel memory latency checker 3.0 tool
for CPU. We also used NVIDIA’s bandwidthTest and a set of microbenchmarks
that we developed for GPU. Our tests show that the practical CPU bandwidth
we are able to achieve using different benchmarks is about 44 GB/s per socket.
On the Tesla P100 GPU, the peak is 580 GB/s, so in that case Ppq. is 2.75 n
GFlop/s per socket for the CPU and 36.25 n GFlop/s for the Tesla P100 GPU.
The curve representing this theoritical maximal limit is denoted by the “upper
bound” line on Figures 6 and 14a. Thus, when n = 16 for example, we expect
a theoretical maximum performance of 580 GFlop/s in DP on the P100 GPU.

5 Programming Model, Performance Analysis, and
Optimization for CPUs

Our overall designs and software construction include the use of new features
of C++ for better re-usability and adaptability of the code. By using advanced
template techniques we can create high-level interfaces [18] without adding any
cost even for small matrix-matrix products. To do so, we designed a batch struc-
ture which contains a C++ vector for the data and static dimensions. By us-
ing the C++ constexpr keyword and integral constants we developed a generic
batched code that dispatches at compile time the correct version depending on
the size of matrices. We use this environment for each code sequence that we
generate.

The implementation of a matrix-matrix products kernel for very small ma-
trices for CPUs requires specific design and optimizations. As we can store three
double precision matrices of size up to 32 x 32 in the L1 cache of an Intel Xeon
E5-2650 v3 processor (or any modern processor), one can expect that any imple-
mentation will not suffer from data cache misses. This can be seen on Figure 9b
where the performance of an ijk implementation, which is not cache-aware and
cannot be vectorized, is pretty close to the ikj one. The ijk and ikj implemen-
tation correspond to the simple matrix product implementation using for loops.
The ikj version is cache-friendly as data accessed in a continuous fashion which
also gives the possibility to the compiler for vectorization. In ijk version, data is
not accessed contiguously but we can minimize the number of store operations by
computing one value of C for each iterations of the innermost loop. For smaller
sizes, the 5k implementation is more efficient than the ikj one, as it optimizes
the number of stores (Figure 4a). To obtain a near optimal performance, we
conduct an extensive study over the performance counters using the PAPI [22]
tools. Our analysis concludes that in order to achieve an efficient execution for
such computation, we need to maximize the CPU occupancy and minimize the
data traffic while respecting the underlying hierarchical memory design. Unfor-
tunately, today’s compilers cannot introduce highly sophisticated cache/register
based loop transformations and, consequently, this kind of optimization should
be studied and implemented by the software developer [16]. This includes tech-
niques like reordering the data so that it can be easily vectorized, reducing the
number of instructions so that the processor spends less time in decoding them,



prefetching the data that will be reused in registers, and using an optimal block-
ing strategy. In this CPU section, we use a batch count of 10000 which is enough
to get the best performance for small size matrix-matrix products.

5.1 Programming techniques using C++414

The development of programming languages and their use has dramatically
changed in recent years leading to continuous evolution. C++ is an example
of such a programming language. The standardization committee has decided
to make a new standard every 3 years, with the next release being the C+417
standard. The cause of these changes is the need for higher level language that
provides better idioms for generic and generative programming and support for
parallel computing. Here we discuss the new features of the C++14 standard
that we use to develop our matrix-matrix product.

The first feature of the C+14 language that we discuss is auto [15]. Consider
the following declaration in Listing 1.1:

// x is the type of 7 : int
auto x = 7;

Listing 1.1. C++ auto

Here x will have the type int because it is the type of its initializer. In general,
we can write the code in Listing 1.2

// x is of the type of expression
auto x = expression;

Listing 1.2. C++ generic auto

and x will be of the type from the value expression in Listing 1.2. For any
variable, auto specifies that the type of the variable that is being declared will
be automatically deduced from its initializer. This allows to write high level
complex code without having the burden of complex types that can appear. We
can apply the auto keyword on several features of the C++ language.

Another important feature of the C+-+14 standard is the constexpr key-
word [8]. The constexpr keyword provides a mechanism that can guarantee
that an initialization is done at compile time. It also allows constant expressions
involving user-defined types.

In Listing 1.3, the fibonnaci function is guaranteed to be executed at compile
time if the value passed x is available at compile time.

constexpr long long fibonacci(const int x)

return x <=1 ? 1 : fibonacci(x — 1) + fibonacci(x — 2);

Listing 1.3. C++ constexpr

Using constexpr and the features described previously also allow for integral
constants. Integral constants are part of the C++ standard and wrap a static
constant of a specific type in a class. This allows us to easily support different




SIMD extensions (Intel SSE,AVX2 AVX512 and ARM AArch64) while using a
generic function for each call (see Listing 1.4).

// This is true if the CPU is an Intel Processor
#if __x86_.64__

// Defines the load operation for 256—bit simd

inline auto load(float const* ptr , std::integral_constant<unsigned long
,256> )
{
return _mm256_loadu-ps(ptr);
}
// Defines the load operation for 512—bit simd on KNL
inline auto load(float const* ptr , std::integral_constant<unsigned long
,512>
return _mmb512_loadu_ps(ptr);
#endif

// This is true if the CPU is an ARM Processor
#if __aarch64__

inline auto load(double constx ptr , std::integral_constant<unsigned
long ,128>)
{

return vldlq-f64 (ptr);

#endif

Listing 1.4. C++ SIMD load

If we then want to do a multiplication using SIMD instructions, we can simply
use the standard operator with our overloaded functions (see Listing 1.5).

using simd_size = std::integral_constant <unsigned long,512>

// Propagate the value at A[iAxN] in the 512 SIMD register tmp
auto tmp = set( A[iAxN] , simd_size{} );

// Load B[i]..B[i+simd_size] and multiply

auto C = tmp * load(&B[i] , simd_size{});

Listing 1.5. C++ multiply operation

These programming techniques allow us to have a single source file of around
400 lines that support Intel and ARM processors for very efficient small size
matrix products. It is also very simple to extend. For example, adding support
for IBM processors with Altivec SIMD instructions only requires us to add an
overload for each SIMD functions we need.

5.2 Data Access Optimizations and Loop Transformation
Techniques

In our design, we propose to order the iterations of the nested loops in such a
way that we increase locality and expose more parallelism for vectorization. The
matrix-matrix product is an example of perfectly nested loops which means that
all the assignment statements are in the innermost loop. Hence, loop unrolling,
loop peeling, and loop interchange can be useful techniques for such algorithm [3,




4]. These transformations improve the locality and help to reduce the stride of
an array based computation. In our approach, we propose to unroll the two
inner-most loops so that the accesses to matrix B are independent from the loop
order, which also allows us to reorder the computations for continuous access
and improved vectorization. This technique enables us to prefetch and hold some
of the data of B into the SIMD registers. Here, we manage to take advantage
from the knowledge of the algorithm (see Figure 3), and based on the principle
of locality of references [13], to optimize both the temporal and spatial data
locality.
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(a) Compute first row of matrix C (b) Compute all of matrix C
Fig. 3. Example of a 4-by-4 matrix product using SIMD

5.3 Register Data Reuse and Locality

Similarly to the blocking strategies for better cache reuse in numerically
intensive operations (e.g., large matrix-matrix products), we focus on register
blocking to increase the performance. Our study concludes that the register
reuse ends up being the key factor for performance. The idea is that when data
is loaded into SIMD register, it will be reused as much as possible before its
replacement by new data. The amount of data that can be kept into registers
becomes an important tuning parameter. For example, an 8 x 8 matrix requires
16 256-bit AVX-2 registers to be completely loaded. As the targeted hardware
consists of only 16 256-bit AVX-2 registers, one can expect that loading the whole
B will not be optimal as we will have to reload the vectors for A and C. However,
if we load only 8 registers for B, which is equal to 4 rows, we can compute
a row of C at each iteration and reuse these 8 registers for each iteration. We
propose an auto-tuning process to check all the possible scenarios and provide the
best option. This reduces the number of load, store, and total instructions from
0(n?) to O(n), compared to a classical ijk or ikj implementation as depicted in
Figures 4a, 4b, and 6a, respectively.

5.4 Algorithmic Advancements

Algorithm 1 is an example of our methodology for a matrix-matrix product
of 16 x 16 matrices. In this pseudo-code, we start by loading four 256-bit AVX-2



registers with values of B which correspond to the first row. These registers are
reused throughout the algorithm. In the main loop (Lines 4-14), we start by
computing the first values of every multiplication (stored into a register named
M=AxB) based on the prefetched register in line 1. Then, we iterate on the
remaining rows (Lines 7-11) loading B, multiplying each B by a value of A, and
adding the result into M. Once the iteration over a row is accomplished, the value
of M is the final result of AxB and thus, we can load the initial values of C,
multiply by « and 3, and store it back before moving toward the next iteration
such a way to minimize the load/store as shown in Figure 4. Each C ends up
being loaded/stored once. We apply this strategy to matrix sizes ranging from 8
to 32 as for smaller sizes the whole matrix can fit in registers. Different blocking
strategies (square versus rectangular) have been studied through our auto-tuning
process in order to achieve the best performance. We generate each matrix-
matrix product function at compile time with C++ templates. The matrix size
is passed as a function parameter using C++ integral constants.

1: Load B0, B1, B2, B3

2: Load o, 8

3: S=16

4: fori=0,1,..,S-1do

5 Load A[i*S]

6:  Mi0 = A[i*S] * BO; ... Mi3 = A[i*S] *B3

7 foru=1,2 ...,5S-1do

8: Load A[i*S + u]

9: Load Bu0, Bul, Bu2, Bu3

10: Mi0 += A[i*S+u] * Bu0; ... Mi3 += A[i*S+4u] *Bui3

11: end for

12: Mi0 = « Mi0 + 8 (Load Ci0); ... Mi3 = « Mi3 + 8 (Load Ci3)
13:  Store Mi0, Mil, Mi2, Mi3

14: end for
Algorithm 1: Generic matrix-matrix product applied to matrices of size 16 x 16
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5.5 Effect of the Multi-threading

As described above, operating on matrices of very small sizes is memory-
bound computation and thus, increasing the number of CPU cores may not
always increase the performance since the performance will be limited by the
bandwidth which can be saturated by a few cores. We performed a set of exper-
iments towards clarifying this behavior and illustrate our findings in Figure 5b.
As shown, the notion of perfect speed-up does not exist for a memory-bound
algorithm, and adding more cores increases the performance slightly. We per-
formed a bandwidth evaluation when varying the number of cores to find that
a single core can achieve about 18 GB/s while 6 and 8 cores (over the available
10 cores) can reach about 88% and 93% of the practical peak bandwidth, which
is about 44 GB/s.
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5.6 Effect of the NUMA-socket and Memory Location

We also studied NUMA-socket (non-uniform memory access) [10] when using
two Xeon sockets as seen in Figure 5a. A standard memory allocation puts all
of the data in the memory slot associated to the first socket until it gets filled,
then starts filling the second socket. Since the problem size we are targeting is
very small, most of the data is allocated on one socket, and thus using extra
10 cores of the second socket will not increase the performance. This is due to
the fact that the data required by the cores of the second socket goes through
the memory bus of the first socket, and thus is limited by the bandwidth of
one socket (44 GB/s). There are ways to overcome this issue. By using NUMA
with the interleave=all option, which spreads the allocation over the two sockets
by memory pages, we can improve the overall performance. However, for very
small sizes, we observe that such solution remains far from the optimal bound
since data is spread out over the memory of the two sockets without any rules
that cores from socket 0 should only access data on socket 0, and vice versa. To
further improve performance, we use a specific NUMA memory allocation, which
allows us to allocate half of the matrices on each socket. As shown in Figure 5a,
this allows our implementation to scale over the two sockets and to reach close
to the peak bound.

5.7 Application to the Intel KNL

The Intel KNL is a new architecture that provides improved hardware fea-
tures such as 512-bit vector units, up to 288 hardware threads and a high band-
width memory called MCDRAM. The KNL can be configured in different ways
using the MCDRAM and sub-numa nodes which have been detailed in Sodani’s
Hot Chips presentations [20]. An extensive study to apply the Roofline Per-
formance Model [23] on the KNL [5] has shown the differences between the
MCDRAM configurations and its impact on performance. Our study has ended
up with the same conclusion and all application results we present use the Quad-
Flat representation as all of the data fits in the MCDRAM. We use the Linux
utility numactl to target the MCDRAM ( flag —m 1). To compile with gcc on
the KNL, we add the —march = knl flag for AVX512F instructions support.

We can see in Figure 7 that the number of load 7a and store 7b instructions
are following the same pattern as with the Haswell processor. The important
drops we see on each graph for the KNL are a bit different than on the Haswell
processor. This is due to the size of the vector unit going from 256-bit to 512-bit.
For double precision operations, we see on every multiple of 8 a large drop in
the number of load/store due to the matrix size being a multiple of the SIMD
size.

We generally reach the same number of load instructions as the MKL since we
cannot really optimize this parameter as seen with the Haswell CPU. However,
by not using a standard blocking strategy, we are able to optimize even more
the number of stores operations compared to the Haswell CPU due to the larger
SIMD vector size. We can see on Figure 8a that we always have a lower total
instruction count. On the KNL, it is possible to have up to 4 threads per core.
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Fig. 8. CPU performance counters and scaling analysis on KNL

Using the maximum number of threads is never efficient as see on Figure 8.
Using 2 threads per core can sometime yields better performance but the delta
is quite negligible. Except for matrix sizes smaller than 12, it is always better to
utilize every CPU core available on the KNL.

Similarly to what we saw with the Haswell processor, our analysis and design
directly translates on the performance obtained (see Figure 9). The performance
with our generated code in MAGMA is always better than that of the MKL.
We can see that the use of the MCDRAM as the main memory instead of the
DDR4 heavily impacts the performance. We observe an overall performance
increase of two when using the MCDRAM. We end up far from the upper bound
due to data in the MCDRAM not being read multiple times which limits the
bandwidth usage. Using the MCDRAM also leads to more stable performance.
Memory bound problems tend to be less stable in terms of performance when
using SIMD instructions and multi-threading due to limited resources. This is
even more prevalent with the KNL as its very large SIMD instructions (512-bit)
corresponds to the size of an L1 cache line (64 Bytes).
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Fig. 9. Experimental results of the matrix-matrix multiplication on KNL - 68 threads

5.8 Application to ARM processor

The ARM processor that we use for this benchmark is the CPU of the Tegra
X1, a 4-core Cortex A57. The problems we detailed earlier still apply to the
Tegra but on a different scale. Indeed, the ARM intrinsics only support 128-bit
vectors which severely limit the SIMD use for double precision computations.
In Figure 10, we compare the performance between our MAGMA code, an ijk
code, an ikj code and OpenBLAS [24] using the latest version available from the
develop branch on Github.
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Fig. 10. Experimental results of the matrix-matrix multiplication on the Tegra X1

Results follow the same trend we saw on the Intel processors. On very small
sizes, ijk and ikj versions are quite efficient as the arithmetic intensity is very
low, limiting the usefulness of parallelism. With increased sizes, we start to see
these version stale and reach a limit set around 3.5 Gflops. The OpenBLAS
version provides good performance but is limited by its blocking model which is
not adapted for very small sizes.



6 Programming Model, Performance Analysis, and
Optimization for GPUs

Considering the development for GPUs, we set a goal to have a unified code
base that can achieve high performance for very small sizes. The design strategy
is different from the MAGMA batched GEMM kernel for medium and large
sizes [2]. The latter uses a hierarchical blocking technique where different thread
blocks (TBs) compute different blocks of the output matrix C. With such a
design, a TB reads an entire block row of A and an entire block column of B to
compute its share of C. Obviously, there will be redundant reads of both A and B
among TBs. Considering extremely small sizes (e.g. up to 32), redundant reads
cannot be afforded, since the memory bandwidth becomes the main bottleneck
for such computational workload.

Instead, we adopt a strategy where a single TB performs the entire multipli-
cation of at least one problem, computing all of C with no subdivision involved.
We start by an initial design that represents a special case of a 1x1 blocking
technique, in order to avoid redundant reads from global memory. Since the
sizes considered are very small, there is enough resources on the SM to store
all of A, B, and C in shared memory and/or registers. Similar to the design
proposed in [2], we use CUDA C++ templates to have an abstract design that is
oblivious to tuning parameters and precision. In this paper, we discuss the main
design aspects of the proposed kernel, and how we managed, through an exten-
sive auto-tuning and performance counter analysis, to improve its performance
on the Tesla P100 GPU over the original design proposed in [17].

6.1 A Shared Memory Approach

Our previous work [17] showed that using shared memory to exploit data
reuse is superior to using the read-only data cache. We start by a simple design
where A and B are stored in shared memory for data reuse, and C is stored
in registers. Each TB performs exactly one GEMM operation. Eventually, the
kernel launches as many TBs as the number of multiplications to be performed.
Using a 2D thread configuration, each thread computes one element in the output
matrix C. The matrices A, B, and C are read only once from the global memory.
Data reuse of A and B occurs only in shared memory, where each thread reads
a row of A and a column of B to compute its respective output.

6.2 Data prefetching

Our first try to improve the performance adds data prefetching to the initial
design. By assigning more multiplications per TB, we can prefetch the next triple
A, B, and C, while another multiplication is taking place. We choose to prefetch
data in registers in order to reduce synchronization and avoid overloading the
shared memory. Recall that the register file per SM is about 256KB, while the
shared memory is 64KB at maximum. Surprisingly, Figure 11a shows that data
prefetching does not result in performance gains except for slight improvements
for few certain sizes. We list two major reasons for this behavior. The first is that



the prefetching technique uses 4x the register resources of the original design,
which might limit the number of TBs per SM as the sizes get larger. The second
is that there is a costly branch statement inside the kernel that checks whether
there is more data to prefetch. Eventually, we decided to drop data prefetching
from the final design.
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Fig. 11. Impact of data prefetching and aggregation on performance. The experiment
is performing 100,000 GEMM operations in double precision on a Tesla P100 GPU.

6.3 Thread block-level Aggregation

We adopt a different approach to assign multiple multiplications per TB.
Considering the original design, we aggregate a number of TBs together into
one bigger TB. Internally, the new TB is divided into smaller working groups,
each taking care of one multiplication. Such a design significantly improves the
performance for tiny sizes. The main reason is that the original design suffers
from a bad TB configuration, which assigs very few warps or even less than a
warp to a TB. The aggregation technique improves this configuration for tiny
sizes. As an example, the original design launches 4 threads per TB for a mul-
tiplication of 2 x 2 matrices, which is one eighth of a warp. The aggregation
technique groups 16 multiplications per TB, thus launching 2 warps per TB.
The level of aggregation is controlled through a tuning parameter (tba). Fig-
ure 11b shows the impact of aggregation (after tuning tba for every size) on
performance, where we observe performance improvements on sizes less than 8.
For example, aggregation achieves a speedups of 4.1x, 2.5%x, 1.7x, 1.25%, and
1.20x for sizes 2, 3, 4, 5, and 6, respectively. For larger sizes, we observe that it
is always better to set tba=1, since there are enough warps per TB.

6.4 Recursive Blocking

‘We propose a new optimization technique that helps improve the performance
as the sizes get larger. For a multiplication of size N, the original design uses
NxN threads and 2N x N of shared memory per TB. This configuration can limit
the number of TBs that can execute concurrently per SM. In order to mitigate
this effect, we recursively block the computation in shared memory. The new
design uses N x N threads and 2N x N, where N is a tuning parameter that is



typically less than N, such that:

N
=<2 1)

1<

The kernel reads A, B, and C once into registers. Since the shared memory
resources can only accomodate two N x N blocks, the computation is performed
on several stages. Equation 1 ensures a 2x2 blocking of the form:

Coo C01> (Aoo Am) (Boo 301> <C'00 C01>
= 2
<C10 Cn A An) “\ BB, " b C1o C11 @)

We point out that the sizes of Cgo, Co1, Cio, and Cyq are N x N, N x (N - N),
(N —N)x N, and (N — N) x (N — N), respectively, which is exactly the same
for A and B. The scaling with 8 is done upon reading C'. In order to compute
Coo, the kernel loads Agg and By into shared memory to compute aAgy X B,
and then similarly awAp; X B1g. The accumulation occurs in the registers holding
B x Cpp. The computation of other blocks of C is performed similarly to Cyg.
Eventually, the kernel is performing one GEMM operation using much less resources
in terms of shared memory and threads. While this comes at the cost of using
more registers, the register file per SM is big enough to accomodate such increase.
The overall result is an improved performance for relatively larger sizes as shown
in Figure 12. In the range of sizes [20:32], we observe speedups ranging from 3%
up to 31%. The non-blocking kernel loses performance as we increase the sizes,
unlike the blocking kernel which maintains a steady performance.
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Fig. 12. Impact of recursive blocking on performance. The experiment is performing
100,000 GEMM operations in double precision on a Tesla P100 GPU.

Eventually, our solution combines all of the aforementioned techniques, with
the exception of data prefetching. We can subdivide the range [1:32] into three
segments. The first represents the tiny sizes in the range [1:10], where we use a
non-blocking kernel with tba> 1. The second is the midrange [11:19], where we
still use the non-blocking kernel, but setting tba = 1. The third is the relatively
larger sizes in [20:32], where we call the blocking kernel.



6.5 Instruction Mix

A common optimization in all of our designs is the instruction mix of the GPU
kernel, which is crucial to performance when operating on matrices of such very
small sizes. Integer instructions, which are used for loop counters and memory
address calculations, can be quite an overhead in such computations. Moreover,
our study showed that a loop with predefined boundary can be easily unrolled
and optimized by the Nvidia compiler. Using CUDA C++ templates that are
instantiated with compile-time tuning parameter, we are able to produce fully
unrolled code for every size of interest. By profiling the kernel execution, we
collected the number of integer instructions as well the number of the FP64 in-
structions. Figure 13 shows the total number of integer instructions as well as the
ratio of integer instructions to the total number integer and FP64 instructions.
We observe that the MAGMA kernel always executes less integer instructions
than CUBLAS. It also has the smallest ratio for most sizes. An interesting ob-
servation of the CUBLAS implementation, for this range of matrices, is that it
uses a fixed blocking size of 16x16. This explains the drops at sizes 16 and 32,
where the problem size matches the internal blocking size.
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Fig. 13. Profiling the instruction mix of MAGMA versus CUBLAS. The experiment
is performing 100,000 GEMM operations in double precision on a Tesla P100 GPU.

6.6 Performance and Profiling Results

Figure 14a shows the final performance of the proposed kernel against the
batched GEMM kernel from CUBLAS, as well as against a CPU reference imple-
mentation that combines MKL with OpenMP. We also show the upper bound
of the performance, as estimated in Section 4. The results show that MAGMA
is significantly faster than CUBLAS, scoring speedups that range from 1.13x
(at size 32) up to 18.2x (at size 2). We observe that the smaller the size, the
larger the speedup. Similarly, MAGMA speedups against the CPU implementa-
tion range from 11.4x up to 164.4x. On another hand, the MAGMA kernel is
up to 88% close to the performance upper bound.

An interesting observation is shown in Figure 14b, which shows that the the
CUBLAS kernel achieves higher occupancy than the MAGMA kernel, starting
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Fig. 14. Final performance and achieved occupancy. The experiment is performing
100,000 GEMM operations in double precision on a Tesla P100 GPU.

from size 10. We point out that the achieved occupancy metric does not neces-
sarily give good insight to performance, and it has to be combined with other
metrics. In fact, the achieved occupancy is defined as the ratio of the average
active warps per active cycle to the maximum number of warps supported on the
SM. However, the measurement of busy warps does not mean that they are doing
useful work. In fact, Figure 13 shows that the CUBLAS kernels executes a lot
more integer instructions than the MAGMA kernel. Moreover, since the compu-
tation is memory bound, we show a more representative metric. Figure 15 shows
the read and write throughputs of the GPU memory, during execution. The pro-
posed MAGMA kernel achieves significantly higher throughput than CUBLAS
in both reads and writes, with an up to 22x higher throughput in reads and up
to 15x higher throughput in writes.
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Fig.15. DRAM read and write throughputs. The experiment is performing 100,000
GEMM operations in double precision on a Tesla P100 GPU.

7 Conclusions and future directions

We presented work motivated by a large number of applications, ranging from
machine learning to big data analytics, that require fast linear algebra on many
independent problems that are of size 32 and smaller. The use of batched GEMM



for small matrices is fundamental for obtaining high performance in applications
like these. We presented specialized algorithms for these cases — where the overall
computation is memory bound but still must be blocked — to obtain performance
that is within 90% of the optimal, significantly outperforming currently available
state-of-the-art implementations and vendor-tuned math libraries. Here, the op-
timal is the time to just read the data once and write the result, disregarding
the time to compute. The algorithms were designed for modern multi-core CPU,
ARM, Xeon Phi, and GPU architectures. The optimization techniques and al-
gorithms can be used to develop other batched Level 3 BLAS and to accelerate
numerous applications that need linear algebra on many independent problems.

Future work includes further optimizations and analyses, e.g., on how high
performance can go using CUDA. It is known that compilers have their limi-
tations in producing top performance codes for computations like these, thus,
requiring the use of lower level programming languages. Current results used in-
trinsics for multi-core CPUs and CUDA for GPUs, combined with auto-tuning
in either case, to quickly explore the large algorithmic variations developed in
finding the fastest one. Future work includes also use in applications, develop-
ment of application-specific optimizations, data abstractions, e.g., tensors, and
algorithms that use them efficiently.
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