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INTRODUCTION

For a prime number p, let Q p be the field of p-adic numbers and P 1 (Q p ) its projective line. Recently, polynomials and rational maps of Q p have been studied as dynamical systems on Q p or P 1 (Q p ). It turns out that these p-adic dynamical systems are quite different to the dynamical systems in Euclidean spaces. See for example, [START_REF] Anashin | Applied Algebraic Dynamics[END_REF][START_REF] Baker | Potential theory and dynamics on the Berkovich projective line[END_REF][START_REF] Silverman | The arithmetic of dynamical systems[END_REF] and their bibliographies therein.

For polynomials and rational maps of Q p , we can find two different kinds of subsystems exhibiting totally different dynamical behavior. One is 1-Lipschitz dynamical systems and the other is p-adic repellers.

A 1-Lipschitz p-adic dynamical system can usually be fully described by showing all its minimal subsystems. Polynomials with coefficients in the ring Z p of p-adic integers and rational maps with good reduction are two important families of 1-Lipschitz dynamical systems. In [START_REF] Fan | On minimal decomposition of p-adic polynomial dynamical systems[END_REF], the authors proved the following structure theorem for polynomials in Z p [x]. The same structure theorem for good reduction maps with degree at least 2 was proved in [START_REF] Fan | Minimality of p-adic rational maps with good reduction[END_REF].

Theorem 1 ([14], Theorem 1). Let f ∈ Z p [x] be a polynomial of integral coefficients with degree ≥ 2. We have the following decomposition

Z p = P M B
where P is the finite set consisting of all periodic points of f , M = i M i is the union of all (at most countably many) clopen invariant sets such that each M i is a finite union of balls and each subsystem f : M i → M i is minimal, and each point in B lies in the attracting basin of a periodic orbit or of a minimal subsystem.

The decomposition in Theorem 1 is usually referred to as a minimal decomposition and the invariant subsets M i are called minimal components. In the literature, the minimality of the polynomial (or 1-Lipschitz) dynamical systems on the whole space Z p was widely studied [START_REF] Anashin | Uniformly distributed sequences of p-adic integers[END_REF][START_REF] Anashin | Characterization of ergodic p-adic dynamical systems in terms of the van der Put basis[END_REF][START_REF] Coelho | Ergodicity of p-adic multiplications and the distribution of Fibonacci numbers[END_REF][START_REF] Durand | Minimal polynomial dynamics on the set of 3-adic integers[END_REF][START_REF] Fan | Strict ergodicity of affine p-adic dynamical systems on Zp[END_REF][START_REF] Fan | Dynamics of the square mapping on the ring of p-adic integers[END_REF][START_REF] Fan | Dynamics of Chebyshev polynomials on Z 2[END_REF][START_REF] Jeong | Toward the ergodicity of p-adic 1-Lipschitz functions represented by the van der Put series[END_REF][START_REF] Oselies | Ergodische Eigenschaften der Automorphismen p-adischer Zahlen[END_REF].

The p-adic repellers (see definition in page 220 of [START_REF] Fan | p-adic repellers in Qp are subshifts of finite type[END_REF]) are expanding dynamical systems which have positive topological entropy and thus exhibit chaotic behaviors. In [START_REF] Fan | p-adic repellers in Qp are subshifts of finite type[END_REF], it is proved that a transitive p-adic repeller is isometrically (hence topologically) conjugate to a subshift of finite type where a suitable metric is defined. A general method was also proposed in [START_REF] Fan | p-adic repellers in Qp are subshifts of finite type[END_REF] to find subshifts of finite type subsystems in a p-adic polynomial dynamical system. We remark that Thiran, Verstegen and Weyers [START_REF] Thiran | p-adic dynamics[END_REF] and Dremov, Shabat and Vytnova [START_REF] Dremov | On the chaotic properties of quadratic maps over non-Archimedean fields, p-adic mathematical physics[END_REF] studied the chaotic behavior of p-adic quadratic polynomial dynamical systems. Woodcock and Smart [START_REF] Woodcock | p-adic chaos and random number generation[END_REF] proved that the so-called p-adic logistic map x p -x p is topologically conjugate to the full shift on the symbolic system with p symbols.

On the other side, the dynamical properties of the fixed points of the rational maps have been studied in the space C p of p-adic complex numbers [START_REF] Albeverio | Sattarov, p-adic (2, 1)-rational dynamical systems[END_REF][START_REF] Khamraev | On a class of rational p-adic dynamical systems[END_REF][START_REF] Mukhamedov | On rational p-adic dynamical systems[END_REF][START_REF] Sattarov | p-adic (3, 2)-rational dynamical systems. p-Adic Numbers Ultrametric[END_REF] and in the adelic space [START_REF] Dragovich | Linear fractional p-adic and adelic dynamical systems[END_REF]. The Fatou and Julia theory of the rational maps on C p , and on the Berkovich space over C p , are also developed [START_REF] Benedetto | Hyperbolic maps in p-adic dynamics[END_REF][START_REF] Baker | Potential theory and dynamics on the Berkovich projective line[END_REF][START_REF] Hsia | Closure of periodic points over a non-Archimedean field[END_REF][START_REF] Rivera-Letelier | Dynamique des fonctions rationnelles sur des corps locaux[END_REF][START_REF] Silverman | The arithmetic of dynamical systems[END_REF]. However, the global dynamical structure of rational maps on Q p remains unclear, though the rational maps of degree one are totally characterized in [START_REF] Fan | On minimal decomposition of p-adic homographic dynamical systems[END_REF] .

In the present article, we suppose p ≥ 3 and investigate the following special class of rational maps of degree 2:

φ(x) = ax + 1 x , a ∈ Q p \ {0}. (1.1)
We distinguish three cases: (1)

|a| p = 1, (2) |a| p > 1, (3) |a| p < 1. Observe that φ(x) = ax + 1 x = ax 2 -1 x .
When |a| p = 1, the map φ has good reduction (see definition in page 58 of [START_REF] Silverman | The arithmetic of dynamical systems[END_REF]). By Theorem 1.2 of [START_REF] Fan | Minimality of p-adic rational maps with good reduction[END_REF], we immediately have the following structure theorem.

Theorem 2. Let φ(x) = ax + 1

x with a ∈ Q p \ {0}. If |a| p = 1, the dynamical system (P 1 (Q p ), φ) can be decomposed into

P 1 (Q p ) = P M B
where P is the finite set consisting of all periodic points of φ, M = i M i is the union of all (at most countably many) clopen invariant sets such that each M i is a finite union of balls and each subsystem φ : M i → M i is minimal, and each point in B lies in the attracting basin of a periodic orbit or of a minimal subsystem.

We are thus left to study the rest two cases. The following are our main theorems. We remark that in both cases, ∞ ∈ P 1 (Q p ) is a fixed point of φ with multiplier 1/a.

Theorem 3. Let φ(x) = ax + 1 x with a ∈ Q p \ {0}. If |a| p > 1,
the dynamical structure of the system (P 1 (Q p ), φ) is described as follows.

(1)

If √ 1 -a / ∈ Q p , then ∀x ∈ Q p , lim n→∞ φ n (x) = ∞.
(2) If √ 1 -a ∈ Q p , then there exists an invariant set J such that the subsystem (J , φ) is topologically conjugate to (Σ 2 , σ), the full shift of two symbols. Further,

∀x ∈ Q p \ J , lim n→∞ φ n (x) = ∞. Theorem 4. Let φ(x) = ax + 1 x with a ∈ Q p \ {0}. If |a| p < 1, we distinguish two cases. (1) If √ -a / ∈ Q p , then φ(0) = φ(∞)
= ∞ is a repelling fixed point and the subsystem (Q p \ {0}, φ) has a minimal decomposition as stated in Theorem 2.

(2) If √ -a ∈ Q p , then the dynamical system (P 1 (Q p ), φ) has a subsystem which is conjugate to a subshift of finite type with positive entropy.

PRELIMINARIES

Let p ≥ 2 be a prime number. Any nonzero rational number r ∈ Q can be written as r = p 

a n p n (v p (x) ∈ Z, a n ∈ {0, 1, 2, • • • , p -1} and a vp(x) = 0).
Here, the integer v p (x) is called the p-valuation of x.

Any point in the projective line P 1 (Q p ) of Q p can be given in homogeneous coordinates by a pair [x 1 : x 2 ] of points in Q p which are not both zero. Two such pairs are equal if they differ by an overall (nonzero

) factor λ ∈ Q * p : [x 1 : x 2 ] = [λx 1 : λx 2 ].
The field Q p is identified with the subset of P 1 (Q p ) given by

[x : 1] ∈ P 1 (Q p ) | x ∈ Q p .
This subset contains all points in P 1 (Q p ) except one: the point of infinity, which may be given as ∞ = [1 : 0].

The spherical metric defined on P 1 (Q p ) is analogous to the standard spherical metric on the Riemann sphere.

If P = [x 1 , y 1 ] and Q = [x 2 , y 2 ] are two points in P 1 (Q p ), we define ρ(P, Q) = |x 1 y 2 -x 2 y 1 | p max{|x 1 | p , |y 1 | p } max{|x 2 | p , |y 2 | p } or, viewing P 1 (Q p ) as Q p ∪ {∞}, for z 1 , z 2 ∈ Q p ∪ {∞} we define ρ(z 1 , z 2 ) = |z 1 -z 2 | p max{|z 1 | p , 1} max{|z 2 | p , 1} if z 1 , z 2 ∈ Q p , and 
ρ(z, ∞) = 1, if |z| p ≤ 1, 1/|z| p , if |z| p > 1.
Remark that the restriction of the spherical metric on the ring Z p := {x ∈ Q p , |x| ≤ 1} of p-adic integers is the same as the metric induced by the absolute value | • | p .

A rational map φ ∈ Q p (z) induces a transformation on P 1 (Q p ). Rational maps are always Lipschitz continuous on P 1 (Q p ) with respect to the spherical metric (see [26, Theorem 2.14.]).

In Q p , we denote by D(a, r) := {x ∈ Q p : |x| p ≤ r} the closed disk centered at a with radius r and by S(a, r) := {x ∈ Q p : |x| p = r} its corresponding sphere. A closed disk in

P 1 (Q p ) is either a closed disk in Q p or the complement of an open disk in Q p .
We recall some standard terminology of the theory of dynamical systems. If φ(x 0 ) = x 0 then x 0 is called a fixed point of φ. The set of all fixed points of f is denoted by Fix(f ). An important role in iteration theory is played by the periodic points. By definition, x 0 is called a periodic point of φ if φ n (x 0 ) = x 0 for some n ≥ 1. In this case, n is called a period of x 0 , and the smallest n with this property is called the exact period of x 0 .

For a periodic point x 0 ∈ Q p of exact period n, (φ n ) ′ (x 0 ) is called the multiplier of x 0 . Remark that the multiplier is invariant by changing of coordinate. If ∞ is a periodic point of period n, then the multiplier of ∞ is ψ ′ (0), where ψ(x) = 1 φ n (1/x) . A periodic point is called attracting, indifferent, or repelling accordingly as the absolute value of its multiplier is less than, equal to, or greater than 1. Periodic points of multiplier 0 are called super attracting.

A subsystem of a dynamical system is minimal if the orbit of any point in the subspace is dense in the subspace. Now we recall the conditions under which a number in Q p has a square root in Q p . An integer a ∈ Z is called a quadratic residue modulo p if the equation x 2 ≡ a (mod p) has a solution x ∈ Z. The following lemma characterizes those p-adic integers which admit a square root in Q p .

Lemma 1 ([22]

). Let a be a nonzero p-adic number with its p-adic expansion

a = p vp(a) (a 0 + a 1 p + a 2 p 2 + • • • ) where 1 ≤ a 0 ≤ p -1 and 0 ≤ a j ≤ p -1 (j ≥ 1). The equation x 2 = a has a solution x ∈ Q p if and only if the following conditions are satisfied (i) v p (a) is even; (ii) a 0 is quadratic residue modulo p if p = 2; or a 1 = a 2 = 0 if p = 2.

DYNAMICAL STRUCTURES

Now, let p ≥ 3. We will study the dynamical structure of the rational maps φ(x) = ax + 1

x with a ∈ Q p \ {0} on the projective line P 1 (Q p ). In general, we can also consider the rational maps

ax + b x , with a, b ∈ Q p . Remark that if √ b exists in Q p , then ax + b x is conjugate to ax + 1 x through the conjugacy x → 1 √ b x.
The case that √ b does not exist in Q p which is not included in the present paper could be a subject for future study.

The dynamical system (P 1 (Q p ), φ) exhibits different dynamical structures according to different absolute values of a. When |a| p = 1, the transformation φ has good reduction. The dynamical structure of (P 1 (Q p ), φ), as shown in Theorem 2, can be deduced directly from Theorem 1.2 of [START_REF] Fan | Minimality of p-adic rational maps with good reduction[END_REF].

We are thus concerned only with the cases: |a| p > 1 and |a| p < 1. We remark that for both cases, ∞ is a fixed point of φ.

Case |a|

p > 1. Proposition 1. Suppose |a| p > 1. If √ 1 -a / ∈ Q p , then ∀x ∈ Q p , lim n→∞ φ n (x) = ∞.
Proof. By the assumption |a| p > 1, for all x ∈ Q p such that |x| p ≥ 1, we have

|φ(x)| p = ax + 1 x p = |ax| p > |x| p .
Thus the absolute values of the iterations φ n (x) are strictly increasing. Hence

lim n→∞ φ n (x) = ∞, for all x ∈ Q p , |x| p ≥ 1. (3.1)
That is to say, {x ∈ Q p : |x| p ≥ 1} is included in the attracting basin of ∞. Now we investigate the points in the open disk {x ∈ Q p : |x| p < 1}. We partition this disk into two:

A 1 := x ∈ Q p : |x| p < 1, |ax| p = 1 |x| p , A 2 := x ∈ Q p : |x| p < 1, |ax| p = 1 |x| p . If x ∈ A 1 , then |φ(x)| p = max |ax| p , 1 |x| p > 1.
Thus by (3.1), φ(x) falls into the attracting basin of ∞, and lim

n→∞ φ n (x) = ∞. If |ax| p = 1 |x|p , then |a| p = 1 |x| 2 p
, which means that v p (a) is an even number. Since

|a| p > 1, the condition √ 1 -a ∈ Q p is equivalent to that √ -a does not exist in Q p .
Hence the equation φ(x) = 0 has no solution in Q p . Since p ≥ 3, this is also equivalent to that the first digits of ax and 1

x in their p-adic expansions can not be canceled. Thus |φ(x)| p = |ax| p or |1/x| p and hence strictly larger than 1. Therefore, by (3.1), lim

n→∞ φ n (x) = ∞. Lemma 2. Suppose |a| p > 1. If √ 1 -a ∈ Q p ,
then φ has two repelling fixed points

x 1,2 = ± 1 √ 1 -a .
Proof. It is easy to check that x 1,2 = ± 1 √ 1-a are the two fixed points of φ. Note that

φ ′ (x 1 ) = φ ′ (x 2 ) = 2a -1. Since |a| p > 1, we have |φ ′ (x 1 )| p = |φ ′ (x 2 )| p = |2a -1| p > 1. Lemma 3. Suppose |a| p > 1. If √ 1 -a ∈ Q p , then φ(D(x 1 , p vp (a) 2 -1 )) = φ(D(x 2 , p vp(a) 2 -1 )) = D(0, p -vp (a) 2 -1 ). Proof. Since |a| p > 1 and √ 1 -a ∈ Q p , the valuation v p (a) is a negative even number. Note that |φ(x 1 )| p = |φ(x 2 )| p = |x 1 | p = |x 2 | p = p vp (a) 2
.

We need only to show that for all x, y in the same disk D(x 1 , p

vp (a) 2 -1 ) or D(x 2 , p vp(a) 2 -1 ), |φ(x) -φ(y)| p = p -vp(a) |x -y| p .
Without loss of generality, we assume that x, y ∈ D(x 1 , p vp (a) 2

-1 ). By the definition of the spherical metric on P 1 (Q p ),

D(x 1 , p vp (a) 2 -1 ) = 1 x : |x - √ 1 -a| p ≤ p -vp(a) 2 -1 .
Hence, there are x ′ , y ′ ∈ D(0, p -vp (a)

2

-1 ) such that

x = 1 √ 1 -a + x ′ and y = 1 √ 1 -a + y ′ . So we have a - 1 xy p = |2a -1 -(x ′ + y ′ ) √ 1 -a -x ′ y ′ | p .
Observing that |a| p ≥ 1 and

|(x ′ + y ′ ) √ 1 -a| p ≤ |a| p /p, we have a - 1 xy p = |a| p .
Hence, -1 ) implies that the sum of the first digits of the padic expansion of ax and 1/x is not 0 modulo p, which leads to

|φ(x) -φ(y)| p = (a - 1 xy )(x -y) p = |a| p |x -y| p = p -vp(a) |x -y| p . Lemma 4. Suppose |a| p > 1. If √ 1 -a ∈ Q p ,
|φ(x)| p = |ax + 1/x| p = |ax| p = |a| p > 1. Case (3) 1/ |a| p < |x| p < 1. Since |ax| p > |1/x| p > 1, we have |φ(x)| p = |ax| p > 1.
Let (Σ 2 , σ) be the full shift of two symbols. Proposition 2. Suppose |a| p > 1 and √ 1 -a ∈ Q p . Then there exists an invariant set J such that (J , φ) is topologically conjugate to (Σ 2 , σ), and

lim n→∞ φ n (x) = ∞, ∀x ∈ Q p \ J .
Proof. By the proof of Lemma 3, we obtain that both of the restricted maps

φ : D(x i , p vp (a) 2 -1 ) → D(0, p -vp(a) 2 -1 ), i = 1, 2
are expanding and bijective. Note that D(x i , p

vp(a) 2 -1 ) ⊂ D(0, p -vp (a) 2 -1 ) for i = 1, 2. Let Ω = D(x 1 , p vp (a) 2 -1 ) ∪ D(x 2 , p vp (a) 2 -1 )
and

J = ∞ i=0 φ -n (Ω).
By Theorem 1.1 of [START_REF] Fan | p-adic repellers in Qp are subshifts of finite type[END_REF], J is φ-invariant and (J , φ) is topologically conjugate to (Σ 2 , σ).

Note that all x ∈ Ω \ J will eventually fall into Q p \ Ω by iteration of φ. Thus by Lemma 4, we immediately get

lim n→∞ φ n (x) = ∞, ∀x ∈ Q p \ J .
Proof of Theorem 3. It follows directly from Propositions 1 and 2.

3.2. Case |a| p < 1. We distinguish two sub cases:

√ -a / ∈ Q p and √ -a ∈ Q p . 3.2.1. √ -a / ∈ Q p . Lemma 5. If √ -a / ∈ Q p ,
then for all -⌊v p (a)/2⌋ ≤ i ≤ ⌊v p (a)/2⌋, φ(S(0, p i )) ⊂ S(0, p -i ) and φ 2 is 1-Lipschitz continuous on S(0, p i ) ∪ S(0, p -i ).

Proof. If x ∈ S(0, p i ) for some -⌊v p (a)/2⌋ ≤ i ≤ 0, then by the assumption

|a| p < 1, we have |φ(x)| p = |ax + 1/x| p = p -i .
Now let x ∈ S(0, p i ) for some 0 ≤ i ≤ ⌊v p (a)/2⌋. When i < ⌊v p (a)/2⌋, we have

|φ(x)| p = |ax + 1/x| p = p -i . When v p (a)/2 is even and i = v p (a)/2, the condition √ -a / ∈ Q p implies that |φ(x)| p = |ax + 1/x| p = p -i .
Hence, the first assertion of the lemma holds. Let us show that φ 2 is 1-Lipschitz continuous on S(0, p i )∪S(0, p -i ) for -⌊v p (a)/2⌋ ≤ i ≤ ⌊v p (a)/2⌋. Let x, y ∈ S(0, p i ) ∩ S(0, p -i ). If x ∈ S(0, p i ) and y ∈ S(0, p -i ), then |xy| p = 1 and thus

|φ(x) -φ(y)| p = a - 1 xy p |x -y| p = |x -y| p .
Hence, it suffices to show that for each -⌊v p (a)/2⌋ ≤ i ≤ ⌊v p (a)/2⌋,

∀x, y ∈ S(0, p i ), |φ 2 (x) -φ 2 (y)| p ≤ |x -y| p .
By observing that |a| p ≤ 1/|xy| p and |a| p ≤ 1/|φ(x)φ(y)| p , we have

|φ 2 (x) -φ 2 (y)| p = a - 1 φ(x)φ(y) p |φ(x) -φ(y)| p = a - 1 φ(x)φ(y) p a - 1 xy p |x -y| p ≤ 1 φ(x)φ(y) p 1 xy p |x -y| p = |x -y| p .
The field C p of p-adic complex numbers is the metric completion of the algebraic closure Q p of Q p . We denote by B(a, r) := {x ∈ C p , |x| p ≤ r} the closed ball in C p centered at a with radius r > 0.

Lemma 6. Assume √ -a / ∈ Q p . Let x 0 ∈ Q p with p -⌊vp(a)/2⌋ ≤ |x 0 | p ≤ p ⌊vp(a)/2⌋ . Then φ 2 (B(x 0 , |x 0 | p /p)) ⊂ B(φ 2 (x 0 ), |x 0 | p /p). Proof. For any x ∈ B(x 0 , |x 0 | p /p), the condition √ -a / ∈ Q p implies |xφ(x)| p = 1.
Hence

|φ 2 (x) -φ 2 (x 0 )| p = a - 1 φ(x)φ(x 0 ) p |φ(x) -φ(x 0 )| p = a - 1 φ(x)φ(x 0 ) p a - 1 xx 0 p |x -x 0 | p ≤ 1 φ(x)φ(x 0 ) p 1 xx 0 p |x -x 0 | p = |x -x 0 | p . Lemma 7. Assume √ -a / ∈ Q p . Let x 0 ∈ Q p with p -⌊vp(a)/2⌋ ≤ |x 0 | p ≤ p ⌊vp(a)/2⌋
. Then the Taylor expansion of the map

φ 2 : D(x 0 , |x 0 | p /p) → D(φ 2 (x 0 ), |x 0 | p /p)
can be written as

φ 2 (x + x 0 ) = φ 2 (x 0 ) + ∞ i=1 α i (x + x 0 ) i , with α i ∈ Q p such that |α i | p ≤ (p/|x 0 | p ) i-1 .
Proof. The assumption √ -a / ∈ Q p implies that there is no φ-preimage of 0 in Q p . However, there are two preimages ± 1 √ -a of 0 in the quadratic extension Q p ( √ -a). For each

x 0 ∈ Q p with p -⌊vp(a)/2⌋ ≤ |x 0 | p ≤ p ⌊vp(a)/2⌋ , the condition √ -a / ∈ Q p implies that x 0 - 1 √ -a p = x 0 + 1 √ -a p > |x 0 | p p .
By Lemma 5, we also have

φ(x 0 ) - 1 √ -a p = φ(x 0 ) + 1 √ -a p > |φ(x 0 )| p p .
Hence, the ball

B(x 0 , |x 0 | p /p) := x ∈ C p , |x| p ≤ |x 0 | p p is disjoint from the set {± 1 √ -a , 0, ∞} of polars of φ 2 .
This implies that the Taylor expansion of φ 2 at x 0

φ 2 (x + x 0 ) = φ 2 (x 0 ) + ∞ i=1 α i (x + x 0 ) i ,
is convergent on the ball B(x 0 , |x 0 | p /p). By Lemma 6, we have φ 2 (B(x 0 , |x 0 | p /p)) ⊂ B(φ 2 (x 0 ), |x 0 | p /p). The Newton polygon [26, p. 249] gives

|α i | p |x 0 | p p i ≤ |x 0 | p p .
That is So there exists an integer N such that p -⌊vp(a)/2⌋ ≤ |φ N (x)| p ≤ p ⌊vp(a)/2⌋ . If x ∈ S(0, p ⌊vp(a)/2⌋ ), the conclusion is followed by Lemma 5.

|α i | p ≤ (p/|x 0 | p ) i-1 . Lemma 8. If √ -a / ∈ Q p , then for each x ∈ Q p \ {0,
Proposition 3. Assume that √ -a / ∈ Q p . Then Q p \ {0} is φ-invariant and the sub dynamical system (Q p \ {0}, φ) can be decomposed into

P 1 (Q p ) = P M B
where P is the finite set consisting of all periodic points of φ, M = i M i is the union of all (at most countably many) clopen invariant sets such that each M i is a finite union of balls and each subsystem φ : M i → M i is minimal, and each point in B lies in the attracting basin of a periodic orbit or of a minimal subsystem.

Proof. By Lemmas 5 and 8, it suffices to show that the sub dynamical system (S(0, p i ), φ 2 ) has a minimal decomposition as stated in the proposition for all -⌊v p (a)/2⌋ ≤ i ≤ ⌊v p (a)/2⌋. Note that φ 2 is equicontinuous on S(0, p i ) and

S(0, p i ) = p-1 j=1 D(jp -i , p i-1
).

Thus for each disk D(jp -i , p i-1 ) in S(0, p i ), its image φ 2 (D(jp -i , p i-1 ) is still a disk in S(0, p i ). Hence φ 2 induces a map φ 2 from the set {D(jp -i , p i-1 ) : j = {1, 2, • • • , p-1}} of disks to itself: φ 2 (D(jp -i , p i-1 )) := φ 2 (D(jp -i , p i-1 )).

Assume that (D(x 1 p -i , p i-1 ), D(x 2 p -i , p i-1 ),

• • • , D(x k p -i , p i-1 )) is a k-cycle of φ 2 , i.e. φ 2 (D(x 1 p -i , p i-1 )) = D(x 2 p -i , p i-1 ) φ 2 (D(x 2 p -i , p i-1 )) = D(x 3 p -i , p i-1 ), • • • φ 2 (D(x k p -i , p i-1 )) = D(x 1 p -i , p i-1 ).
Then φ 2k is a transformation on D(x 1 p -i , p i-1 ). We thus study the dynamical system (D(x 1 p -i , p i-1 ), φ 2k ). By Lemma 8, the Taylor expansion of the map

φ 2k : D(x 1 p -i , p i-1 ) → D(x 1 p -i , p i-1 )
can be written as

φ 2k (x + x 1 p -i ) = φ 2k (x 1 p -i ) + ∞ j=1 α j (x + x 1 p -i ) j , with α j ∈ Q p such that |α j | p ≤ 1/p (i-1)(j-1) . (3.2) 
Thus one can check that the dynamical system (D(x 1 p -i , p i-1 ), φ 2k ) is conjugate to a dynamical system on Z p , denoted by (Z p , ψ), through the conjugacy f : D(x 1 p -i , p i-1 ) → D(0, 1), with f (x) = p i-1 (x -x 1 p -i ).

In fact, the inequality (3.2) implies that ψ is a convergent series with integer coefficients. By Theorem 1.1 of [START_REF] Fan | Dynamics of convergent power series on the integral ring of a finite extension of Qp[END_REF], the system (Z p , ψ) has a minimal decomposition. Hence, the conjugated dynamical system (D(x 1 p -i , p i-1 ), φ 2k ) has a corresponding minimal decomposition which implies that (S(0, p i ), φ 2 ) has a minimal decomposition as stated in the proposition for all -⌊v p (a)/2⌋ ≤ i ≤ ⌊v p (a)/2⌋. The topological entropy of the system (P 1 (Q p ), φ) is larger than log 1.69562.... Set Ω = 4 i=1 D i and consider the restricted map φ : Ω → P 1 (Q p ). Let f : x → 1/(x -1) and ψ := f • φ • f -1 . We study the map ψ : f (Ω) → P 1 (Q p ). Observe that f (Ω) ⊂ Z p . One can check that ψ satisfies the conditions in [START_REF] Fan | p-adic repellers in Qp are subshifts of finite type[END_REF]. Thus by the main result of [START_REF] Fan | p-adic repellers in Qp are subshifts of finite type[END_REF],

3.2.2. Case √ -a ∈ Q p . Lemma 9. If |a| < 1 and √ -a ∈ Q p , then φ D ± 1 √ -a , 1 p |a| p = D 0, |a| p p ,

Proof. Let

J ′ = i=0 ψ -i (Ω)
is an invariant set of ψ and (J ′ , ψ) is topologically conjugate to the subshift of finite type (Σ A , σ) with

A =     0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1     .
Since ψ = f • φ • f -1 , we deduce that (J , φ) is topologically conjugate to (Σ A , σ).

The topological entropy of (Σ A , σ) is log(1.69562...) where 1.69562... is the maximal eigenvalue of the matrix A. Since (Σ A , σ) is topologically conjugate to a subsystem of (P 1 (Q p ), φ), we confirm the last assertion of the proposition.

We remark that even though a chaotic subsystem is well described, the detailed dynamical structure of φ on the whole space for the case |a| p < 1 and √ -a ∈ Q p is far from clear. There may exist more complicated sub dynamical systems.

Proof of Theorem 4. It follows directly from Propositions 3 and 4.

  v a b where v, a, b ∈ Z and a, b are not divisible by p. Define v p (r) = v and |r| p = p -vp(r) for r = 0 and |0| p = 0. Then | • | p is a non-Archimedean absolute value on Q. That means (i) |r| p ≥ 0 with equality only for r = 0; (ii) |rs| p = |r| p |s| p ; (iii) |r + s| p ≤ max{|r| p , |s| p }. The field Q p of p-adic numbers is the completion of Q under the absolute value | • | p . Actually, any x ∈ Q p can be written as x = ∞ n=vp(x)

2 - 1 ) 2 - 1 2 - 1 )

 212121 Note that for all x / ∈ D(0, 1/p), |1/x| p ≤ 1. Thus |φ(x)| p = |a| p |x| p > 1.Hence|φ n (x)| p = |a| n p |x| p , which implies ∀ x / ∈ D(0, 1), lim n→∞ φ n (x) = ∞.To finish the proof, we will show that for all0 = x ∈ D(0, 1) \ (D(x 1 , p vp(a) ∪ D(x 2 , p vp (a) )),we have |φ(x)| p > 1.We distinguish three cases. Case[START_REF] Anashin | Uniformly distributed sequences of p-adic integers[END_REF] |x| p < 1/ |a| p . Since |1/x| p > |ax| p , we have |φ(x)| p = |1/x| p > 1.Case (2) |x| p = 1/ |a| p . Observe that |ax| p = |1/x| p = |a| p . The assumption x / ∈ D(x 1 , p vp (a) ∪ D(x 2 , p vp (a) 2

  ∞}, there exists a positive integerN such that φ n (x) ∈ S(0, p i ) ∪ S(0, p -i ), ∀n ≥ N for some 0 ≤ i ≤ ⌊v p (a)/2⌋. Proof. Note that |φ(x)| p = |1/x| p , if |x| p < p -⌊vp(a)/2⌋ . Thus we have φ(D(0, p -⌊vp(a)/2⌋-1 )) = P 1 (Q p ) \ D(0, p ⌊vp(a)/2⌋ ).It suffices to show that the statement holds for x ∈ P 1 (Q p ) \ D(0, p ⌊vp(a)/2⌋ ). In fact, if x ∈ P 1 (Q p ) \ D(0, p ⌊vp(a)/2⌋ + 1), one can check that |φ(x)| p = |a| p |x| p .

and for all x, y ∈ D(± 1 √ 1 √Proposition 4 .

 114 (x) -φ(y)| p = |a| p |x -y| p . . Proof. Note that φ(±1/ √ -a) = 0. It suffices to show that ∀x, y ∈ D(± 1 √ -a , 1 p |a| p ), |φ(x) -φ(y)| p = |a| p |x -y| p .Without loss of generality, we assume that x, y ∈ D( By the same arguments in the proof of Lemma 3, there exist x ′ , y ′ ∈ D(0,√ |a|p p ) such that x = 1 √ -a + x ′ , y = 1 √ -a + y ′ ,anda -1 xy p = 2a -(x ′ + y ′ ) √ -a -x ′ y ′ p . Since x ′ , y ′ ∈ D(0, √ |a|p p ), we immediately get a -1 xy p = |a| p . So |φ(x) -φ(y)| p = a -1 xy p |x -y| p = |a| p |x -y| p . If |a| p < 1 and √ -a ∈ Q p ,then there exists an φ-invariant subset J such that (J , φ) is topologically conjugate to a subshift of finite type (Σ A , σ), where the transition matrix is

  D 1 = D(1/ √ -a, 1/p), D 2 = D(-1/ √ -a, 1/p), D 3 = D(0, |a| p /p) and D 4 = P 1 (Q p ) \ D(0, |a| p ). By Lemma 9, the restricted maps φ : D 1 → D 3 and φ : D 2 → D 3 are both bijective. One can also check directly that φ : D 3 → D 4 and φ : D 4 → φ(D 4 ) = P 1 (Q p ) \ D(0, 1) are bijective.
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