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DCM-Operated Series-Resonant Inverter for
the Supply of DBD Excimer Lamps

David Florez, Member, IEEE, Rafael Diez, Member, IEEE, and Hubert Piquet

Abstract—This paper presents the study of a series-resonant
inverter for the supply of a dielectric barrier discharge excimer
lamp. Causal analysis, based on the fundamental properties of the
load, is used to detail the reasoning which has led to this topology.
In order to effectively control the lamp power, the operating mode
of this converter combines discontinuous current mode and soft
commutation (zero-current switching), obtaining low electromag-
netic emissions and reduced switching losses as well. The model
of the lamp is briefly presented, and it allows a simple state
plane analysis to calculate all the electric variables involved in the
converter and, consequently, to select the components of the sup-
ply. The mathematical relationships obtained from this process,
for injected power control by means of the available degrees of
freedom, are validated with simulations and experimental results.

Index Terms—Dielectric barrier discharge (DBD), gas dis-
charge devices, plasma sources, resonant inverter, ultraviolet (UV)
sources, zero-current switching (ZCS).

I. INTRODUCTION

HE DESIGN of an efficient power supply for a dielectric

barrier discharge (DBD) excimer lamp, capable of con-
trolling the ultraviolet (UV) emission, is a challenge because
of the capacitive nature, the nonlinear behavior, and the high
operating voltages of this load. In the past, different approaches
have been proposed to supply different DBDs.

In the earliest experiments, sinusoidal voltage sources with
frequencies from tens of hertz to tens of megahertz were
used [1], followed by pulsed voltage sources [2], [3]. Lately,
voltage-mode resonant converters for the supply of capacitive
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loads have been developed and implemented [4]-[6]. The main
drawback of the voltage-mode approach in these converters is
the inability to control and predict the power that is supplied to
the discharge.

By studying the DBD lamp electrical model, it has been
proved that the DBD electrical power can be controlled by
means of its current instead of using its voltage; this is shown
experimentally with a current-mode converter [7]. Additionally,
the authors of [8] and [9] have clearly established a tight
correlation between the current waveform and the temporal
response of the UV radiation. In [10], a square-waveform
current supply with three degrees of freedom has been designed
to study the radiation of DBD lamps; however, this converter
presents hard switching, diminishing efficiency and producing
electromagnetic interference (EMI).

Among the possible topologies for the supply of DBD de-
vices, resonant topologies offer less switching losses, less EMI,
and a smaller number of switching devices than the others [11].
The voltage-mode resonant topologies proposed in [4] and [6]
for DBD lamp and exhaust gas treatment, respectively, are, in
our opinion, not the best choice to an efficient control of the
operating point of DBD excilamps, as explained in Section II.
In [7] and [12], current-mode resonant converters are developed
specifically for excimer lamps. The topologies proposed in [5]
and [13]-[18], based on the series-resonant inverter (SRI) or
similar topologies, are adaptable to excimer lamp supplies.
Using the classical SRI as basis and considering the DBD
lamp electrical model, this paper presents an operating mode
differing from the previous ones: It proposes the combination
of the current-mode approach with the zero-current switching
(ZCS). ZCS is achieved in all the switches at turn-on and turn-
off, reducing EMI and increasing the overall efficiency.

This paper is organized as follows. Section II introduces
the main aspects of the electrical model for a DBD excimer
lamp. Section III explains the converter operating principle,
using the lamp model. Section IV develops the mathematical
relationships for the design of the converter, based on the
state plane analysis. Section V dimensions the components
for a specific XeCl excimer lamp and verifies the previous
developments. Experimental results and conclusions are given
in Sections VI and VII, respectively.

II. DBD EXCIMER LAMP MODEL

The modeling of DBD excilamps has already been presented
in several papers, e.g., [19]-[21]; here, the most important
elements are reminded: A coaxial DBD excimer lamp, as the
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Fig. 1. (Top) Coaxial DBD excimer lamp and (bottom) its equivalent electri-
cal model.

one depicted in Fig. 1, confines a gas mixture between two
silica walls. This lamp geometry can be modeled with the
electrical equivalent circuit in Fig. 1 (bottom). The lamp silica
walls, acting as dielectric barriers, are modeled as the equivalent
capacitance Cg;e1. These barriers are in series with the gas. The
gas behavior is described by a gas capacitance in parallel with
a gas conductance [21] (Cgas and Ggas, respectively). The gas
conductance is very small when the absolute value of the gas
voltage is smaller than the gas breakdown voltage Viy,: The
equivalent model of the DBD is thus the series association of
Caiel and Cg,s. When the gas voltage reaches the breakdown
voltage Vi, by effect of the connected power supply, the gas
acquires the behavior of an almost constant voltage source of
value V;p, which remains in series with Cyie;. Experimental
measurements and identification results [9] have proven that
Vin, which is a physical property of the gas, does not depend
on the shape of the current waveform.

Taking into consideration the fact that, after breakdown, the
gas presents an almost constant voltage, it is clear that the
convenient supply mode to control the discharge power is to
control the current which flows into the gas. From the lamp
model, the current flowing through the gas conductance is equal
to the lamp current (except for the time intervals, needed to
install the breakdown conditions); in consequence, controlling
the lamp current enables the control of the instantaneous power
transferred to the gas [8].

Accounting its capacitive behavior, the supply mode of the
lamp must enable a bidirectional current into the lamp (null

average value); otherwise, the lamp voltage would grow uncon-
trollably, producing damage in the converter.

In the next section, we take advantage of the capacitive nature
of the DBD to implement a resonant converter that uses the load
as one of the elements of the resonant circuit.

III. DISCONTINUOUS RESONANT SUPPLY MODE

The classical topology of the SRI, shown in Fig. 2 (top left),
presents a convenient current-source behavior [11], [15]. For
this reason, this topology is chosen to implement the DBD
current supply. In this topology, the inductance L is connected
in series with the DBD lamp through the full-bridge current
inverter. The lamp current direction is determined by the bridge
configuration.

The converter operating period is divided in six steps, deter-
mined by the bridge switches and the gas state. The equivalent
circuit for each stage of this operating sequence is presented in
Fig. 2 (bottom).

With the switches S1 and S4 turned on, an LC series-
resonant circuit is obtained, as presented in Fig. 2(a), and the
lamp current flows in the direction that will be defined as the
positive one, henceforth.

Due to the resonance, the lamp current 4y, grows, as
seen in Fig. 2 (top right), and consequently, the gas voltage
Vgas iNcreases until it reaches the breakdown voltage Viy,. The
breakdown occurs at time ¢}, and the gas is now represented by
the constant voltage source V;y,, as shown in Fig. 2(b); however,
the dielectric voltage vqje continues to grow as long as the lamp
current remains positive.

When the lamp current falls to zero at the time ¢.g, the
bridge turns off (spontaneous turn-off; see Section V), and the
lamp is disconnected from the source, as seen in Fig. 2(c);
consequently, given the capacitive behavior of the lamp, v1amyp,
remains constant at its positive peak value.

The next half cycle starts at Ti,yiqge/2, turning on the switch
pair S3, S2. The equivalent circuit in Fig. 2(d) produces a
resonant current in the negative direction. In this sequence,
the gas voltage is taken from V; to —Viy, to reach again the
breakdown condition. When vg,s is equal to —V4y,, the gas
capacitance Cyys is replaced by the inverted voltage source Viy
in Fig. 2(e). As done previously for sequence (c), the full bridge
is disconnected from the lamp, starting from sequence (f), when
the lamp current reaches zero and the lamp voltage reaches
its negative peak voltage. This voltage remains constant until
sequence (a) restarts at Tirigge. In this way, for steady state,
the negative lamp peak voltage and zero lamp current become
the initial condition for the equivalent capacitance of the first
sequence

Ulamp(to) = _Viamp Z-lamp(to) =0A. (1)
Using the discontinuous current mode (DCM) selected in
this work, the lamp operating frequency is defined by only the
bridge operation, as presented in Fig. 2 (top right).
The achievement of this DCM is implemented owing to a
specific switch, which is presented in Section V.
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IV. CONVERTER DESIGN

The converter is designed using the state plane analysis [11],
[22]. This method allows the determination of the operating
conditions for the converter—lamp system, using the equivalent
circuits from Fig. 2 (bottom). Although the state plane anal-
ysis can be used to find the transient response, only steady
state is presented in this paper. Hereafter, the positive current
sequences are analyzed; due to symmetry, the study of the
negative cycle leads to similar results.

A. State Plane Analysis

The state plane analysis is used to plot the current—voltage
behavior of a resonant circuit. Fig. 2(a) shows the resonant
equivalent circuit before gas breakdown occurs.

Normalized units are used, leading to the plot of circular
clockwise trajectories [11], [22], describing the current—voltage
characteristic for the lamp before ignition, as presented in Fig. 3

Vlamp
U=-—— 2)
Vin
ilamp . Cdielcgas
- L With Oy = —dieleas (3
Vvth Ceq « Cvdiel + Cgas ( )

After the gas breaks down, the equivalent resonant circuit
changes as shown in Fig. 2(b) with vg,s constant and equal
to Viy. Therefore, a new state plane is used. This plane draws
the normalized current—voltage characteristic for the dielectric
capacitor, being the dielectric current equal to the lamp current
(Fig. 4).

As the equivalent capacitance has changed from Cyq to Cljel,
normalization is redefined as follows, using * as notation to
remember the lamp ignition:
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Fig. 3. Two operating conditions before breakdown are plotted in the state
plane: When the gas breakdown happens (top) before the peak current and
(bottom) after the peak current. Only the positive current half cycle is shown.

B. State Plane: Before Breakdown Trajectory

As explained in Section III, at the beginning of the positive
current cycle, the initial lamp voltage is equal t0 —vjam peak
(1), and the initial lamp current is zero.

The normalized lamp current, j in Fig. 3, starts to rise, and the
operating point follows a circular path in the plane with the center
in Uy, as long as this equivalent circuit is valid, i.e., while the
gas voltage is inverted from —V;y, to Viy,. In this way, when the
gas breakdown occurs, the total voltage change in the gas is
2Vin. Accordingly, at the breakdown instant (¢, ), the lamp volt-
age Uy, is calculated using the capacitor voltage equation [23]

C
r — thr) = £ .
Uy u(tor) + Cdiel)

—U+2 (1 (6)
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Fig. 4. Two operating conditions are plotted in the state plane after break-
down: When the gas breakdown happens (top) before the peak current and
(bottom) after the peak current. Only the positive current cycle is shown.

At the same instant, the lamp current value is defined as the
breakdown current I, and, in the normalized form, as J,.
From trigonometric equations for either of the shaded triangles
in Fig. 3, we obtain

Ty = (Uin + U)* = (U — Uin)*. (7)

C. State Plane: After Breakdown Trajectory

The initial current for the state plane in Fig. 4 is equal to
the breakdown current [;,,. Given that normalization is different
from the previous sequence, (3) and (5) are used to find

Ji2 =, ®)

From the equivalent circuit in Fig. 2(b) and (4) at the instant
of the gas breakdown, the normalized dielectric voltage u* (tp, )
is equal to

u*(tbr) =Uy — 1. ©))

Equation (9) is the dielectric initial voltage for the state plane
in Fig. 4. Now, using geometrical relations for either of the
shaded triangles in the state plane in Fig. 4, we can write

Ji2 = (U = U)? = (Upr — Uin)?. (10)

Using (6)—(10) and solving and denormalizing the resulting

equation system, we find the lamp peak value in steady state
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Fig. 5. Transient response from simulation. (Top) Unstable state plane for
Vin > Vin and (bottom) stable state plane for Vi, < Viy,.

D. Operating Conditions

One should note that the lamp peak voltage depends only
on the input voltage and the parameters of the lamp, not on
the inductance value. A valid solution for (11) can be found
only when condition (12) is fulfilled, operating at the left of the
asymptote Vi, marked in Fig. 6

Vin < Vin. (12)

Otherwise, unstable operation occurs. The transient state
plane trajectory for stable and unstable operating conditions
is plotted from simulation in Fig. 5, using the DBD lamp
model. The topology of the SRI used in this paper is simi-
lar to that presented in the classical resonant step-up voltage
converter; the input voltage must be smaller than the output
voltage in order to respect the operating principle of this
topology [24].

The lamp peak current must be found in two different man-
ners depending on the operating case (Fig. 4, top or bottom).
The boundary condition between these two cases is obtained
graphically from the state planes in Fig. 3 for a normalized input
voltage U;,, equal to Uy, (6) [23].

For the operating case in Fig. 4 (top), the peak lamp current
is

2 ~ C, ie

Yamp — ('Ulamp -V ) z 1~ (13)
Otherwise,

- . Ce

Yamp = (Ulamp + ‘/m) Lq . (14)

The lamp average power is calculated as twice (positive and
negative sequences) the power dissipated by the gas conductance
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from the time ¢, until the discharge dies out at t.g (Fig. 2),
obtaining

Vin

—_— —1]. 15
V;:h_‘/in > ( )

]Dlamp = 4fbridge‘/t%1cg X (

Expression (15) shows that P, can be adjusted by means
of two degrees of freedom: Vi, and firidge-

For proper operation of the converter, the bridge must be
operated at a switching frequency firiqge Which allows the
current to fall to zero before the beginning of a new switching
sequence. Thus, considering the lamp current waveforms in
Fig. 2, condition (16) should be fulfilled

Toulse < —. 16
pulse 2fbridge ( )
With T},,15c computed using the state planes,
0 "2} 1 Ibr L
T ulse — — - = i I T ~
pul o + oF o, Aresin (Vin - ng)
1 . Iy L

+— |7 — arcsin - \/ )

w* (‘/in — Ulamp C(diel>

The mathematical relationships exposed in this section have
been numerically verified through simulation using the PSIM
circuit simulator (Fig. 6) and are used for the converter design
and the component selection.

V. COMPONENT SELECTION AND SIMULATIONS

The converter is dimensioned to supply a DBD excimer lamp
filled with a XeCl gas mixture. The equivalent electrical model
of this lamp presents a dielectric capacitance Cgie; = 95 pF,
a gas capacitance Cyas = 28.5 pF, and a breakdown voltage
Vin = 1.31 kV [25]. This lamp has been designed to accept
approximately 90 W of electrical power.

TABLE 1
THEORETICAL OPERATING POINT

5 A A
I8 lamp / lamp Vin Viamp L iamp L,
90 W 80 kHz 1116 V 3.96 kV 182 mA 147 mA

A. Operating Point

According to the experimental results presented in [7] and
[12] and studies in [2], [26], and [27], an excimer lamp with
similar characteristics to the one that we intend to supply
is typically operated at current frequencies in the range of
tens of kilohertz. In particular, from the results in [10], the
lamp performance is severely affected by operating frequencies
above 100 kHz; consequently, we chose fiamp = 80 kHz for the
converter validation. At this frequency, the theoretical voltages
and currents for a maximum P, = 90 W are presented in
Table L.

In order to validate the converter behavior, the converter
control is implemented in open loop, adjusting Piamp with Vi,
remaining in the stability region illustrated in Fig. 5 (bottom).

B. Switches

For this range of operating frequencies, high switching speed
offered by the MOSFET technology is necessary. Studying the
current—voltage characteristic for each switch, unidirectional
current switches capable of blocking bipolar voltage should be
used in the bridge. This switch characteristic corresponds to a
thyristor-like device [28] and is implemented by connecting a
diode (GBO7SHT12) in series with a MOSFET (P8NK100Z)
(Fig. 7).

C. Step-Up Transformer

The voltage values at the chosen operating point (Table I)
lead to the use of a step-up transformer connecting the DBD
lamp to the inverter. The implemented step-up transformer
has been designed with a transformation ratio of ten to re-
duce the peak voltage of the bridge switches to approximately
400 V.

Using the theoretical lamp peak current in Table I and ten
as the transformation ratio, the transformer wires are selected:
81 strands of 38 AWG litz wire for the primary and 33 AWG
single copper wire for the secondary.

The construction of this transformer is a challenge, since
its parasitic capacitance (C's seen in the secondary) should be
much smaller than the lamp equivalent capacitance, in order
to avoid any difference between the current injected by the
converter and the transformed current seen from the lamp. At
the same time, magnetizing inductance should be maximized to
conserve the operating principle presented in this paper.

To satisfy these two opposite criteria, in accordance with
[29] and [30], the best solution has been found by using one-
layer winding coil. The values obtained for the experimental
transformer are summarized in the circuit in Fig. 7.
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D. Inductance Value

The value of L (Table I) is calculated taking into account
the condition (16) and the component current ratings (13). An
inductance value of 23 mH seen on the secondary is calculated
based on (17) to obtain a duty cycle of approximately 70% at
fiamp = 80 kHz. This duty cycle provides enough dead time
for the switch turn-off and for the increase of the switching
frequency if necessary. Given a transformation ratio of ten, an
inductance L = 231 pH is used in the primary side.

E. Simulations

The converter, including the transformer parasitic elements
(Fig. 7), has been simulated using PSIM. The waveforms
obtained from this simulation are presented in Fig. 8 (top). The
step observed in the lamp current waveform %,y (marked as
“Gas breakdown”) is a result of the gas breakdown that changes
the current divider between the lamp equivalent capacitance

C,=7pF
Caier= 95 pF

C,..=28.5pF

V= 1.31kV

and the transformer parasitic capacitance [30]. The %o is not
zero during the dead time due to the effect of the magnetizing
inductance.

The output power P, obtained in simulation is pre-
sented in Fig. 6 for different values of fiamp. Because of
the transformer frequency response, the equivalent transformer
gain changes with the frequency operation; consequently, the
equivalent input voltage is reflected to the secondary using the
transformer gain measured experimentally: 9.3, 9.5, and 9.7 for
70, 80, and 90 kHz, respectively.

VI. EXPERIMENTAL RESULTS

The experimental validation of the proposed converter has
been achieved by measuring the electrical signals for the system
with a high-speed current probe (LeCroy APO15) and a high-
voltage differential probe (Agilent N2891A). The lamp voltage
is measured in the primary side of the transformer (vprim)
to reduce the impact of the voltage probe input impedance
(approximately 3.5 pF) in the resonant circuit.

A. Electrical Waveforms

In Fig. 8 (bottom), the inductance current ¢;, is shown.
The lamp voltage viamp, measured at the primary side of the
transformer, does not remain constant when the current is zero
because the transformer magnetizing inductance is not as big
as desired. The transformer parasitic elements also affect the
power transfer, as shown in Fig. 6: Simulation results taking
into account these parasites are very near to the experimental
measurements allowing fine adjust of the design, while theoret-
ical ones are less precise.

B. Performance

The benefits of the SRI are validated experimentally by
measuring and comparing its performance with the square-
waveform current supply previously proposed in [10].

1) Efficiency: The measurement of the converter efficiency,
in terms of electrical power supplied to the lamp, is obtained
as follows: The vprim and i1amp Output signals are multiplied
in the oscilloscope, computing the lamp instantaneous power.
Then, this power signal is averaged (averaging time of 1 ms)
and multiplied by the transformation ratio, obtaining F,mp. In
a similar manner, the power supplied by the constant voltage
source P, is found, computing the converter efficiency as
-Plamp/ -Pin-
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The measurement of P,y obtained for different values of
Vin at flamp = 80 kHz is presented in Fig. 6, and the corre-
sponding converter efficiencies are shown in Fig. 9. It is found
that the transformer is responsible for most of the converter
losses.

In comparison, for the square-waveform current supply pro-
posed in [10] at the particular operating point of Plamp = 90 W,
fiamp = 80kHz, a duty cycle of 53%, and a current intensity of
125 mA, the converter efficiency obtained is 57%, against 91%
for the SRI.

2) Stability: For an input voltage slightly higher than 117V,
which corresponds to approximately 1170 V in the secondary,
the proximity to the asymptote (V;, = 1.31 kV in Fig. 6)
produces an erratic behavior of the system, with intermittent
variations of up to 50 W in F,,;, for a constant value of Vjj,.

As Vi, approaches to the asymptote, the system is more
susceptible to small perturbations caused by the main volt-
age source or by the dynamic behavior of the lamp, which
is not included in the lamp simplified model used for this
design.

3) EMI: The SRIis an advantageous supply in terms of EMI
when compared with a hard-switching topology. This benefit
is evaluated by performing a fast Fourier transform (FFT) of
the lamp current for both topologies under similar operating
conditions of fi,mp and output power (Fig. 10).

4) UV Radiation: For the XeCl excimer lamp used as load,
the typical radiation wavelength is 308 nm; the UV radiation
power is measured with the optometer OPTIK P-9710 using the
UV detector SN5816, installed at 12 mm of the lamp surface.
The UV power obtained using the SRI at P, = 90 W and
flamp = 80 kHz is 17.7 mW/cm?. For the same lamp power,
frequency, and pulse duration, the UV radiation obtained with
the square-waveform current is 20 mW/cm?. This result reveals
a decrease of around 10% in the UV power due to the current
form factor.

The UV waveform is acquired with a Thorlabs PDA-25K
photodetector, installed at 25 mm of the lamp surface. As
already mentioned in [9], as can be seen in Fig. 11, the wave-
form of the UV radiation is similar to the 4,mp lamp current
waveform (absolute value).
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Fig. 10.  FFT of the lamp current for SRI and square-waveform current-source
topologies.
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UV waveform and excilamp current for the SRI.

VII. CONCLUSION

The use of the SRI topology, operating in DCM, has been
proved to be a good option to supply a DBD excimer lamp.
With the operating mode selected in this work, the lamp power
is imposed with two degrees of freedom, and ZCS is achieved,
reducing switching losses and EMI. The use of the lamp
electrical model, in conjunction with the state plane analysis,
gives an insight into the process and allows the calculation of
the electrical values, including the lamp power, as a function
of the input voltage, the inverter frequency, the components,
and the parameters of the lamp. Analytical study, simulation,
and experimental results are in accordance, validating the SRI
as an efficient topology for the supplying of DBD excimer
lamps. Satisfactory efficiency results of up to 93% have been
obtained for the converter supplying a DBD UV excimer lamp.
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