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Consider the dynamical system u + 2o:u + u = acoswt where the 
position u is constrained to remain above an obstacle of height Umin; 

when u reaches the obstacle, its velocity is reversed and multiplied by a 
restitution coefficient e E [0, 1]. For certain choices of parameters, the 
solutions are chaotic. We compute the Lyapunov exponents by three 
different methods, and we compare the results. The computation of 
these numbers is very sensitive to the method, and to the numerical 
parameters for a given method, even with a very accurate method. 

Mathematics Subject Classification: Dynamical Systems 

Keywords: Dynamical Systems, Impact problem, Lyapunov Exponents 

1 Introduction 

In this article, we consider a class of non smooth dynamical systems, which 
describe the motion of a mechanical system with one degree of freedom, subject 
to a unilateral constraint on the position. vVhen this constraint is saturated, 
the velocity is reversed and multiplied by a restitution coefficient. 

More precisely, let f be a continuous function from IR3 to IR, which is 
Lipschitz continuous with respect to its last two arguments. Assume that a 
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real number Umin and a restitution coefficient e are given. The initial data are 
uo > Umin and Vo, such that Vo > 0 if uo = Umin· The solutions of the Cauchy 
problem, are defined as follows: u is a continuous function from [to, T] whose 
second derivative (in the sens of distributions) is a measure. This condition 
implies that the first derivative u of u is a function of bounded variation, and 
in particular, it is continuous almost everywhere, and it is continuous from the 
left and from the right at all points of (to, T] and [to, T) respectively. Thus, the 
difference u- j(t, u, u) will be a measure 11; the function u and the measure 11 
have to satisfy the following relations: 

u=f(t,u,u)+/1 
U > Umin 

suppf1 C {t: u(t) = Umin} 

if u(t) = Umin, then u(t + 0) = -eu(t- 0) 

u(to) = Uo, u(to) = Vo 

(1) 
(2) 
(3) 
(4) 
(5) 

A few words of comment on this definition are in order: the first derivative 
of u is expected to be discontinuous at impacts, for obvious geometric reasons; 
therefore, it makes sense to assume that the second derivative of u has Dirac 
masses, or more generally is a measure. The measure 11 is the reaction of 
the obstacle at impact, as can be seen from (1), which is basically Newton's 
law. Condition (2) means that u(t) remains inside the convex of constraints 
[umin, oo ). The reaction can be different from 0 only when there is a contact: 
this is relation (3). Finally, condition (5) describes the constitutive law of the 
impact, with the help of the restitution coefficient e. 

It has been proved in [5] that problem (1)-(5) possesses a solution. How­
ever, uniqueness is not always true and an example has been given in [12]. 
Nevertheless, generic uniqueness has been proved in a special case [2] for n 
degrees of freedom; uniqueness has also been proved for one degree of freedom 
when f is analytic with respect to all its arguments [13]. 

A simple case of (1) - ( 4) is a forced vibrating system with one degree of 
freedom defined by 

j(t, u, v) =a cos(wt) - 2av- u. (6) 

In this case, the uniqueness theorem of [13] applies. 
For particular values of the parameters a, Umin and e, the problem (1 )­

(5) with the choice (6) of function f shows typically non linear phenomena 
of sensitivity to initial data, and there are values of the parameter for which 
there exists a "strange" attractor. 

In this article, we compute Lyapunov exponents for the system (1)-(6), 
using two different numerical methods. 
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The first numerical method is the impact detection method, and it is very 
straightforward: suppose we are given initial data u(tk) = uk and u(tk+O) = vk 
at an impact time tk. vVe use the elementary and formulre for the free flight 
solution, and we seek the first time tk+l > tk for which u(tk+I)- Umin vanishes. 
vVe perform this search by sweeping forward in time so as to find a small 
interval where u- Umin changes sign; on this small interval, we find the impact 
time by Newton's method. The accuracy is limited only by the capability of 
the computer. At instant tk+l, we reverse the velocity according to rule (4), 
and we start the process again using the new values of the initial data. 

The second numerical method is the [4,6] numerical scheme defined in [4,6]. 
Let us describe this scheme: denote PK the projection on the convex set K = 
[(1 + e)umin, +oo); it is given by 

PK(x) = max(x, (1 + e)umin), (7) 

and a sequence Fn, which is defined by: 

(8) 

The numerical scheme is given by the following relation: 

(9) 

It turns out that the computations using (7)-(9) are much faster than the 
computations by the impact detection method. However, the scheme is not 
very accurate; it is not better than first order with respect to the position. 

It has been observed that in a chaotic case, the attractor of (1 )-(6) calcu­
lated by the impact detection method is well approximated by the attractor 
calculated by the numerical scheme (7)-(9). 

vVe would like to estimate how well the numerical scheme (7)-(9) approx­
imates more refined information, namely the Lyapunov exponents of (1)-(6): 
we reduce our continuous time dynamical system in three dimensions to a dis­
crete time dynamical system, by using a Poincare map; this is easy because we 
cut the phase space by the planes t = t0 + kT, where T = 21r jw is the period 
of the forcing. In the two dimensional case, the largest Lyapunov exponent, if 
it exists, describes the average rate of divergence of two infinitesimally close 
trajectories; the sum of the two Lyapunov exponents, if it exists, describes the 
average rate of evolution of infinetesimal volume in phase space. 

There are classical methods for calculating numerically Lyapunov expo­
nents; they are described for instance in [7], and consist essentially in giving 
a reasonably stable numerical implementation of the definition of the Lya­
punov exponents. The calculations of Lyapunov exponents are very close to 
the approximation of eigenvalues of a matrix by the power method, and it 
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has been known for a long time that renormalizations are needed to make the 
computation possible. 

The fact that our system is not smooth is not a serious problem, because 
the system can be linearized whenever the impact takes place with a strictly 
positive velocity, and we never observed tangential impacts for choices of the 
parameters leading to a chaotic behavior. 

The article is organized as follows: in section 2, we recall the definition 
of the Lyapunov exponents, and we define a program which could lead to a 
theoretical treatment of the qualitative questions we consider, and we describe 
its state of advancement. In section 3, we differentiate the flow with respect 
to the initial data: we consider separately the flow in continuous time and the 
flow in discrete time, and we show that a crucial term disappears in the discrete 
time case. In section 4, we explain the three methods of computation of the 
Lyapunov exponents. In section 5, we describe and compare our numerical 
results. In section 6, we conclude. 

2 Definition of Lyapunov exponents 

Let us recall the definition of Lyapunov exponents in a smooth case: let snx 
be a trajectory of a discrete dynamical system; if 8 is very small, the largest 
Lyapunov exponent is the asymptotic rate of evolution of ISn(x + 8)- sn(x)l 
as time n tends to infinity, if it exists; similarly if 81 and 82 are independant, 
the sum of the first two Lyapunov exponents describes the asymptotic rate of 
evolution of the area of the paralellogram built on the vectors sn(x+8!)-Sn(x) 
and sn(x + 82 ) - sn(x). That such objects can be defined and exist is a 
non trivial fact, which is proved only in rather particular cases. Let us state 
just a few of the results which would enable one to prove that the Lyapunov 
exponents exist. Our sources for the following description have been [9], [10], 
[11] and [14]. 

vVe give first some definitions which are classical in ergodic theory: consider 
a measurable space, i.e. a pair (X, x) where X is an abstract set, and x is a 
o--algebra of its subsets. A mapping S from X to itself is an endomorphism 
of (X, x) if for all C belonging to x, the set r-1C belongs also to x. A 
measure 11 on (X, x) is invariant under the endomorphism S iff for all C E x, 
J1(S-1C) = J1(C). 

The celebrated Birkhoff-Khinchin ergodic theorem states that if 11 is invari­
ant under S, then for almost every x and for all f E L1 (X, x, 11) the following 
limit 

/(x) = lim 
1 t f(SJx) 

n-+oo n + 1 
j=O 
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exists. Moreover, the limiting function f is invariant, i.e; 

/(Sx) = /(x), 

for f-L-almost all x E X. 
LetS be an endomorphism of (X, x) and let fL be a probability measure that 

is invariant under S. The symmetric difference of two sets A and B is denoted 
A~B, and a set A E xis said to be invariant mod 0 iff f-L(A~(S- 1 A)) = 0. 

An endomorphism S is called ergodic if any invariant modulo 0 set is of 
measure 0 or 1. An equivalent formulation of this definition is that in the 
Birkhoff-Khinchin theorem, f is a constant: 

f(x) =.I f(x) dfJ.(x). 

Alternatively, it is possible to say that fL is ergodic iff the time and the space 
averages coincide. 

The existence of an invariant measure can be proved if X is a compact 
metric space, xis the Borel o--algebra and Sis an homeomorphism of X. This 
result is due to Bogoliubov and Krilov and can be found for instance in [9], 
page 8, Lemma 1.2. 

In order to prove that in our problem we have an invariant measure, we 
would have to follow the following program: first observe that with a periodic 
forcing, it makes sense to think of time as a periodic variable of period 21r / w = 
T; the mappingS maps the position and velocity at time t0 to their image by 
the flow at time t0 + T. The second step is to show that the system defined 
by (1)-(6) has a bounded invariant set in (IR/T) x Ve; consider thew-limit set 

A= n{un~k{Snx}} 
k>O 

for some initial data x = ( u0 , v0 )• and show that A is compact. 
This step has been performed in a slightly different case by Angles, in his 

thesis [1], and we believe that the methods of Angles apply with very little 
adjustement to the present case. 

Then the really difficult task would be to prove that restricted to A, S is 
an homeomorphism; it is clear that it is continuous, thanks to the continuous 
dependence with respect to data; but its inverse could be very bad: S could 
even lack an inverse if (0, o)• belonged to A. Proving or disproving that (0, o)• 
belongs to A looks like a very hard problem. 

Even if this result were proved, our invariant measure on A could be non 
unique and very badly behaved. However, the existence of such an invariant 
measure would be an important fact, because it would build the foundations 
for the following question: consider a function of x, such as the average kinetic 
energy: it is defined by 
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E(x) ~ ~.lor I<P2(lo + s, Lo, u.o, vo)l 2 ds 

where ( u0 , v0 ) is any representative of the class x and <P 2 is the second 
component of <P. The existence of an average kinetic energy, i.e. of the limit 

1 .l(n+l)T 
lim ( )T I<P2(to+s,to,uo,vo)l 2ds 

n-+oo n + 1 0 

is equivalent to the existence of the limit 

1 n 

lim 2:: E(Snx). 
n-+oo n + 1 

j=O 

Clearly, this is a question in ergodic theory. 
Now, we state Oseledec's theorem concerning existence of Lyapunov expo­

nents [9, theorem 2.1, page 23]: 

Theorem 2.1 (Oseledec). Let S be a C 1-diffeomorphism of a compact 
manifold X, and let 11 be an ergodic measure. Then there are two possibil­
ities: 

(i) there exists A E IR such for all v in the tangent space TxM to M at x, 

(10) 

for almost all x in M, or 

(ii) there exists .\1 > .\2 and a splitting TxM = E~ EB E;: (with the maps 
x f------+ E~, E;: being measurable) such that for all v1 in E~, and all v2 in E;:: 

(11) 

and 

(12) 

for almost all x in M 

In our case, Sis not a C 1-diffeomorphism, and we have not proved that there 
exists an ergodic measure /1· Therefore, Oseledec's theorem does not enables 
us to establish the existence of Lyapunov exponents. 

However, our problem is not totally devoid of regularity: let us say that 
a strict impact time is an impact time for which the left limit of the velocity 
does not vanish. It is possible to calculate the differential of the mapping 
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(u0 ,u!) f------+ <P(t1 - O,t0 ,u0 ,u!), provided that the interval (t0 ,t!) contains only 
a finite number of impact times, and that they are strict impact times. 

vVhen there is exactly one impact time, the differential is computed explic­
itly, and it is given by a 2 x 2 matrix; the most important term in this matrix 
comes from the differentiation of the impact time with respect to the initial 
data, which is possible only if the impact time is strict. 

Thus, the Lyapunov exponents could be well defined though none of the 
conditions of Oseledec's theorem are satisfied; but their existence and their 
computation is a purely experimental matter. In what follows, it should be 
always understood that any object we consider should be complemented by 
the phrase "if it exists". But we shall not repeat it systematically. 

In our case, the phase space is two dimensional, which leads to the compu­
tation of two Lyapunov exponents. 

The larger one, A. 1 , measures the rate of evolution of a one dimensional 
infinitesimal element of the phase space. It can be given by the evolution of 
the distance between the reference trajectory and a neighbouring one. 

The sum of the smaller one, A.2 , and the larger one measures the rate of 
evolution of infinitesimal volume elements in the phase space. If DS(x) had 
real distinct eigenvectors v1 and v2 at some point x, one could understand the 
definition of the second Lyapunov exponent in a more geometrical fashion: the 
parallelogram built on v1 and v2 is sent by the tangent mapping at x to S into 
another parallelogram built on DxSv1 = exp(A.1t) and DxSv2 = exp(A.2t)v2 . 

Then the area of the parallelogram is multiplied by exp((A.1 + A.2)t). 
In particular, if A. 1 > 0 and A. 1 + A.2 < 0, the areas are contracted, while 

the distances can be expanded: this is precisely a situation which can lead to 
chaotic behavior. 

For a dissipative dynamical systems the areas are contracted, as a rule. 

3 Differentiation of the continuous and discrete 
flows 

3.1 The continuous flow 

In this section, we calculate the differential of the mapping x0 f------+ <P ( t 1, t0 , x0 ) 

when there is exactly one impact time, in the interval ( t0 , t!), and the impact is 
strict, i.e. <P2(tc- O,to,x) < 0. vVe denoted Xo = (uo,vo), the initial condition 
in the phase space. 

To do this, we express the flow on such an interval as the composition of 
the flow from time t 0 to time tC) the time of the impact, of a reflexion and of 
the flow from time tc to time t 1 . Since the reflexion law is given by 

(13) 

7/15 



the phase after the impact is related to the phase before the impact by a linear 
transformation whose matrix is 

R = ( 1 0 ) 
0 -e 

(14) 

It is convenient to denote 

<P(tc- 0, to, Xo) = Xc· (15) 

Therefore, we may write now 

(16) 

Theorem 3.1 Assume that the impact at tc is strict. Denote ¢( t) = f ( t, u( t), u( t 
Then the differential of x f------+ <P ( t 1 , t0 , x) is equal to 

(17) 

where 

(18) 

Proof. vVe differentiate the identity (16) with respect to x0 and we obtain 

with 
W = { D1 <P(tc- 0, to, Xo)Dtc + D3<P(tc- 0, to, Xo)} 

vVe calculate the different quantities which appear in (19): thanks to (15), 
tc satisfies 

<P1 (tc - 0, to, Xo) = Umin, 

which we differentiate with respect to x0 ; as the impact is strict, we can see 
that 

D ( ) __ D3<P1(tc- O,to,xo) 
tc Xo - u( tc - 0) . 

Let us calculate now D 2 <P: we differentiate the differential equation and the 
initial conditions satisfied by <P 1 (t, s, x) 

with respect to the second argument, and we obtain 
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Therefore, if we observe that on intervals without impact the differential of <P 
with respect to the third argument is simply the fundamental solution of the 
corresponding constant coefficient homogeneous linear system, we can see that 

( 
-u(tc + 0) ) 

D2<P(t1, tc + 0, Rxc) = D3<P(t1, tc + 0, Rxc) -¢(tc + O) · 

On the other hand 

Moreover, we apply the matrix identity 

to transform the expressions containing D3 <P 1 into expressions containing 
D3 <P. Therefore we may write (6.7) as 

with 

U = R R ( u(tc- 0) 0 ) 1 R ( u(tc + 0) 0 ) 1 (21 ) 
+ ¢(tc- 0) 0 u(tc- 0) + ¢(tc + 0) 0 u(tc- 0) 

A direct computation shows that the quantity in brackets is equal to 

which is precisely our claim. 

3.2 The discrete flow 

The discrete problem corresponding to (1)- (4) is defined by (7), (8) and (9). 
Let the discrete velocity be 

un+l- un 
vn=----

h 

The initial data for (6) and (7) are U0 and 

ul- uo 
vo=--­

h 

(22) 
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The perturbed solution (Jn corresponds to perturbed initial conditions U0 and vo. 
Let N (resp N) be the set of integers n such that the constraint is active 

on un (respectively on (Jn), i.e. 

and 
N = { n > 1 : 2 [Jn + ( e - 1) [Jn- 1 + h 2 ftm < ( 1 + e) Umin}. 

Of course, for n EN, un+1 + eun- 1 = (1 + e)umin· 

Lemma 3.2 For all integer M such that for all n E {1, ... M}, 2Un + 
( e- 1 )un-1 + h2 pn is not equal to (1 + e )umin, there exists a p such that for 
IU0

- U0 1 + IV0
- V0 1 < p, then N n {0, ... 'M} coincides with N n {0, ... 'M}. 

Proof. The mapping which assigns to ( u, v) the number w defined by 

w + eu = P(l+e)K(2v + (e- 1)u + h2 f(t, v, (w- u)/2h)) (23) 

is continuous; indeed, PK is a contraction, and ( u, v) f------+ h2 f ( t, v, ( w - v) /h) 
is Lipschitz continuous with a Lipschitz ratio estimated by Lh, where L is the 
Lipschitz constant off with respect to its last two arguments. Therefore, the 
principle of strict contractions implies that for Lh < 1, there exists a unique 
solution w of (23). If u' and v' are different data, we subtract (23) from 

w' + eu' = P(1+e)K(2v' + (e -1)u' + h2 f(t,v', (w'- u')/2h)), 

and we obtain 

(1- Lh)lw'- wl < (1 + hL)Iu'- ul + (2 + h2L)Iv- v'l, 

which implies immediately our claim about continuity. 
Therefore, for all n > 1' (Jn tends to un as I U0 

- U0 I + I V0 
- V 0 I tends to 

0. If 2Un + ( e- 1 )un-1 + h2 pn is not equal to (1 + e )umin, then for c small 
enough, 2Un + ( e- 1 )(Jn- 1 + h2 pn is not equal to (1 + e )umi~, and therefore 
the constraints are saturated for un if they are saturated for un. 

Let us define the discrete flow <Ph as the mapping which assigns to the 
discrete times t 0 and tn = t(O + nh) the solution Xn = (Un, Vn)T of the 
numerical scheme at time tn which satisfied the initial data X 0 = (U0

, V 0
)T 

at the initial time t0
. 

It should be remarked here that the phase space for the discrete flow has not 
been studied in the same detail as the phase space for the flow in continuous 
time. Our present understanding is that this phase space is IR2

. 
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Theorem 3.3 Consider a discrete time interval { tk, ... , tl} on which the 
solution un of the numerical scheme satisfies 

n #- p,p + 1 and tk < tn < tz ==::} 2Un + (e -1)Un-1 + h2 Fn > (1 + e)umin, 

(24) 
and 

n = p or n = p + 1 ==::} 2Un + ( e - 1) un- 1 + h2 pn < ( 1 + e) Umin. ( 25) 

The derivative of the flow with respect to its spatial argument is given by 

(26) 

where 

R = ( -e 0 ) 
0 -e 

(27) 

Proof. vVe can decompose the discrete flow on this interval as 

and 
xp-1 = <Ph(tp-1, tk, xk). 

Then, the differentiation of xz with respect to Xk is performed by composition 
of differentiations. The assumption on the saturation of constraints at discrete 
times p and p + 1 implies 

so that the differential of (UP+1' VP+1) with respect to (UP- 1' VP- 1) has matrix 

fl= ( ~e 

Then, by composition we obtain 

4 The three computational methods 

In this section, we compute numerically Lyapunov exponents for the problem 
(1)-(6) using three different methods. The first two methods are based on the 
impact detection scheme. The third method is based on the scheme (7)-(9). 

vVe have to calculate ln(ID(Sk)(x)vol)/k. In order to obtain a reliable com­
putation, we have to normalize at each step the iterates; otherwise, the norm 
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of the vectors DSk(x)v0 increases exponentially with k, and the computation 
leads to an overflow. This situation is reminiscent of the power method for the 
computation of eigenvalues of matrices ([8], [3]), and the method employed is 
essentially the same: let Xj be the sequence 

x0 = x, Xj = S(xj_I). 

Then, by composition of differentials, 

D(Sk)(x) = DS(xk-d · · · DS(xo). 

Define a sequence of vectors 

Then we have the identitites 

and by an immediate induction 

A 

V· J 

vj = llvjll. 

k-1 

DS(xk-d · · · DS(xo) = vk II llvjll· 
j=l 

Thus, we will compute 
1 k 

-\1,k = k 2:: ln llvj II, 
j=l 

as an approximation to the true Lyapunov exponent, if it exists. 

(28) 

Similarly, we have to calculate the second Lyapunov exponent: once again, 
the comparison with the methods used for the computation of matrix eigenval­
ues is illuminating: it is enough to compute ln I det D(Sk)(x)l, and to subtract 
from this number -\1,k· Computationnally, this procedure would be highly un­
reliable, since the image of a basis by D(Sk)(x) becomes extremely singular as 
k tends to infinity; thus, we modify the computation as follows: 

k 

det D(Sk)(x) =II det DS(xj_I), 
j=l 

and we calculate the determinant of DS(xj-d with the help of a second se­
quence of vectors Wj defined by 
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In other words, the basis {vj_ 1 ,wj_1 } is transformed into {vj,wj} by the lin­
earization of the Poincare map S, and then submitted to Gram-Schmidt or­
thogonalization. Then 

Therefore, we define 

k 

>..2,k = ~ 2::In llwj- (wj · vj)vjll, 
j=l 

to be the numerical approximation of the second Lyapunov exponent. 

(29) 

The numerical differentiation of the continuous time and the discrete time 
flows is implemented in a very simple fashion: let c be a small positive number, 
and let 

Given X 0 and t 0 , we define the numerical differential Dc: S(Xo) of the Poincare 
map S as the matrix given by its column vectors 

The same definition applies for the discrete time flow: 

The three numerical schemes will be denoted 

• IDED Impact Detection, Exact Differentiation, 

• IDND Impact Detection, Numerical Differentiation, 

• NSND Numerical Scheme, Numerical Differentiation. 

In IDED, we use compute an approximation of DS to machine precision 
of DS, which is given by formula (6.6) when t 1 = t0 + T, and there is only 
one impact in the time interval (to, t 0 + T). In IDND, we replace DS by Dc: S, 
and in NSND, we use Dc: Sh. vVe did not try to compute exactly the derivative 
of Sh: it would have required the integration of a linear difference equation 
which admits an explicit solution because of its very simple nature. However, 
we claim that for c small with respect to h, the results of our computation 
must be bad; therefore, it would be of little interest to let c tend to 0: this is 
the reason why we did not perform the relevant calculation. 

13/15 



5 Numerical results 

All our computations were performed in double precision. 
All the results that are described in this section are obtained with e = 0.5 

and the initial data u0 = 0 and v0 = 0.1. vVe start with a comparison of IDED 
and IDND: we performed the computation for 3000 periods, a time step h used 
as a sweeping parameter of h = T /2513, and c = lo-s in IDND; of course T 
is the period T = 27r /50. By convention, Aj,k is the numerical approximation 
of Aj obtained by a computation on k periods. The IDND give this results 

A1 3ooo = 3.05694 and A2 3ooo = -15.06065, 
' ' 

and the IDED give the results 

A1 3ooo = 3.05695 and A2 3ooo = -15.06066 
' ' 

The results obtained by respectively by IDED and IDND have 5 common 
significative digits at least. 

vVe observe that the first Lyapunov exponent is positive, and the second 
is negative, and their sum is negative: this is in agreement with the chaotic 
character of the dissipative system we considered. Another computational 
observation is that IDED is much faster than IDND. 

If we use values of c which are very small with respect to h in the NSND 
scheme, the sum of the two Lyapunov exponents is positive; for instance, when 
h = T /2513 and s = lo-s, we obtained 

)..1 3000 = 65.11' )..2 3000 = -5.55 
' ' 

This fact led us to compute the Lyapunov exponents with c somewhat 
larger than h: with the choice c = 3h, h = T /40000, the NSND method gave 
reasonable results 

6 Conclusion. 

The comparison of the different methods used for the computation of the 
Lyapunov exponents has showed a number of discrepancies and difficulties 
of numerical origin. It could be argued that NSND gives bad results because it 
is of low order; however, IDED does not perform too well. Thus, we observed 
that strictly numerical and apparently harmless parameters can seriously alter 
the result of a computation. 

Therefore, the conclusion is a caveat: any computations of a Lyapunov 
exponent should be subjected to a serious evaluation performed by applying 
several different numerical methods, and by appraising the effect of all the 
numerical parameters, including the ones which seem innocuous. 
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