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Consider the dynamical system u + 2o:u + u = acoswt where the position u is constrained to remain above an obstacle of height Umin; when u reaches the obstacle, its velocity is reversed and multiplied by a restitution coefficient e E [0, 1]. For certain choices of parameters, the solutions are chaotic. We compute the Lyapunov exponents by three different methods, and we compare the results. The computation of these numbers is very sensitive to the method, and to the numerical parameters for a given method, even with a very accurate method.

Introduction

In this article, we consider a class of non smooth dynamical systems, which describe the motion of a mechanical system with one degree of freedom, subject to a unilateral constraint on the position. vVhen this constraint is saturated, the velocity is reversed and multiplied by a restitution coefficient.

More precisely, let f be a continuous function from IR 3 to IR, which is Lipschitz continuous with respect to its last two arguments. Assume that a real number Umin and a restitution coefficient e are given. The initial data are uo > Umin and Vo, such that Vo > 0 if uo = Umin• The solutions of the Cauchy problem, are defined as follows: u is a continuous function from [to, T] whose second derivative (in the sens of distributions) is a measure. This condition implies that the first derivative u of u is a function of bounded variation, and in particular, it is continuous almost everywhere, and it is continuous from the left and from the right at all points of (to, T] and [to, T) respectively. Thus, the difference uj(t, u, u) will be a measure 11; the function u and the measure 11 have to satisfy the following relations:

u=f(t,u,u)+/1 U > Umin suppf1 C {t: u(t) = Umin} if u(t) = Umin, then u(t + 0) = -eu(t-0) u(to) = Uo, u(to) = Vo (1) (2) (3) (4) (5) 
A few words of comment on this definition are in order: the first derivative of u is expected to be discontinuous at impacts, for obvious geometric reasons; therefore, it makes sense to assume that the second derivative of u has Dirac masses, or more generally is a measure. The measure 11 is the reaction of the obstacle at impact, as can be seen from (1), which is basically Newton's law. Condition (2) means that u(t) remains inside the convex of constraints [umin, oo ). The reaction can be different from 0 only when there is a contact: this is relation [START_REF] Golub | Matrix Computations[END_REF]. Finally, condition (5) describes the constitutive law of the impact, with the help of the restitution coefficient e.

It has been proved in [START_REF] Paoli | Mouvement a nombre fini de degres de liberte avec contraintes unilaterales: cas avec perte d'energie[END_REF] that problem (1)-( 5) possesses a solution. However, uniqueness is not always true and an example has been given in [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF]. Nevertheless, generic uniqueness has been proved in a special case [START_REF] Carriero | Uniqueness of the one-dimensional bounce problem as a generic property in L 1 ([0, T]; IR)[END_REF] for n degrees of freedom; uniqueness has also been proved for one degree of freedom when f is analytic with respect to all its arguments [START_REF] Schatzman | Uniqueness and continuous dependence on data for onedimensional impact problems[END_REF].

A simple case of (1) -( 4) is a forced vibrating system with one degree of freedom defined by j(t, u, v) =a cos(wt) -2av-u. [START_REF] Paoli | A numerical scheme for a dynamical impact problem with loss of energy[END_REF] In this case, the uniqueness theorem of [START_REF] Schatzman | Uniqueness and continuous dependence on data for onedimensional impact problems[END_REF] applies.

For particular values of the parameters a, Umin and e, the problem (1 )- [START_REF] Paoli | Mouvement a nombre fini de degres de liberte avec contraintes unilaterales: cas avec perte d'energie[END_REF] with the choice (6) of function f shows typically non linear phenomena of sensitivity to initial data, and there are values of the parameter for which there exists a "strange" attractor.

In this article, we compute Lyapunov exponents for the system (1)-( 6), using two different numerical methods.

The first numerical method is the impact detection method, and it is very straightforward: suppose we are given initial data u(tk) = uk and u(tk+O) = vk at an impact time tk. vVe use the elementary and formulre for the free flight solution, and we seek the first time tk+l > tk for which u(tk+I)-Umin vanishes. vVe perform this search by sweeping forward in time so as to find a small interval where u-Umin changes sign; on this small interval, we find the impact time by Newton's method. The accuracy is limited only by the capability of the computer. At instant tk+l, we reverse the velocity according to rule (4), and we start the process again using the new values of the initial data.

The second numerical method is the [START_REF] Paoli | Schema N umerique pour un modele de vibrations avec contraintes unilaterales et perte d'energie aux impacts[END_REF][START_REF] Paoli | A numerical scheme for a dynamical impact problem with loss of energy[END_REF] numerical scheme defined in [START_REF] Paoli | Schema N umerique pour un modele de vibrations avec contraintes unilaterales et perte d'energie aux impacts[END_REF][START_REF] Paoli | A numerical scheme for a dynamical impact problem with loss of energy[END_REF].

Let us describe this scheme: denote PK the projection on the convex set K =

[(1 + e)umin, +oo); it is given by

PK(x) = max(x, (1 + e)umin), (7) 
and a sequence Fn, which is defined by: (8)

The numerical scheme is given by the following relation:

It turns out that the computations using (7)-( 9) are much faster than the computations by the impact detection method. However, the scheme is not very accurate; it is not better than first order with respect to the position. It has been observed that in a chaotic case, the attractor of ( 1)-( 6) calculated by the impact detection method is well approximated by the attractor calculated by the numerical scheme (7)- [START_REF] Pollicott | Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds[END_REF]. vVe would like to estimate how well the numerical scheme (7)-( 9) approximates more refined information, namely the Lyapunov exponents of (1)-( 6):

we reduce our continuous time dynamical system in three dimensions to a discrete time dynamical system, by using a Poincare map; this is easy because we cut the phase space by the planes t = t 0 + kT, where T = 21r jw is the period of the forcing. In the two dimensional case, the largest Lyapunov exponent, if it exists, describes the average rate of divergence of two infinitesimally close trajectories; the sum of the two Lyapunov exponents, if it exists, describes the average rate of evolution of infinetesimal volume in phase space.

There are classical methods for calculating numerically Lyapunov exponents; they are described for instance in [START_REF] Parker | Pratical Numerical Algorithms for Chaotic Systems[END_REF], and consist essentially in giving a reasonably stable numerical implementation of the definition of the Lyapunov exponents. The calculations of Lyapunov exponents are very close to the approximation of eigenvalues of a matrix by the power method, and it has been known for a long time that renormalizations are needed to make the computation possible.

The fact that our system is not smooth is not a serious problem, because the system can be linearized whenever the impact takes place with a strictly positive velocity, and we never observed tangential impacts for choices of the parameters leading to a chaotic behavior.

The article is organized as follows: in section 2, we recall the definition of the Lyapunov exponents, and we define a program which could lead to a theoretical treatment of the qualitative questions we consider, and we describe its state of advancement. In section 3, we differentiate the flow with respect to the initial data: we consider separately the flow in continuous time and the flow in discrete time, and we show that a crucial term disappears in the discrete time case. In section 4, we explain the three methods of computation of the Lyapunov exponents. In section 5, we describe and compare our numerical results. In section 6, we conclude.

Definition of Lyapunov exponents

Let us recall the definition of Lyapunov exponents in a smooth case: let snx be a trajectory of a discrete dynamical system; if 8 is very small, the largest Lyapunov exponent is the asymptotic rate of evolution of ISn(x + 8)-sn(x)l as time n tends to infinity, if it exists; similarly if 8 1 and 8 2 are independant, the sum of the first two Lyapunov exponents describes the asymptotic rate of evolution of the area of the paralellogram built on the vectors sn(x+8!)-Sn(x) and sn(x + 8 2 ) -sn(x). That such objects can be defined and exist is a non trivial fact, which is proved only in rather particular cases. Let us state just a few of the results which would enable one to prove that the Lyapunov exponents exist. Our sources for the following description have been [START_REF] Pollicott | Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds[END_REF], [START_REF] Ruelle | Ergodic theory of differentiable dynamical systems[END_REF], [START_REF] Ruelle | Chaotic Evolution and Strange Attractors[END_REF] and [START_REF] Ya | Topics in Ergodic Theory[END_REF]. vVe give first some definitions which are classical in ergodic theory: consider a measurable space, i.e. a pair (X, x) where X is an abstract set, and x is a o--algebra of its subsets. A mapping S from X to itself is an endomorphism of (X, x) if for all C belonging to x, the set r-1 C belongs also to x. A measure 11 on (X, x) is invariant under the endomorphism S iff for all C E x,

J1(S-1 C) = J1(C).
The celebrated Birkhoff-Khinchin ergodic theorem states that if 11 is invariant under S, then for almost every x and for all f E L 1 (X, x, 11) the following limit

/(x) = lim 1 t f(SJx) n-+oo n + 1 j=O exists.
Moreover, the limiting function f is invariant, i.e;

/(Sx) = /(x), for f-L-almost all x E X.
LetS be an endomorphism of (X, x) and let fL be a probability measure that is invariant under S. The symmetric difference of two sets A and B is denoted A~B, and a set A E xis said to be invariant mod 0 iff f-L(A~(S-1 A)) = 0.

An endomorphism S is called ergodic if any invariant modulo 0 set is of measure 0 or 1. An equivalent formulation of this definition is that in the Birkhoff-Khinchin theorem, f is a constant:

f(x) =.I f(x) dfJ.(x).
Alternatively, it is possible to say that fL is ergodic iff the time and the space averages coincide. The existence of an invariant measure can be proved if X is a compact metric space, xis the Borel o--algebra and Sis an homeomorphism of X. This result is due to Bogoliubov and Krilov and can be found for instance in [START_REF] Pollicott | Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds[END_REF], page 8, Lemma 1.2.

In order to prove that in our problem we have an invariant measure, we would have to follow the following program: first observe that with a periodic forcing, it makes sense to think of time as a periodic variable of period 21r / w = T; the mappingS maps the position and velocity at time t 0 to their image by the flow at time t 0 + T. The second step is to show that the system defined by (1)-( 6) has a bounded invariant set in (IR/T) x Ve; consider thew-limit set A= n{un~k{Snx}} k>O for some initial data x = ( u 0 , v 0 )• and show that A is compact. This step has been performed in a slightly different case by Angles, in his thesis [START_REF] Angles | Etude qualitative des vibrations en presence d'obstacle d'un systeme vibratoire[END_REF], and we believe that the methods of Angles apply with very little adjustement to the present case.

Then the really difficult task would be to prove that restricted to A, S is an homeomorphism; it is clear that it is continuous, thanks to the continuous dependence with respect to data; but its inverse could be very bad: S could even lack an inverse if (0, o)• belonged to A. Proving or disproving that (0, o)• belongs to A looks like a very hard problem. Even if this result were proved, our invariant measure on A could be non unique and very badly behaved. However, the existence of such an invariant measure would be an important fact, because it would build the foundations for the following question: consider a function of x, such as the average kinetic energy: it is defined by where ( u 0 , v 0 ) is any representative of the class x and <P 2 is the second component of <P. The existence of an average kinetic energy, i.e. of the limit Theorem 2.1 (Oseledec). Let S be a C 1 -diffeomorphism of a compact manifold X, and let 11 be an ergodic measure. Then there are two possibilities:

(i) there exists A E IR such for all v in the tangent space TxM to M at x, [START_REF] Ruelle | Ergodic theory of differentiable dynamical systems[END_REF] for almost all x in M, or (ii) there exists .\ 1 > .\ 2 and a splitting TxM = E~ EB E;: (with the maps x f------+ E~, E;: being measurable) such that for all v 1 in E~, and all v 2 in E;:: [START_REF] Ruelle | Chaotic Evolution and Strange Attractors[END_REF] and [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF] for almost all x in M In our case, Sis not a C 1 -diffeomorphism, and we have not proved that there exists an ergodic measure /1• Therefore, Oseledec's theorem does not enables us to establish the existence of Lyapunov exponents. However, our problem is not totally devoid of regularity: let us say that a strict impact time is an impact time for which the left limit of the velocity does not vanish. It is possible to calculate the differential of the mapping (u 0 ,u!) f------+ <P(t 1 -O,t 0 ,u 0 ,u!), provided that the interval (t 0 ,t!) contains only a finite number of impact times, and that they are strict impact times.

vVhen there is exactly one impact time, the differential is computed explicitly, and it is given by a 2 x 2 matrix; the most important term in this matrix comes from the differentiation of the impact time with respect to the initial data, which is possible only if the impact time is strict.

Thus, the Lyapunov exponents could be well defined though none of the conditions of Oseledec's theorem are satisfied; but their existence and their computation is a purely experimental matter. In what follows, it should be always understood that any object we consider should be complemented by the phrase "if it exists". But we shall not repeat it systematically.

In our case, the phase space is two dimensional, which leads to the computation of two Lyapunov exponents.

The larger one, A. 1 , measures the rate of evolution of a one dimensional infinitesimal element of the phase space. It can be given by the evolution of the distance between the reference trajectory and a neighbouring one.

The sum of the smaller one, A. Then the area of the parallelogram is multiplied by exp((A. 1 + A. 2 )t).

In particular, if A. 1 > 0 and A. 1 + A. 2 < 0, the areas are contracted, while the distances can be expanded: this is precisely a situation which can lead to chaotic behavior. For a dissipative dynamical systems the areas are contracted, as a rule.

3 Differentiation of the continuous and discrete flows

The continuous flow

In this section, we calculate the differential of the mapping x 0 f------+ <P ( t 1 , t 0 , x 0 ) when there is exactly one impact time, in the interval ( t 0 , t!), and the impact is strict, i.e. <P2(tc-O,to,x) < 0. vVe denoted Xo = (uo,vo), the initial condition in the phase space.

To do this, we express the flow on such an interval as the composition of the flow from time t 0 to time tC) the time of the impact, of a reflexion and of the flow from time tc to time t 1 . Since the reflexion law is given by [START_REF] Schatzman | Uniqueness and continuous dependence on data for onedimensional impact problems[END_REF] the phase after the impact is related to the phase before the impact by a linear transformation whose matrix is R = ( 1 0 ) 0 -e [START_REF] Ya | Topics in Ergodic Theory[END_REF] It is convenient to denote with respect to the second argument, and we obtain Therefore, if we observe that on intervals without impact the differential of <P with respect to the third argument is simply the fundamental solution of the corresponding constant coefficient homogeneous linear system, we can see that ( -u(tc + 0) ) D2<P(t1, tc + 0, Rxc) = D3<P(t1, tc + 0, Rxc) -¢(tc + O) • On the other hand Moreover, we apply the matrix identity to transform the expressions containing D 3 <P 1 into expressions containing D 3 <P. Therefore we may write (6.7) as with

U = R R ( u(tc-0) 0 ) 1 R ( u(tc + 0) 0 ) 1 ( 21 ) 
+ ¢(tc-0) 0 u(tc-0) + ¢(tc + 0) 0 u(tc-0)

A direct computation shows that the quantity in brackets is equal to which is precisely our claim.

The discrete flow

The discrete problem corresponding to (1)-( 4) is defined by ( 7), ( 8) and ( 9). Let the discrete velocity be un+l-un

vn=---h

The initial data for ( 6) and ( 7) are U 0 and ul-uo vo=---

h (22)

  2 , and the larger one measures the rate of evolution of infinitesimal volume elements in the phase space. If DS(x) had real distinct eigenvectors v 1 and v 2 at some point x, one could understand the definition of the second Lyapunov exponent in a more geometrical fashion: the parallelogram built on v 1 and v 2 is sent by the tangent mapping at x to S into another parallelogram built on DxSv 1 = exp(A. 1 t) and DxSv 2 = exp(A. 2 t)v 2 .

  Assume that the impact at tc is strict. Denote ¢( t) = f ( t, u( t), u( t Then the differential of x f------+ <P ( t 1 , t 0 , x) is equal to Proof. vVe differentiate the identity (16) with respect to x 0 and we obtain with W = { D1 <P(tc-0, to, Xo)Dtc + D3<P(tc-0, to, Xo)} vVe calculate the different quantities which appear in (19): thanks to (15), tc satisfies <P1 (tc -0, to, Xo) = Umin, which we differentiate with respect to x 0 ; as the impact is strict, we can see that D ( ) __ D3<P1(tc-O,to,xo) tc Xo -u( tc -0) . Let us calculate now D 2 <P: we differentiate the differential equation and the initial conditions satisfied by <P 1 (t, s, x)

	<P(tc-0, to, Xo) = Xc•	(15)
	Therefore, we may write now	
		(16)
	Theorem 3.1 (17)

where

(18) 

The perturbed solution (Jn corresponds to perturbed initial conditions U 0 and vo.

Let N (resp N) be the set of integers n such that the constraint is active on un (respectively on (Jn), i.e. and N = { n > 1 : 2 [Jn + ( e -1) [Jn-1 + h 2 ftm < ( 1 + e) Umin}.

Of course, for n EN, un+ 1 + eun-1 = (1 + e)umin• Lemma 3.2 For all integer M such that for all n E {1, ... M}, 2Un + ( e-1 )un-1 + h 2 pn is not equal to (1 + e )umin, there exists a p such that for IU 0 -U 0 1 + IV 0 -V 0 1 < p, then N n {0, ... 'M} coincides with N n {0, ... 'M}.

Proof. The mapping which assigns to ( u, v) the number w defined by w + eu = P(l+e)K(2v + (e-1)u + h 2 f(t, v, (w-u)/2h))

is Lipschitz continuous with a Lipschitz ratio estimated by Lh, where L is the Lipschitz constant off with respect to its last two arguments. Therefore, the principle of strict contractions implies that for Lh < 1, there exists a unique solution w of (23). If u' and v' are different data, we subtract (23) from w' + eu' = P(1+e)K(2v' + (e -1)u' + h 2 f(t,v', (w'-u')/2h)), and we obtain

which implies immediately our claim about continuity.

Therefore, for all n > 1' (Jn tends to un as I U 0 -U 0 I + I V 0 -V 0 I tends to 0. If 2Un + ( e-1 )un-1 + h 2 pn is not equal to (1 + e )umin, then for c small enough, 2Un + ( e-1 )(Jn-1 + h 2 pn is not equal to (1 + e )umi~, and therefore the constraints are saturated for un if they are saturated for un.

Let us define the discrete flow <Ph as the mapping which assigns to the discrete times t 0 and tn = t(O + nh) the solution Xn = (Un, Vn)T of the numerical scheme at time tn which satisfied the initial data X 0 = (U 0 , V 0 )T at the initial time t 0 .

It should be remarked here that the phase space for the discrete flow has not been studied in the same detail as the phase space for the flow in continuous time. Our present understanding is that this phase space is IR 2 . Theorem 3.3 Consider a discrete time interval { tk, ... , tl} on which the solution un of the numerical scheme satisfies n #p,p + 1 and tk < tn < tz ==::} 2Un + (e -1)Un-1 + h 2 Fn > (1 + e)umin, (24) and n = p or n = p + 1 ==::} 2Un + ( e -1) un-1 + h 2 pn < ( 1 + e) Umin.

( 25)

The derivative of the flow with respect to its spatial argument is given by (26) where

Proof. vVe can decompose the discrete flow on this interval as and

Then, the differentiation of xz with respect to Xk is performed by composition of differentiations. The assumption on the saturation of constraints at discrete times p and p + 1 implies so that the differential of (UP+ 1 ' VP+ 1 ) with respect to (UP- 

The three computational methods

In this section, we compute numerically Lyapunov exponents for the problem (1)-( 6) using three different methods. The first two methods are based on the impact detection scheme. The third method is based on the scheme ( 7)- [START_REF] Pollicott | Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds[END_REF]. vVe have to calculate ln(ID(Sk)(x)vol)/k. In order to obtain a reliable computation, we have to normalize at each step the iterates; otherwise, the norm of the vectors DSk(x)v 0 increases exponentially with k, and the computation leads to an overflow. This situation is reminiscent of the power method for the computation of eigenvalues of matrices ( [START_REF] Parlett | The Symmetric Eigenvalue Problem[END_REF], [START_REF] Golub | Matrix Computations[END_REF]), and the method employed is essentially the same: let Xj be the sequence

Then, by composition of differentials, (28)

Similarly, we have to calculate the second Lyapunov exponent: once again, the comparison with the methods used for the computation of matrix eigenvalues is illuminating: it is enough to compute ln I det D(Sk)(x)l, and to subtract from this number -\ 1 ,k• Computationnally, this procedure would be highly unreliable, since the image of a basis by D(Sk)(x) becomes extremely singular as k tends to infinity; thus, we modify the computation as follows: 

(29)

The numerical differentiation of the continuous time and the discrete time flows is implemented in a very simple fashion: let c be a small positive number, and let Given X 0 and t 0 , we define the numerical differential Dc: S(Xo) of the Poincare map S as the matrix given by its column vectors

The same definition applies for the discrete time flow:

The three numerical schemes will be denoted • IDED Impact Detection, Exact Differentiation,

• IDND Impact Detection, Numerical Differentiation,

• NSND Numerical Scheme, Numerical Differentiation.

In IDED, we use compute an approximation of DS to machine precision of DS, which is given by formula (6.6) when t 1 = t 0 + T, and there is only one impact in the time interval (to, t 0 + T). In IDND, we replace DS by Dc: S, and in NSND, we use Dc: Sh. vVe did not try to compute exactly the derivative of Sh: it would have required the integration of a linear difference equation which admits an explicit solution because of its very simple nature. However, we claim that for c small with respect to h, the results of our computation must be bad; therefore, it would be of little interest to let c tend to 0: this is the reason why we did not perform the relevant calculation.

Numerical results

All our computations were performed in double precision.

All the results that are described in this section are obtained with e = 0.5 and the initial data u 0 = 0 and v 0 = 0.1. vVe start with a comparison of IDED and IDND: we performed the computation for 3000 periods, a time step h used as a sweeping parameter of h = T /2513, and c = lo-s in IDND; of course T is the period T = 27r /50. By convention, Aj,k is the numerical approximation of Aj obtained by a computation on k periods. The IDND give this results A1 3ooo = 3.05694 and A2 3ooo = -15.06065, ' '

and the IDED give the results A1 3ooo = 3.05695 and A2 3ooo = -15.06066

The results obtained by respectively by IDED and IDND have 5 common significative digits at least. vVe observe that the first Lyapunov exponent is positive, and the second is negative, and their sum is negative: this is in agreement with the chaotic character of the dissipative system we considered. Another computational observation is that IDED is much faster than IDND.

If we use values of c which are very small with respect to h in the NSND scheme, the sum of the two Lyapunov exponents is positive; for instance, when h = T /2513 and s = lo-s, we obtained This fact led us to compute the Lyapunov exponents with c somewhat larger than h: with the choice c = 3h, h = T /40000, the NSND method gave reasonable results

Conclusion.

The comparison of the different methods used for the computation of the Lyapunov exponents has showed a number of discrepancies and difficulties of numerical origin. It could be argued that NSND gives bad results because it is of low order; however, IDED does not perform too well. Thus, we observed that strictly numerical and apparently harmless parameters can seriously alter the result of a computation. Therefore, the conclusion is a caveat: any computations of a Lyapunov exponent should be subjected to a serious evaluation performed by applying several different numerical methods, and by appraising the effect of all the numerical parameters, including the ones which seem innocuous.