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Parameter Free Piecewise Dynamic Time Warping for time series classification

Vanel Steve SIYOU FOTSO ∗† Engelbert MEPHU NGUIFO ∗† Philippe VASLIN ∗†

Abstract

Several improvements have been done in time series clas-

sification over the last decade. One of the best solutions is

to use the Nearest Neighbour algorithm with Dynamic Time

Warping(DTW), as the distance measure. Computing DTW

is relatively expensive especially with very large time series.

Piecewise Dynamic Time Warping (PDTW) is an efficient

variant which consists of segmenting time series into fixed-

length segments. However, the choice of the optimal size (or

number) of segments remains a difficult challenge for end

users. The Brute-force solution, a naive solution, repeats

the classification with each segment size, and selects the one

with the best accuracy. This solution is not appropriated

especially when dealing with massive and large time series

data. In this work, we propose a parameter free approach

for PDTW, that finds the size (or number) of segments to be

used with the Nearest Neighbour algorithm. Our approach

is a heuristic that is parameter free since it does not require

any domain specific tuning. Several properties of our heuris-

tic are studied, and an extensive experimental comparison

demonstrates its efficiency and effectiveness, in terms of ac-

curacy and runtime.

1 Introduction

Time series are ubiquitous in sciences as for example
in economics [6], in medicine [7], in finance [18] or in
computer science [20]. An important task is time series
comparison that can be done in two main ways. Ei-
ther the comparison method considers that there is no
time distortion as in Euclidian distance (ED), or it con-
siders that some small time distortions exist between
time axis of time series as in Dynamic Time Warping
alignment algorithm (DTW) [28]. Since time distortion
often exists between time series, DTW often has better
results than the ED [3]. An exhaustive comparison of
time series algorithms [1] shows that DTW is among the
efficient techniques to be used. However, DTW has two
major drawbacks: the comparison of two time series un-
der DTW is time-consuming [21] and DTW sometimes
produces pathological alignments [14]. A pathological
alignment occurs when, during the comparison of two
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time series X and Y , one datapoint of the time series X
is compared to a large subsequence of datapoints of Y .
A pathological alignment causes a wrong comparison.

Three categories of methods are used to avoid
pathological alignments with DTW:

• The first one adds constraints to DTW [22], [27],
[2], [23], [10]. The main idea here is to limit the
length of the subsequence of a time series that can
be compared to a single datapoint of another time
series.

• The second one suggests to skip datapoints that
produce pathological alignment during the compar-
ison of two time series [17], [9], [19].

• The third one proposes to replace the datapoints of
time series by a high level abstraction that captures
the local behavior of those time series. A high-
level abstraction can be a histogram of values that
captures the repartition of time series datapoints
in space [28], or a feature that captures the local
properties of time series, such as the trend with
Derivative DTW (DDTW) [14] or the mean with
Piecewise DTW (PDTW) [13].

PDTW has been introduced with the aim to speed
up the computation of DTW, which depends on the
length of the time series. PDTW suggests to use a
compact abstraction of time series instead of the raw
data. Indeed, PDTW proposes to split a time series into
consecutive fixed-length segments and to compute the
mean of each segment. Then, the mean is used instead
of the data points in the segment to compare the time
series.

In practice, a straightforward way to use PDTW is
the brute-force approach that consists in exploring all
the possible values for the number of segments. How-
ever, this is not feasible with long time series data. So,
the question is how to automatically fix this parameter
without a considerable decrease of classification accu-
racy ?

In this paper, we propose a parameter free heuristic
to align piecewise aggregate time series with DTW
that approximates the optimal value of the number of
segments to be considered during the alignment. In



this heuristic, the number of segments is chosen based
on the quality of the alignment, which is evaluated by
the classification error on the training set. The best
classification algorithm to use for this purpose is one
Nearest Neighbor (1NN) that is combined with PDTW.
In this case 1NN is the best because its classification
error directly depends on the alignment of time series,
since it has no other parameters [26].

2 Background and related work

Definition 2.1. A time series X = x1, · · · , xn is a
sequence of numerical values representing the evolution
of a specific quantity during the time. xn is the most
recent value.

2.1 Dynamic Time Warping algorithm. DTW
[12] is a time series alignment algorithm that performs
a non-linear alignment while minimizing the distance
between two time series. To align two time series :

X = x1, x2, · · · , xn;

Y = y1, y2, · · · , ym.
the algorithm constructs an n × m matrix where

the cell (i, j) of the matrix corresponds to the squared
distance (xi − yj)

2 that is the alignment between xi
and yj . To find the best alignment between two
time series, it constructs the path that minimizes the
sum of squared distances. This path, noted W =
w1, w2, . . . , wk, . . . , wK , should respect the following
constraints:

• Boundary constraint: w1 = (1, 1) and wK = (n,m)

• Monotonicity constraint: Given wk = (i, j),
wk+1 = (i′, j′) then i ≤ i′ and j ≤ j′

• Continuity constraint: Given wk = (i, j), wk+1 =
(i′, j′) then i′ ≤ i+ 1 and j′ ≤ j + 1

The warping path is computed by using an algorithm
based on the dynamic programming paradigm that
solves the following recurrence:

γ(i, j) = d(xi, yj)+min{γ(i−1, j−1), γ(i−1, j), γ(i, j−1)},

where d(xi, yj) is the squared distance contained in
the cell (i, j) and γ(i, j) is the cumulative distance at
the position (i, j) that is computed by the sum of the
squared distance at the position (i, j) and the minimal
cumulative distance of its three adjacent cells.

Definition 2.2. A segment Xi of length l of the time
series X of length n (l < n) is a sequence constituted by
l variables of X starting at the position i and ending at
the position i+ l−1. We have: Xi = xi, xi+1, ..., xi+l−1

Definition 2.3. The arithmetic average of the data
points of a segment Xi of length l is noted X̄i and is
defined by:

X̄i =
1

l

l−1∑
j=0

xi+j

Definition 2.4. Let T be the set of time series. The
Piecewise Aggregate Approximation (PAA) is defined as
follows:

PAA : T × N∗ → T

(X,N) 7→ PAA(X,N) =

{
X̄1, · · · , X̄N if N < |X|

X otherwise

Piecewise Dynamic Time Warping Algorithm
(PDTW) [13] is the DTW algorithm applied on Piece-
wise Aggregate time series [11]. Let N ∈ N∗, X and Y
be two time series.

PDTW (X,Y,N) = DTW (PAA(X,N), PAA(Y,N)).

The number of segments N that one considers greatly
influences the quality of the alignment of the time
series. However, PDTW does not give any information
on the way to choose it. To do so, [4] proposes the
Iterative Deepening Dynamic Time Warping Algorithm
(IDDTW).

2.2 Iterative Deepening Dynamic Time Warp-
ing. IDDTW only considers values for the number of
segments that are power of 2 and for each value, com-
putes an error distribution by comparing PDTW with
the standard DTW at each level of compression. It takes
as input: the query Q, the dataset D, the user’s confi-
dence (or tolerance for false dismissals) user conf , and
the set of standard deviations StdDev obtained from
the error distribution.

• The algorithm starts with applying the classic
DTW to the first K candidates from the dataset.
The results of the best matches to the query are
contained in R, with |R| = K. The best so far is
determined from argmaxR.

• Both the query Q and each subsequent candidate
C are approximated using PAA representations
with N segments to determine the corresponding
PDTW.

• A test is performed to determine whether the can-
didate C can be pruned off or not. If the result of
the test is found to have a probability that it could



be a better match than the current best so far, a
higher resolution of the approximation is required.
Then each segment of the candidate is split into
two segments to obtain a new candidate.

• The process of approximating Q and C to deter-
mine the PDTW should be reapplied and the test is
repeated for all levels of approximations until they
fail the test or their true distance DTW is deter-
mined.

Doing so, IDDTW finds the number of segments
that best approximates DTW and speeds up its compu-
tation. However, the goal of IDDTW is not the same as
ours, which is to find the number of segments that best
aligns the time series and speeds-up the computation of
DTW. Actually, IDDTW has three main drawbacks:

• It only considers the numbers of segments for
PDTW that are power of 2;

• It requires a user-specified tolerance for false dis-
missals that influences the quality of the approxi-
mation, but the algorithm does not give any indi-
cation on how to choose the tolerance;

• It considers DTW as a reference while looking
for the number of segments that best aligns the
time series. However, because of pathological
alignments, DTW sometimes fails to align time
series properly.

In this paper, we propose a heuristic named param-
eter Free piecewise DTW (FDTW) that deals with all
the drawbacks of IDDTW: it considers all the possible
values for the number of segments, it is parameter-free
and it finds a number of segments for PDTW based on
the quality of the time series alignment namely the clas-
sification error. The next section presents a definition
of our heuristic.

3 Heuristic search of the number of segments

3.1 Problem definition. Let D = {di} be a set
of datasets composed of time series. We note |di| the
number of time series of the dataset di.

LetX ∈ di be a time series of the dataset di; we note
|X| = n the length of the time series X. For simplicity
of notation we suppose that all the time series of di have
the same length.

Definition 3.1.

1NNDTW : D → [0, 1]

di 7→ 1NNDTW (di)

1NNDTW (di) is the classification error of one Nearest
Neighbour with Dynamic Time Warping on the dataset
di.

Definition 3.2. Let d ⊆ T be a subset of time series,
N ∈ N∗, PAAset(d,N) = {PAA(X,N), ∀X ∈ d}

Definition 3.3.

1NNPDTW : D × {1 . . . n} → [0, 1]

(di, N) 7→ 1NNPDTW (di, N) =

= 1NNDTW ◦ PAAset(di, N)

1NNPDTW (di, N) is the classification error of 1-
NN with PDTW using N segments on di.

Our goal is to find the number of segments that
allows PDTW to best align time series. PDTW gives
a good alignment when its classification error with 1NN
is low [21]. Our problem is then to find the number of
segments N that minimizes 1NNPDTW (di, N).

Formaly, given a dataset di, we look for the
number of segments N ∈ {1 . . . n} such that

1NNPDTW (di, N) = min
1≤α≤n

{1NNPDTW (di, α)}.

3.2 Brute-force search. The simplest way to find
the value for the number of segments that minimized
the classification error is to test all the possible values.
Obviously, this method is time consuming as we have
to test n values to find the one that has the minimal
classification error. The time complexity of this process
is :

O((
|trainingset|

2
)2 ×

∑
N∈C

N2), |C| = n,

where C is the set of values for the number of
segments.

To reduce the time of the search, the heuristic
proposes to look for the number of segments with
the minimal classification error without testing all the
possible values.

3.3 Parameter free heuristic. The idea of our
heuristic is the following:

1. We choose Nc candidates distributed in the
space of possible values to ensure that we are going to
have small, medium and large values as candidates. The

candidates values are: n, n−
⌊
n
Nc

⌋
, n−2×

⌊
n
Nc

⌋
, ..., n−

Nc ×
⌊
n
Nc

⌋
. For instance, if the length of time series is

n = 12 and the number of candidates is Nc = 4, we are
going to select the candidates 12, 9, 6, 3.

1, 2, [3], 4, 5, [6], 7, 8, [9], 10, 11, [12]



2. We evaluate the classification error with
1NNPDTW for each candidate that we have previously
chosen and we select the candidate that has the mini-
mal classification error: it is the best candidate. In our
example, we may suppose that we get the minimal value
with the candidate 6 it is thus the best candidate at this
step.

1, 2, 3, 4, 5, [6], 7, 8, 9, 10, 11, 12

3. We respectively look between the predecessor
(i.e., 3 here) and successor (i.e., 9 here) of the best can-
didate for a number of segments with a lower classifica-
tion error. This number of segments corresponds to a
local minimum. In our example, we are going to test the
values 4, 5, 7 and 8 to see if there is a local minimum.

4. We restart at step one, while choosing differents
candidates during each iteration to ensure that we
return a good local minimum. We fix the number
of iterations to blog(n)c. At each iteration the first
candidate is n− (number of iteration − 1).

In short, in the worst case, we test the Nc first
candidates to find the best one. Then, we test 2n

Nc

other candidates to find the local minimum. We finally
perform nb(Nc) = Nc + 2n

Nc
tests. The number of tests

that we have to perform is a function of the number of
candidates. How many candidates should we consider
to reduce the number of tests? The first derivative
of the function nb vanishes when Nc =

√
2n and the

second derivative is positive so the minimal number of
tests is done when the number of candidates Nc =

√
2n.

Algorithm 1 presents the details of the heuristic.
Time complexity: We use the training set to

find the number of segments that should be considered
with PDTW. To do so, we applied 1NN on the training
set that costs

O((
|trainingset|

2
)2 ×

∑
N∈C

N2), |C| =
log(n)−1∑
i=0

8
√
n− i.

where ( |trainingset|2 )2 comes from 1NN algorithm

and
∑
N∈C

N2 comes from PDTW with N being one value

of the number of segments, and C being the set of values
for the number of segments. At each iteration, the
heuristic tests nb(

√
2n) = 8

√
n number of segments.

We have log(n) iterations so |C| =
log(n)−1∑
i=0

8
√
n− i

Lemma 3.1. For a given a dataset di FDTW (di) ≤
1NNDTW (di). The quality of the alignment of our
heuristic is better than that of DTW.

Proof. 1NNDTW (di) = 1NNPDTW (di, n).
1NNDTW (di) is then one of the candidate con-
sidered by the heurisitic FDTW . Since FDTW

returns the minimal classification error from all candi-
dates, the classification error of 1NNDTW is always
greater than or equal to FDTW .

Algorithm 1 FDTW(training set, test set, n,
nb rep=log(n))

# Look for a good value of the number of segments
N
# using the training set
for (i in 0 : (nb rep− 1)) do
tab N ← 1 : (n− i)
l← floor(n/sqrt(2 ∗ n))
tab N candidats ← seq(from = n, to = 1, by =
−l)

# Parallel execution of 1NNPDTW
mat r ← 1NNPDTW (training set,
tab N candidats)

# Mark candidates already used to not reuse
for (i in tab candidats) do
tab N [i]← −1

end for

# Search for the best candidate with the minimal
error
min← minimun(mat r)

# look for the local minimun near of the best
candidate
result[[(i+ 1)]]← localMinimun(min.N min,
min.error min, training set, tab N)

end for

# The best local minimal error
m← minimun(result)
return m

A heuristic does not always give the optimal value.
To ensure that it gives a result not far from the optimal
value, one approach is to guarantee that the result of
the heuristic always lies in an interval with respect to
the optimal value [8].

In our case, we are looking for the number of
segments that allows a good alignment of time series.
The alignment is good when the classification error with
1NN is minimal or when the accuracy is maximal.

Let di be a dataset: accmax(di) = 1 −
min

1≤α≤n
{1NNPDTW (di, α)} is the maximal accuracy

for the dataset di, accDTW = 1 − 1NNDTW (di) is
the accuracy with di and 1NNDTW and accFDTW =
1− FDTW (di) is the accuracy of our heuristic.



To ensure the quality of our heuristic FDTW,
Proposition 3.1 assume that 1NNDTW is better than
the baseline classifier Zero Rule. Zero rule classifier is a
simple classifier that predicts the majority class of test
data (if nominal) or average value (if numeric). Zero
rule is often used as baseline classifier [5]. The minimal
value of the accuracy of Zero rule is 1

c where c is the
number of classes of the dataset.

Proposition 3.1. For a given dataset di that has ci
classes, ci ∈ N∗,

if accDTW ≥ 1
ci
then 1

ci
× accmax ≤ accFDTW ≤

accmax

Proof. By definition, accFDTW ≤ accmax We look for
k ∈ N such that 1

k × accmax ≤ accFDTW

1

k
× accmax ≤ accFDTW

i.e.
accmax
accFDTW

≤ k or

accmax
accFDTW

≤ 1

accFDTW

because accmax ≤ 1 and

1

accFDTW
≤ 1

accDTW

because accDTW ≤ accFDTW

1

accDTW
≤ ci

because
1

ci
≤ accDTW by hypotesis

We take k = ci

4 Experiments and discussion

4.1 Datasets. The performance of FDTW has been
tested on 45 datasets of the UCR time series datamining
archive [3], which provides a large collection of datasets
that cover various domains (Table 1). Each dataset is
divided into a training set and a testing set. The 45
datasets possess between 2 and 50 classes, the length
of the time series varies from 24 to 1882, the training
sets contain between 20 and 1000 time series and the
testing sets contain between 28 and 6164 time series. An
implementation of BF, IDDTW and FDTW is available
online [24]

4.2 Results. Firstly, to evaluate the quality of our
heuristic FDTW, we compared its classification errors
with that of IDDTW (Figure 4) and the minimal one
(Figure 3). The classification error was calculated based
on the holdout model evaluation and the minimal one
was find by applying Brute-force search (BF) on both
training set and testing set. FDTW and IDDTW used
the training set to find the number of segments N
using 3 fold cross validation. IDDTW tested all the
values of N that were equal to a power of two and kept
the one that had a minimum classification error. We
also compared FDTW to BF and IDDTW in terms
of number of tested values (Figure 1), running time
(Figure 2) and compression ratio.

Then, we compared FDTW to other classification
methods reported in the literature. The comparison
was based on the classification error calculated using the
hold out evaluation model. The smallest classification
error reported on each dataset and the 1NN classifica-
tion error of Euclidean distance, DTW without a warp-
ing window and DTW with best warping window have
been published by previous researchers [3] [1]. In this
paper we report the 1NN classification error of Brute-
force search, IDDTW and FDTW.
N◦ Dataset clas Size Size Time

ses of of se
trai tes ries
ning ting len
set set gth

1 50Words 50 450 455 270
2 Adiac 37 390 391 176
3 Beef 5 30 30 470
4 Car 4 60 60 577
5 CBF 3 30 900 128
6 Coffee 2 28 28 286
7 Cricket X 12 390 390 300
8 Cricket Y 12 390 390 300
9 Cricket Z 12 390 390 300
10 Distal 3 139 400 80

Phalanx
OutlineAge
Group

11 Distal 6 139 400 80
Phalanx
TW

12 Earthquakes 2 139 322 512
13 ECG 2 100 100 96
14 ECGFiveDays 2 23 861 136
15 Face (all) 14 560 1690 131
16 Face (four) 4 24 88 350



17 Fish 7 175 175 463
18 Gun-point 2 50 150 150
19 Ham 2 109 105 431
20 Haptics 5 155 308 1092
21 InlineSkate 7 100 550 1882
22 Italy 2 67 1029 24

PowerDemand
23 Lightning-2 2 60 61 637
24 Lightning-7 7 70 73 319
25 MedicalImages 10 381 760 99
26 Middle 3 154 400 80

Phalanx
OutlineAgeGroup

27 Middle 6 154 399 80
PhalanxTW

28 MoteStrain 2 20 1252 84
29 OliveOil 4 30 30 570
30 OSU leaf 6 200 242 427
31 Plane 7 105 105 144
32 Proximal 6 205 400 80

PhalanxTW
33 ShapeletSim 2 20 180 500
34 SonyAIBO 2 20 601 70

Robot Surface
35 SonyAIBO 2 27 953 65

Robot SurfaceII
36 Swedish leaf 15 500 625 128
37 Symbols 6 25 995 398
38 Synthetic control 6 300 300 60
39 Trace 4 100 100 275
40 Two patterns 4 1000 4000 128
41 TwoLeadECG 2 23 1139 82
42 Wafer 2 1000 6164 152
43 Wine 2 57 54 234
44 WordsSynonyms 25 267 638 270
45 Yoga 2 300 3000 426

Table 1: Detailed information about the datasets

4.3 Discussions. Comparing FDTW and BF ap-
proaches (Figure 1) clearly shows that the number of
candidates in BF is considerably reduced in FDTW by
a factor at least greater than 2.5. This number is expo-
nentially correlated to the time series length, for exam-
ple FDTW tested 0.08% less candidates than BF with
the dataset ItalyPowerDemand that has the shortest
time series length of our sample (24 data points) and
76% less candidates than BF with dataset Inlineskate
that has the longest time series of our sample (1882 data
points). Actually, the number of candidates to be tested
ranges from 1 to n, n being the length of time series.
This demonstrates an advantage of FDTW in terms of
space exploration and thus indirectly in terms of mem-

ory usage and execution time. However, FDTW tested
more candidates than IDDTW, which tested in average
96% less candidates than Brute-force search (Figure 1).

Figure 1: Comparison of the number of tested values of
the parameter, number of segments with the Brute-force
search algorithm, FDTW and IDDTW. x-axis datasets
are sorted according to the length of the time series.

Nevertheless, the values of the number of segments
are evaluated on the training set. To take into account
the cost of classification performed on the testing set,
we also compare the methods FDTW, IDDTW and
Brute-force search based on their execution time on the
training and the testing sets.

Generally, FDTW is 8 times faster than Brute-force
search with an average execution time of 176 minutes
against 1386 minutes for Brute-force search. IDDTW is
7 times faster than FDTW and remains the fastest with
an average execution time of 24 minutes. The execution
time increases with the length of the time series (Figure
2). The increase of Brute-force search execution time
is faster than that of FDTW and IDDTW. This can be
seen on the dataset Lightning-2 whose time series have
a length equal to 637 data points.

As regard in the compression ratio, the heuristic
uses a compact representation for time series whose
length contains in average 44% data points less than
the initial time series against 63% for IDDTW.

The experiments show that IDDTW is faster and
test fewer candidates. However, FDTW have better
performance. Actually, FDTW resulted in a lower
classification error than IDDTW on 22 datasets and
the same classification error than IDDTW on 8 datasets
(Figure 4). They also show that the classification error
of Brute-force search (BF) is smaller than the smallest
classification error reported in the literature on six
datasets and is equal to the smallest classification error



Figure 2: Comparison of the execution time of the
Brute-force search algorithm, FDTW and IDDTW.

reported on four datasets. Moreover, In average, BF
is better than the other algorithms of Table 4.3 with
a classification error of 0.175. In other words, it is a
good strategy to piecewise aggregate time series before
classifying them if we know a good number of segment
to use.

Our heuristic FDTW managed to find the minimum
error for 9 datasets (Coffee, ECGFiveDays, Gun-point,
ItalyPowerDemand, OliveOil, Plane, Synthetic control,
Trace, Two patterns). It also outperforms the smallest
classification error reported in the literature on dataset
CBF (N◦5). The methods of the literature are

Figure 3: Comparison of the classification error of the
Brute-force search algorithm in x-axis and FDTW in
y-axis.

1NN associated with Euclidiean distance, DTW without
warping windows, DTW with warping windows. FDTW
outperforms 1NN associated with Euclidiean distance

Figure 4: Comparison of the classification error of
IDDTW in x-axis and FDTW in y-axis. The points
below the diagonal represent the datasets for which
FDTW is better than IDDTW.

ED on 33, they are equal on 1 dataset. FDTW
outperforms 1NN associated with DTW on 19 datasets,
they are equal on 11 datasets. FDTW outperforms
1NN associated with DTW with warping windows on
19 datasets they are equal on 2 datasets.

5 Conclusion

Our problem was to choose a good number of seg-
ments for Piecewise Dynamic Time Warping. To an-
swer this question, we proposed a heuristic approach
called Parameter Free Piecewise Dynamic Time Warp-
ing (FDTW) that proposes an approximation of the best
number of segments to be used during times series classi-
fication based on DTW. FDTW has been experimented
on 45 data sets on a classification task. In average, it
returned a classification error lower than the one of ID-
DTW. Our approach is a heuristic that is parameter
free since it does not require any domain specific tun-
ing. This work allows to reduce the storage space and
the processing time of time series classification without
decreasing the quality of the alignment. As a perspec-
tive, we plan to use piecewise aggregate time series with
other variants of DTW to improve the classification. Us-
ing the same strategy presented in FDTW, we plan to
find the number of segments to be considered for sym-
bolic representations of time series like SAX [15], ESAX
[16], SAX-TD [25].
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11 0.273 0.29 0.272 (0) 0.272 0.263 35(2) 0.288 16(5) 0.278 80(1)
12 0.326 0.258 0.258 (22) 0.241 0.198 176(2) 0.258 512(1) 0.276 101(5)
13 0.120 0.230 0.120 (0) 0.110 0.13 38(3) 0.19 8(12) 0.180 11(9)
14 0.203 0.232 0.203 (0) 0.014 0.117 11(12) 0.289 32(4) 0.117 11(12)
15 0.286 0.192 0.192 (3) 0.010 0.091 79(2) 0.194 128(1) 0.148 99(1)
16 0.216 0.170 0.114 (2) 0.004 0.08 107(3) 0.352 32(11) 0.102 140(3)
17 0.217 0.177 0.154(4) 0.026 0.154 149(3) 0.257 16(29) 0.177 27(17)
18 0.087 0.093 0.087 (0) 0.001 0.02 38(4) 0.073 32(5) 0.020 38(4)
19 0.4 0.533 0.400 (0) 0.164 0.343 21(20) 0.026 32(13) 0.432 32(13)
20 0.630 0.623 0.588 (2) 0.483 0.549 328(3) 0.588 64(17) 0.594 948(1)
21 0.658 0.616 0.613 (14) 0.448 0.578 1770(1) 0.627 64(29) 0.622 171(11)
22 0.045 0.050 0.045 (0) 0.030 0.033 20(1) 0.043 8(3) 0.033 24(1)
23 0.246 0.131 0.131 (6) 0.131 0.082 70(9) 0.246 16(40) 0.180 524(1)
24 0.425 0.274 0.288 (5) 0.201 0.192 150(2) 0.301 64(5) 0.301 51(6)
25 0.316 0.263 0.253 (20) 0.215 0.255 95(1) 0.271 64(2) 0.280 34(3)
26 0.26 0.25 0.253 (5) 0.178 0.233 27(2) 0.283 2(40) 0.283 2(40)
27 0.439 0.416 0.419 (2) 0.413 0.398 27(2) 0.414 32(2) 0.416 80(1)
28 0.121 0.165 0.134 (1) 0.083 0.135 14(6) 0.197 16(5) 0.165 84(31)
29 0.133 0.167 0.133 (0) 0.099 0.1 191(3) 0.167 32(18) 0.100 234(2)
30 0.479 0.409 0.388 (7) 0.033 0.364 31(14) 0.372 32(13) 0.409 35(12)
31 0.038 0 0.000 (6) 0 0 35(4) 0 128(1) 0 135(1)
32 0.292 0.263 0.263 (6) 0.185 0.24 75(1) 0.288 4(20) 0.288 4(20)
33 0.461 0.35 0.300 (3) 0 0.083 54(9) 0.239 64(7) 0.122 48(10)
34 0.305 0.275 0.305 (0) 0.082 0.206 37(2) 0.208 16(4) 0.304 26(3)
35 0.141 0.169 0.141 (0) 0.04 0.14 5(13) 0.197 16(4) 0.178 45(1)
36 0.211 0.208 0.154 (2) 0.033 0.165 59(2) 0.195 64(2) 0.208 55(2)
37 0.100 0.050 0.062 (8) 0.037 0.044 376(1) 0.059 32(12) 0.060 34(12)
38 0.120 0.007 0.017 (6) 0.001 0.007 60(1) 0.437 2(30) 0.007 60(1)
39 0.240 0.000 0.010 (3) 0 0 47(6) 0 64(4) 0.000 275(1)
40 0.090 0.000 0.002 (4) 0 0 21(6) 0 64(2) 0.000 128(1)
41 0.253 0.096 0.132 (5) 0.006 0.045 55(1) 0.073 32(3) 0.112 70(1)
42 0.005 0.020 0.005 (1) 0 0.007 109(1) 0.013 8(19) 0.008 95(2)
43 0.389 0.426 0.389 (0) 0.074 0.204 3(78) 0.463 20(11) 0.37 128(1)
44 0.382 0.351 0.252 (8) 0.222 0.337 133(2) 0.365 64(4) 0.343 135(2)
45 0.170 0.164 0.155 (2) 0.090 0.149 117(4) 0.158 128(3) 0.154 384(1)

X 0.268 0.227 0.242 0.175 0.214 0.232

Table 2: Comparison of classification errors. In italics, the smallest classification error. In bold, the smallest
classification error between IDDTW and FDTW. N is the number of segments selected and ` is the number of
data points in a segment which is equal to b nN c.
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