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RESEARCH ARTICLE
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Abstract
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their

activation requires the binding of both glutamate and D-serine or glycine as co-agonist. The

prevalence of either co-agonist on NMDA-receptor function differs between brain regions

and remains undetermined in the visual cortex (VC) at the critical period of postnatal devel-

opment. Here, we therefore investigated the regulatory role that D-serine and/or glycine may

exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neu-

rons of young rats. Using selective enzymatic depletion of D-serine or glycine, we demon-

strate that D-serine and not glycine is the endogenous co-agonist of synaptic NMDARs

required for the induction and expression of Long Term Potentiation (LTP) at both excitatory

and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per
se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensi-

tive glycine receptors, then producing a shunting inhibition that controls neuronal gain and

results in a depression of synaptic inputs at the somatic level after dendritic integration. In

conclusion, we describe for the first time that in the VC both D-serine and glycine differen-

tially regulate somatic depolarization through the activation of distinct synaptic and extrasy-

naptic receptors.

Introduction
N-Methyl-D-aspartate receptors (NMDARs) are central for structural and functional synaptic
plasticity as well as cognitive functions [1]. Activation of such receptor requires the binding of
both glutamate and a co-agonist [2]. Although glycine was initially identified as the main co-
agonist [3,4], subsequent investigations revealed that D-serine, synthesized by serine racemase
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(SR) [5,6] and present in areas where NMDARs are prevalent [7], would be the preferred co-
agonist for synaptic NMDARs [8]. Indeed, enzymatically or genetically induced depletion of D-
serine reduces synaptic NMDARs currents and thereby alters synaptic plasticity in the hippo-
campus [9–12], prefrontal cortex [13], and nucleus accumbens [14]. The role of D-serine at
NMDARs is further illustrated by studies showing that synaptic and cognitive impairments
during aging is linked to a down-regulation of D-serine synthesis [15]. Detailed analysis of the
contribution of the two co-agonists in NMDARs regulation further reveals that in the CA1
area of the mature hippocampus D-serine would preferentially act on synaptic NMDARs whilst
glycine would modulate extrasynaptic NMDARs [12] although this segregation has been
shown to be developmentally regulated [16]. Alternatively, Li and colleagues (2013) propose
that the prevalence of D-serine or glycine at synaptic NMDARs in the lateral nucleus of the
amygdala would rather be determined by synaptic activity [17] a scenario also reported for the
hippocampus [16]. Despite major progress in the definition of D-serine and glycine functions
at excitatory synapses, the nature of the endogenous co-agonist in primary sensory areas like
the visual cortex remains to be defined notably during the critical period of enhanced plasticity
enabling activity-dependent proper development and maturation of the visual system.

Abundant evidence points to the importance of NMDARs in patterning neuronal networks
in the visual cortex [18,19]. Indeed, NMDARs-regulated neurotransmission has been suggested
to play an important role in ocular dominance (OD) plasticity in both juvenile and adult
rodents [20]. Pharmacological blockade or genetic deletions of NMDARs prevent the OD shift
after monocular deprivation (MD) during the critical period or in adult [21,22]. Two recent
studies have investigated the functional contribution of D-serine in the plasticity of the visual
cortex. Yang and colleagues have shown that D-serine facilitates adult cortical NMDAR-depen-
dent synaptic and OD plasticity in MDmice [23]. Furthermore, D-serine depletion by the enzy-
matic scavenger D-amino acid oxidase causes NMDAR-dependent phase coupling of otherwise
phase-independent gamma generating networks, causing hypersynchrony and a distortion of
visual perception [24]. These latter observations suggest that D-serine may serve as an endoge-
nous ligand for VC NMDARs and is necessary for proper visual processing. However, it is still
unknown how D-serine and glycine interplay modulates excitatory and inhibitory neuronal
networks in the visual cortex.

Here, we use enzymatically-driven depletion of D-serine and glycine levels to ascertain their
functions in neurotransmission and synaptic plasticity in acute VC slices of P19-25 old rats.
Using whole-cell patch clamp recordings of postsynaptic currents enabling to assess inhibitory
and excitatory synaptic conductances at layer 5 pyramidal neurons (L5PyNs), we demonstrate
that selective loss of function of D-serine but not glycine reduces synaptic events and prevents
induction and expression of NMDAR-dependent inhibitory and excitatory LTP in the VC.
Furthermore we show that, in contrast, glycine does not modulate synaptic plasticity per se but
acts at the dendritic integration level, through the activation of strychnine-sensitive glycine
receptors (GlyRs), and thereby controls neuronal gain. The present study therefore shows that,
in the VC, control of somatic depolarization depends on synaptic plasticity as such, which
requires D-serine, as well as on the modulation of signal integration through the opening of
GlyRs.

Experimental Procedures

Slices preparation and electrophysiology recordings
Experiments were carried out between September 2010 and December 2014 on male Wistar
rats in accordance with the European and Institutional guidelines for the care and use of labo-
ratory animals (Council Directive 86/609/EEC and 2010/63/UE and its application in 2013 by
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the French National Research Council. Rats were bred under standard conditions in our animal
facilitity licensed by the French veterinary service (INSERM U894-CPN; CNPS). Agreement
number of the animal house facility is C 91-471-104. Our study includes exclusively in vitro
experiments with no in vivo work. The article 3 of the 2010/63/UE directive permits to euthan-
atize animals by cervical dislocation to excise brain tissues for experiments without any
requirement of a specific ethical committee agreement. P21 to P28 rats were killed by cervical
dislocation and their brains quickly removed. CNJM, who hold a license (number R-45GRE-
TA-F1-10) delivered by the French veterinary service, sacrificed all animals used in this study.

Wistar male rats aged 21 to 28 days old were subject to the decapitation procedure and after
quick removal of the brain, one hemisphere was removed, attached to the stage of a tissue slicer
(WPI NVSLM1, U.K) and immersed in ice-cold, oxygenated (i.e., bubbled with 95% O2/5%
CO2) artificial cerebrospinal fluid (ACSF) containing (in mM): 126 NaCl, 26 NaHCO3, 10 Glu-
cose, 2 CaCl2, 1.5 KCl, 1.5 MgSO4 and 1.25 KH2PO4 (pH 7.5, 310–320 mOsm). Parasagittal
slices (250 μm) containing primary visual cortex were obtained and transferred to an holding
chamber filled with oxygenated ACSF and maintained at room temperature after an initial 1h
incubation at 36°C. For experiments, slices were perfused (2–3 ml/min) at 31°C with oxygen-
ated ACSF. Neurons were patched at 40x magnification using an upright microscope (Zeiss
Axioscop FS2+). Patch-clamp recording pipettes (4–5 MΩ) were filled with intracellular solu-
tion (in mM): 140 K-gluconate, 10 HEPES, 4 ATP, 2 MgCl2, 0.4 GTP and 0.5 EGTA (adjusted
to pH 7.3 with KOH, 280–290 mOsm.kg-1). Stable whole-cell voltage-clamp recordings were
obtained from layer 5 pyramidal neurons (L5PyNs, identified by the shape of their soma and
main apical dendrite and from their firing profile induced by 1s depolarizing steps ranging
from 0 to 200 pA) with a Multiclamp 700A amplifier (Axon Instruments, USA). Data were
sampled at 2 kHz using a Digidata 1322A acquisition board (Axon Instruments, USA). Voltage
data were corrected off-line for a measured liquid junction potential of -10 mV. After capaci-
tance neutralization, bridge balancing was performed on-line under current clamp to make ini-
tial estimations of the access resistance (Rs). The latter procedure was repeated before every
voltage clamp recording. The membrane input resistance (Rm) and time constant (Ƭ0) were
determined off line by fitting the mean voltage response to a short hyperpolarizing current
pulse applied at rest in current clamp mode. Only cells with a resting potential less than -60
mV and with an access resistance lower than 25 MΩ were considered for analysis. Recordings
with more than 25% change in input resistance were also discarded.

Recording of the NMDA-Excitatory Postsynaptic Currents (EPSCs) in
L5PyNs
NMDA-EPSCs were recorded in response to electrical stimulation of layer 2/3 after blockade
of GABAA receptors with picrotoxin (100 μM) and AMPA receptors with NBQX (10 μM) at a
holding potential of +40 mV using an intracellular solution containing (in mM): Cs-methylsul-
fonate, 115; HEPES, 10; ATP, 4; CsCl, 20; GTP, 0.4; EGTA, 10 (adjusted to pH 7.4 with CsOH;
281 mOsm.kg-1). The origin of the recorded current was confirmed by its complete blockade
after application of the NMDA receptor antagonist CPP (1μM) (S1 Fig). At least 5 recordings
were stacked and averaged.

Stimulation protocols
For Excitation–Inhibition (E-I) balance determination, electrical stimulations (10–100 μA, 0.2
ms, 0.05 Hz) were applied in the layer 2/3 of visual cortex using 1 MΩ impedance bipolar tung-
sten electrodes. Electrodes were positioned in the vicinity of L5PyNs apical dendrite in order to
recruit feedforward monosynaptic excitation and inhibition as well as disynaptic inhibition
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[25]. The stimulation intensity was adjusted in current-clamp [25,26] and set to 2–3 times the
amplitude of the stimulation necessary to induce a detectable response in current clamp, which
has been shown to generate linear subthreshold postsynaptic responses resulting fom coactiva-
tion of excitatory and inhibitory circuits. Under voltage-clamp, 4 to 8 trials were repeated for 4
to 7 holding potentials (depending on the cell resting membrane potential). For LTP induction,
theta-burst stimulation (TBS) was applied in layer 2/3 only. TBS consisted of 3 trains of 13
bursts applied at a frequency of 5 Hz, each burst containing four pulses at 100 Hz. Inter-train
interval was 10 s. The recording protocol was set as follows: baseline recording of the current
responses enabling determination of the different conductances (gT, gE, gI) was performed 10
min after settling of the whole cell patch clamp; then the drug was applied and composite cur-
rent recordings were resumed pre-TBS as well as 15, 30, 45, and 60 min post-TBS. Pre-TBS
recordings were performed while drugs were washing. LTP protocols were applied immediately
after the pre-TBS recording.

Determination of the E-I balance
Data were analysed off-line with Acquis1TM and ElphyTM (Biologic UNIC–CNRS, Gif-sur-
Yvette, France). The E-I balance determination is based on the continuous measurement of
conductance dynamics during the full-time course of the stimulus-evoked synaptic response.
Briefly, we performed post-hoc decomposition of postsynaptic current waveforms in excitatory
and inhibitory conductances together with continuous estimation of the apparent reversal
potential of the composite responses. This allows a somatic measurement of the E-I balance in
L5PyNs after dendritic integration of incoming excitation and inhibition [27].

In order to extract the excitatory and inhibitory conductance changes from the evoked syn-
aptic currents, the neuron is considered as the point-conductance model of a single-compart-
ment cell, described by the following general membrane equation:

Cm
dVmðtÞ

dt
¼ gleakðVmðtÞ � EleakÞ � gEðtÞðVmðtÞ � EexcÞ � gIðtÞðVmðtÞ � EinhÞ þ Iinj

where Cm denotes the membrane capacitance, Iinj the injected current, gleak the leak conduc-
tance and Eleak the leak reversal potential. gE(t) and gI(t) are the excitatory and inhibitory con-
ductances, with respective reversal potentials Eexc and Einh.

Evoked synaptic currents were measured and averaged for several (4 to 8) holding poten-
tials. IV curves were then calculated at all time points of the response. In IV curves for every
possible delay (t), the value of holding potential (Vh) was corrected (Vhc) from the ohmic
drop due to leakage current through the access resistance (Vhc(t) = Vh(t)–I(t) x Rs). An aver-
age estimate of the input conductance waveform of the cell was calculated from the best linear
fit (mean least square criterion) of the IV curve for each delay (t) following the stimulation
onset. Only cells showing a Pearson correlation coefficient for the IV linear regression higher
than 0.95 between –90 and –40 mV were considered for calculation of the conductance change
in the recorded pyramidal neuron, using the slope of the regression line. The synaptically
evoked global conductance term (gT(t)) was then measured by subtracting the resting conduc-
tance observed in the absence of stimulation (on a time window of 100 ms before electrical
stimulation) from the input total conductance. The synaptic reversal potential of the synaptic
conductance (Esyn(t)) was taken as the voltage of the intersection between the IV curve during
the synaptic response and the IV curve at rest. Assuming that the evoked somatic conductance
change reflects the composite synaptic input reaching the soma, Esyn(t) characterizes the stim-
ulation-locked dynamics of the balance between excitation and inhibition. The global synaptic
conductance (gT(t)) was further decomposed into two conductance components (gE(t) and gI
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(t)) corresponding to the activation of excitatory and inhibitory synapses respectively, each
associated with known and fixed reversal potentials. Indeed, we showed [25] that the IV curve
in the presence of excitatory transmission blockers (CNQX, D-AP5) is linear between -80 to
+10 mV with a reversal potential equal to -80 mV. In the presence of bicuculline, blocking
inhibitory inputs on the L5PyNs, the IV curve for excitation is also linear between -80 to +10
mV with a reversal potential equal to 0 mV. Furthermore, D-AP5 had no impact on the evoked
current responses recorded at 0.05Hz suggesting that NMDA receptors are not recruited.

Accordingly, the reversal potentials used for the decomposition of the global synaptic con-
ductance were set at 0 mV for excitatory (Eexc) and -80 mV for inhibitory conductance (Einh).
In addition, these reversal potentials correspond to values typically found in other studies [28].
Einh corresponds to the reversal potential of GABAA (and not an intermediate value between
GABAA and GABAB) because in the presence of QX314 in the pipette no variation of the syn-
aptic response was observed [27]. Under our experimental conditions, Esyn(t) took any inter-
mediate values between Eexc (0 mV) and Einh (-80 mV) in such a way that the mathematical
conditions of the simplification used to calculate gI(t) and gE(t) were fulfilled. For each compo-
nent, excitatory and inhibitory, we calculated the conductance change as the mean averaged
over a time window of 200 ms. The contribution of each component was expressed by the ratio
of its integral value (intgE or intgI) to that of global conductance change (intgT).

Like all somatic recordings, our recordings cannot make rigorous estimates of synaptic
events in the distal dendrites, and estimated conductances are ratios of the overall excitatory
and inhibitory drive contained in the local network stimulated [29]. However, our measure-
ments are relative changes in conductance magnitude which reflect the cumulative contribu-
tions of excitation and inhibition arriving at proximal portions of the neuron. These relative
conductance changes at the somatic level define a narrow window over which input integration
and spike output can occur [30].

Determination of the time constants and electrotonic length
Membrane time constants (Ƭ0) were determined by analyzing the time course of the membrane
voltage deflection according to the method described by Rall [31]. This method consists in
“peeling exponentials” by plotting the natural log of the response expressed as a percentage of
the peak negative potential. In our recordings, the late portion of the charging phase (for time
points between 5 and 15 ms) always fitted a linear regression of which the slope was equal to
-1/Ƭ0. For each cell and hyperpolarizing intensity, the membrane time constant was thus calcu-
lated using this equation. Rall’s method also allows determination of the equalizing time con-
stant (Ƭ1), which represents the time required for the current to spread to the proximal
dendrites. Ƭ1 is given by the second order exponential observed for time points earlier than
5ms. This value was obtained by plotting the difference between the membrane time constant
regression line from the points lying above this line, normalizing the y-intercept of this new
line to 100% and reading Ƭ1 as the negative inverse of the slope. From two time constants, the
somatodendritic electrotonic length (L) was estimated using the relation: L = π (Ƭ0/ Ƭ 1)

-1/2.

Statistical analysis
Data reported are mean ± standard error of the mean (SEM) of n cells. Each individual cell was
recorded in a single acute slice (3–4 slices/ animal per day) in order to avoid repeated exposure
to the TBS protocol and/or drug application. When a LTP protocol was applied (TBS), post-
TBS conductance integral values were normalized to pre-TBS conductance integrals (100%)
and expressed as percentage of baseline. LTP was defined as a change>130% of baseline 1 h
post-TBS. Statistics were performed using the InVivoStat software (Mockett Media). Paired
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samples for IntgT, IntgE, IntgI, between the control condition (before TBS) and given times
after TBS (15, 30, 45 or 60 min) were analyzed using the paired student t-test.

Chemicals and enzymes
All chemicals used for electrophysiology experiments were obtained from Sigma-Aldrich
except NBQX which were from Ascent Scientific (Bristol UK). Appropriate stock solutions
were made, stored at −20°C and diluted to the final concentration in aCSF.

The selective depletion of D-serine and glycine was obtained by using recombinant
RgDAAO (EC 1.4.3.3) and recombinant BsGO (EC 1.4.3.19) which were overexpressed in
Escherichia coli cells and purified as previously reported [32,33]. The final enzyme preparations
displayed the following activity: RgDAAO = 100 ± 15 U/mg protein on D-serine as substrate;
BsGO = 0.9 ± 0.2 U/mg protein on glycine as substrate. These flavoenzymes specifically
degrade D-serine (RgDAAO) and glycine (BsGO), as demonstrated by the corresponding
apparent kinetic efficiency (kcat/Km ratio) values: RgDAAO kcat/Km ratios were 3.0 and 0.058
mM−1 s−1 [34], while those determined for BsGO were 0.00025 and 0.867 mM−1 s−1 on D-serine
and glycine, respectively [33]. Enzymatic treatments were performed by incubating for at least
45 min and then continuously perfusing the slices with ACSF containing RgDAAO (0.2 U/ml)
or BsGO (0.1 U/ml). An inactive variant of RgDAAO (ΔRgDAAO) that does not dehydroge-
nate D-amino acids due to the substitution of the pivotal active site residue Arg285 with Ala-
nine [35] was used as control. Enzymes activity is not altered by the presence of picrotoxin
(100 μM) and NBQX (10 μM) during EPSCs recordings [12,16].

Immunohistochemistry
Rats were deeply anesthetized with pentobarbital (6%) and perfused transcardially with phos-
phate buffer (PB) 0.1 M (pH 7.3) and paraformaldehyde (4%) supplemented with 0.25% glutar-
aldehyde. The brain was post-fixed overnight in the same solution and finally cryoprotected
with 30% sucrose in 0.1M PB. Brains were sliced (30 μm) using a vibratome and immunostain-
ings were performed as previously described [13]. Immunostained sections were observed with
a ZEISS LSM 710 confocal microscope (ZEN software) with 405 diode, 488 and 633 laser lines.
All image acquisitions were achieved using 40X and 60X magnification and variable numerical
zooms. Channels were acquired with sequential scanning with a pinhole aperture of 1 airy unit
each. Images were then analyzed using ImageJ software. Staining specificity was verified with
negative controls in which primary or secondary antibodies were omitted. Affinity-purified
primary antibodies were: mouse monoclonal anti serine racemase (Transduction Laboratories:
1/1000), rabbit polyclonal anti-D-serine (GemacBio: 1/1000), mouse polyclonal anti-GFAP
(Sigma: 1/2000, clone G-A-5), mouse monoclonal anti-glyR (mAb4a, Synaptic Systems 1/100).
Secondary antibodies were obtained from Invitrogen: Alexa 488-Goat anti-mouse (1/1000),
Alexa 633-Goat anti-rabbit (1/1000) and from Life Technologies: FITC conjugated mouse anti-
body (1/400).

Results

d-Serine is the endogenous agonist of synaptic NMDARs in the VC
We first assessed the putative contribution of D-serine in the VC by immunostainings for D-ser-
ine. We found D-serine and the D-serine producing enzyme serine racemase to be present in
all layers including layer 5 of the VC (Fig 1A), at P22-P25 suggesting that D-serine may already
contribute to synapse and neuronal networks functions during the first weeks of postnatal
development. We then assessed the functions of D-serine in driving synaptic activity by
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recording postsynaptic NMDA currents (NMDA-EPSCs) in L5PyNs. Bath application of the
selective D-serine scavenger D-amino acid oxidase (RgDAAO, 0.2 U/ml) [13,16] decreased
NMDA-EPSCs by 29.3 ± 5.1% (Fig 1B and 1D; n = 5 cells, 5 slices, 2 animals P<0.001) to a
similar order of magnitude as the co-agonist site blocker 7-Cl-KYN (S1 Fig), while the inactive
variant of RgDAAO (ΔRgDAAO) had no effect (Fig 1D). Conversely, bath application of D-ser-
ine (100 μM) increased NMDA-EPSCs by 46.3 ± 7.5% (Fig 1C & 1D; n = 5 cells, 5 slices, 2 ani-
mals, P<0.001) thus showing that the co-agonist site of NMDARs is not saturated in the VC,
at least during the time of critical period for plasticity.

Fig 1. D-serine modulates synaptic NMDARs current at VC L5PyNsA: Immunofluorescence for D-serine, and GFAP revealed that D-serine is expressed
across all layers of P22-25 (5 slices, 3 animals) VC. The D-serine producing enzyme serine racemase (SR) was also found to be expressed and co-localized
with the astroglial marker GFAP. Images are Z-stack of 10 serial confocal images with a thickness of 1μm. Scale bars: left, 200 μm; right, 50μm B-D:
Applications of the D-serine degrading enzyme RgDAAO (0.2 U/ml) reduces synaptically evoked NMDA-EPSCS (n = 5 cells, 5 slices, 2 animals) (B) while its
inactive form ΔRgDAAO has no effect (n = 5 cells, 5 slices, 2 animals) (D). Scale bars: 100pA, 500ms. Conversely D-serine (100 μM) significantly potentiates
NMDA-EPSCs (n = 5 cells, 5 slices, 2 animals) (C) Scale bars: 200pA, 500ms. ***p<0.001.

doi:10.1371/journal.pone.0151233.g001
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Because RgDAAO only partially reduced the amplitude of NMDA-EPSCs (Fig 1B & 1D),
we then addressed whether glycine in addition to D-serine could also be a co-agonist for synap-
tic NMDARs in VC of young rats. Depletion of endogenous glycine level using the recombi-
nant Bacillus subtilis glycine oxidase (BsGO, 0.1U/ml) did not affect NMDA-EPSCs amplitude
(Fig 2A & 2F; n = 5 cells, 5 slices, 2 animals, P>0.05). Because such lack of effect could be due
to failure of BsGO to reduce glycine levels [13,16,36] we performed control experiments with
ALX5407 (2 μM) to increase endogenous glycine levels by inhibiting glycine transporters type
1 (GlyT1) and then applied BsGO (Fig 2B). ALX5407 decreased rather than increased
NMDA-EPSCs amplitude by 20.3 ± 3.1% (Fig 2B & 2F; n = 4 cells, 4 slices, 2 animals, P<0.01),
an effect indeed reversed by BsGO (Fig 2B & 2F) then showing that the latter was effective in
depleting endogenous glycine. Strikingly, bath application of glycine (100μM) significantly
decreased NMDA-EPSCs amplitude by 21.9 ± 4.2% (Fig 2C & 2F; n = 5 cells, 5 slices, 2 animals,
P<0.001). These observations indicate that D-serine rather than glycine is the co-agonist of
synaptic NMDARs in the VC of young rats under normal conditions.

Insofar as BsGO did not alter NMDA-EPSCs, we hypothesized that the down neuromodula-
tion exerted by glycine on excitatory neurotransmission may occur through activation of
strychnine-sensitive glycine receptors (GlyRs), as seen in the hippocampus [37]. To test this
hypothesis, we blocked GlyRs with bath application of 10 μM strychnine and showed that such
treatment was sufficient to prevent downregulation of NMDA-EPSCs by 100 μM glycine (Fig
2D & 2F; n = 5 cells, 5 slices, 2 animals). Besides, we verified the presence of these receptors by
performing immunostainings for GlyRs [38]. Fig 2E shows that GlyRs are indeed abundant in
apical dendrites and soma of pyramidal neurons indicating their possible role in integrating
information at L5PyNs of VC.

Altogether, these data support that in L5PyNs of VC, D-serine regulates synaptic NMDARs
efficacy by acting as the co-agonist of NMDARs, while glycine acts downstream through acti-
vation of dendritic and somatic GlyRs.

d-Serine enables visual cortex LTP
Having established that D-serine is the endogenous ligand of NMDARs in the young visual cor-
tex, we next examined its contribution to long-term potentiation (LTP) by determining the
total synaptic conductance change (referred as IntgT) and by analyzing both excitatory (eLTP)
and inhibitory (iLTP) components of the response. We have previously shown that Theta
Burst Stimulation (TBS) of layer 2–3 of the VC resulted in similar levels of eLTP and iLTP
recorded at the soma of L5PyNs and that this form of LTP depends on NMDARs functions
[25]. Accordingly, in the present study, TBS protocol induced comparable LTP (Fig 3A & 3B;
IntgT: 148.7 ± 3.0% of baseline, Ps<0.001) and resulted in similar levels of eLTP and iLTP (Fig
3B & 3C; IntgE: 146.7 ± 4.0% of baseline, IntgI: 150.1 ± 3.0% of baseline, Ps<0.001, n = 15
cells, 15 slices, 8 animals), hence not modifying the E-I balance. Most interestingly, bath appli-
cation of the NMDARs co-agonist site blocker 7Cl-KYN (50 μM) [39] during and after TBS
protocol not only prevented LTP but depressed synaptic responses after TBS administration
(IntgT: 68.5 ± 6.3% of baseline, P<0.001; n = 18 cells, 18 slices, 9 animals) at both excitatory
and inhibitory level (Fig 3B & 3F; IntgE: 76.8 ± 6.2% of baseline, P<0.01; IntgI: 67.7 ± 6.8% of
baseline, P<0.001). TBS induced LTP is therefore, in the VC, NMDA-receptor dependent, as
expected from our previous work [40].

Accordingly, depletion of endogenous D-serine with RgDAAO (0.2 U/ml) prevented induc-
tion of LTP (Fig 3B & 3D, IntgT:105.4 ± 8.3% of baseline; IntgE:111.8 ± 10.8% of baseline;
IntgI: 106.4 ± 10.4% of baseline, n = 8 cells, 8 slices, 4 animals, Ps>0.05) while application of its
inactive form ΔRgDAAO throughout the experiment showed no effect (Fig 3B; IntgT:
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Fig 2. Glycine is not the endogenous co-agonist of L5PyNs VC NMDARsA: Application of the glycine degrading enzyme BsGO (0.1 U/ml) has no effect on
NMDA-EPSCs (n = 5 cells, 5 slices, 2 animals), indicating that glycine is not the endogenous co-agonist of synaptic L5PyrNs VC NMDARs. Scale bars:
100pA, 500ms.B: Further, enhancing endogenous glycine levels with the glycine transporter blocker ALX5407 (2 μM) decreased the NMDARs response, an
effect blocked by BsGO (n = 4 cells, 4 slices, 2 animals). Scale bars: 25pA, 250ms.C: A similar result is obtained by exogenous application of glycine
(100μM) (n = 5 cells, 5 slices, 2 animals). Scale bars: 50pA, 500ms. D: Such downregulation of NMDA-EPSCs by glycine is remarkably blocked by the
glycinergic receptors (GyRs) antagonist strychnine (10μM) (n = 5 cells, 5 slices, 2 animals). Scale bars: 50pA, 500ms. E: Immunofluorescence for GlyRs
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154.8 ± 12.9% of baseline; IntgE: 144.3 ± 10.5% of baseline; IntgI: 162.1 ± 16.2% of baseline;
n = 15 cells, 15 slices, 8 animals, Ps<0.001), thus confirming the specificity of RgDAAO
blockade.

Interestingly, in contrast with 7Cl-KYN, RgDAAO failed to engender TBS-induced synaptic
depression. Since this apparent discrepancy could reflect incomplete depletion of endogenous
D-serine by RgDAAO we further tested the contribution of D-serine in LTP using phenazine
Ethosulfate (Et-Phen), an inhibitor of serine racemase, throughout the experiment [41–43].
Pharmacological inhibition of SR not only prevented the TBS-induced eLTP and iLTP as
observed with RgDAAO (Fig 3B & 3E) but also induced depression of the synaptic responses,
as observed with 7Cl-KYN (Fig 3B & 3E; IntgT: 75.9 ± 7.4% of baseline; IntgE: 77.3 ± 7.6% of
baseline; IntgI: 75.3 ± 8.6% of baseline; n = 17 cells, 17 slices, 8 animals, Ps<0.01). Altogether,
the dataset therefore indicates that D-serine is required for both eLTP and iLTP and that its
absence unmasks a depression of evoked synaptic responses recorded at the soma of L5PyNs.

Glycine downregulates current spread in VC L5PyNs
Given the lack of effect of BsGO on NMDA-EPSCs and their downregulation in the presence
of glycine, we then sought to ascertain to which extent endogenous glycine may or not contrib-
ute to the modulation of L5PyNs synaptic current during higher regime of activity. To this end,
glycine depletion was achieved again by application of BsGO (0.1 U/ml) throughout the experi-
ment. Under these conditions, LTP was found to be unchanged (Fig 4B & 4C; IntgT:
136.4 ± 6.4% of baseline; IntgE: 139.8 ± 9.7% of baseline; IntgI: 134.2% ± 9.0% of baseline;
n = 19 cells, 19 slices, 9 animals, Ps<0.01) indicating that unlike D-serine, reduced level of gly-
cine does not limit LTP induction and expression in the rat VC. We also tested whether, con-
versely, increase in endogenous glycine could affect LTP. To this end we applied the selective
blocker of GlyT1 ALX5407 (2μM) half an hour before TBS and throughout the experiment
[36] in order to build up glycine concentration in the cortical slice. Under ALX5407, TBS failed
to induce LTP (Fig 4B & 4D; IntgT: 101.2 ± 8.0% of baseline; IntgE: 110.7 ± 9.3% of baseline;
IntgI: 104.2% ± 7.4% of baseline, Ps>0.05 n = 13 cells, 13 slices, 6 animals). We further con-
firmed that this effect was attributable to the action of glycine as adding BsGO (0.1 U/ml) in
the presence of ALX5407 (2μM) throughout the experiment showed no effect on VC LTP (Fig
4B; IntgT: 133.2 ± 4.8% of baseline, IntgE: 135.4 ± 6.2% of baseline and IntgI: 131.1 ± 4.0% of
baseline respectively; Ps> 0.01, n = 13 cells, 13 slices, 6 animals). This result was identical to
the result obtained in the presence of BsGO alone. Since BsGO was effective in depleting gly-
cine, we conclude that raising endogenous glycine concentration prevents somatic recording of
LTP in L5PyNs.

To further characterize the dose-dependent effect of glycine on TBS induced plasticity, we
measured the effect of three concentrations of glycine on excitatory and inhibitory plasticity.
Application of 1 μM glycine was sufficient to annihilate LTP (Fig 5A & 5B; IntgT: 120.2 ± 8.1%
of baseline; IntgE: 114.4 ± 8.8% of baseline; IntgI: 127.3 ± 7.5% of baseline, n = 10 cells, 10
slices, 5 animals, P>0.05). At higher concentrations, exogenous glycine (10 μM) resulted in a
weak depression following TBS (Fig 5A & 5C; IntgT: 84.5 ± 6.2% of baseline; IntgE:
81.6 ± 7.6% of baseline; IntgI: 85.5 ± 7.9% of baseline, n = 10 cells, 10 slices, 5 animals, Ps>
0.05), an effect significantly amplified at 100 μM (Fig 5A & 5D; IntgT: 66.8 ± 5.7%; IntgE:
74.4 ± 7.2% of baseline; IntgI: 62.2 ± 6 .4% of baseline; n = 12 cells, 12 slices, 6 animals,
Ps<0.001). Insofar as we found that glycine is able to downregulate NMDARs currents through

revealed that, in the VC, they are mainly expressed in L5PyRNs notably at the somatic and dendritic level. Scale bar: 50μm, inset: 30μm. F: Altogether, these
results indicate that glycine downregulates NMDA-EPSCs through activation of GlyRs ** p<0.01, *** p<0.001.

doi:10.1371/journal.pone.0151233.g002
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Fig 3. D-serine is required for VC long-term potentiationA:Upper panel shows representative composite current responses of L5PyN for the range of
imposed potentials before and during LTP. Scale bars: 300pA, 50ms. Medium panels displays the corresponding total conductance change gT before and
during LTP. Lower panels show decomposition of gT into excitatory (gE, black) and inhibitory (gI, grey) conductances (n = 15 cells, 15 slices, 8 animals).
Scale bars: 4nS, 50ms.B: Changes in the gT integral (IntgT) calculated every 15 min, up to 1 h post-TBS, show that LTP is abolished by blocking the co-
agonist binding site of NMDARs with 7-Cl-KYN, removing D-serine through the D-serine degrading enzyme RgDAAO (n = 18 cells, 18 slices, 9 animals) or
preventing D-serine production via blockade of the D-serine producing enzyme serine racemase with Et-Phen (n = 17 cells, 17 slices, 8 animals). This
indicates that D-serine is required for VC L5PyNs LTP.C-F: Excitatory (black) and inhibitory (grey) conductances were found to be equally affected by TBS
application, regardless of the treatment, indicating that the E-I balance is unaltered by D-serine and LTP. *p<0.05, **p<0.01, ***p<0.001 compared to pre-
TBS.

doi:10.1371/journal.pone.0151233.g003
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activation of GlyRs, we analyzed contribution of the latter by applying TBS in the presence of
glycine (100 μM) and the GlyR blocker strychnine (10 μM). This resulted in an LTP compara-
ble to that obtained in control conditions (Fig 5A & 5E; IntgT: 138.9 ± 6.7% of baseline; IntgE:
137.3 ± 7.9% of baseline; IntgI: 140.7% ± 6.7% of baseline; n = 12 cells, 12 slices, 6 animals, Ps>
0.01). Furthermore, applying TBS whilst blocking the NMDARs co-agonist site with 7-Cl-KYN
in the presence of glycine (100μM) still depressed synaptic responses (S2 Fig; IntgT:
73.9 ± 11.4% of baseline; IntgE: 77.1 ± 10.3% of baseline; IntgI: 62.5 ± 12.3% of baseline; n = 4,
Ps<0.05) indicating that NMDARs are not involved in these downregulations. Finally, in the
presence of 7-Cl-KYN and strychnine TBS induced no change (S2 Fig; IntgT: 101.2 ± 10.9% of
baseline; IntgE: 103.5 ± 12.7% of baseline; IntgI: 91.5 ± 10.2% of baseline; n = 4; Ps>0.05) in

Fig 4. Increasing endogenous glycine level prevents the induction of LTP. A: Upper panel shows representative composite current responses of L5PyN
for the range of imposed potentials before and during LTP. Scale bars: 150pA, 50ms. Medium panels displays the corresponding total conductance change
gT before and during LTP. Lower panels show decomposition of gT into excitatory (gE, black) and inhibitory (gI, grey) conductances. Scale bars: 4nS, 50ms.
B: Changes in IntgT up to 1 h post-TBS show that LTP is abolished when endogenous glycine levels are increased by blocking the glycine transporter with
ALX (2μM) (n = 13 cells, 13 slices, 6 animals). The glycine degrading enzyme BsGO has no effect on LTP (n = 19 cells, 19 slices, 9 animals), and prevents
the effect of ALX (n = 13 cells, 13 slices, 6 animals), thus confirming that the latter is attributable to endogenous glycine rise.C-D: Excitatory (black) and
inhibitory (grey) conductances were found to be equally affected by TBS application, regardless of the treatment, indicating that the E-I balance is unaltered
by glycine and LTP. *p<0.05, **p<0.01, ***p<0.001 compared to pre-TBS.

doi:10.1371/journal.pone.0151233.g004
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Fig 5. Dose effects of various concentrations of glycine on LTPA: At the concentration of 1μM glycine the initial potentiation induced by TBS does not last 1
h, thus indicating that at such low concentration is enough to prevent LTP (n = 10 cells, 10 slices, 5 animals). At 10μM glycine not only prevents all
potentiation but also slightly decreases conductances recorded at the soma (n = 10 cells, 10 slices, 5 animals), although this reduction is not significant. At
100μM glycine blocks LTP and induces a significant depression up to 1 h post-TBS (n = 12 cells, 12 slices, 6 animals).B-E: Excitatory (black) and inhibitory
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current magnitude, thus implying that GlyRs activation underlies the reduction of recorded
currents. We therefore conclude that increased levels of glycine during high regime of activity
such as TBS activate GlyRs and eventually leads to a depression of the conductances recorded
after TBS at the somatic level. Given the extrasynaptic dendritic and somatic localisation of
GlyRs, we hypothesized that their activation results in a shunt of synaptic inputs.

To assess such possibility, we calculated the electrotonic length of L5PyN and used it as an
index of current spread efficacy according to the method described by Rall [31]. Remarkably,
the electrotonic length was found to be significantly higher in the presence of 100 μM glycine
(Fig 6B; Control: 0.52 ± 0.03, n = 15; Glycine: 0.73 ± 0.03, n = 16 cells, 16 slices, 8 animals;
P<0.01), an effect that corresponds to an increased attenuation of the distal currents reading at
the somatic level [44,45]. We conclude that activation of dendritic GlyRs results in a filtering
effect. In all, these data indicate that, in the VC, activation of GlyRs by elevated endogenous
glycine levels during high regime of activity filters synaptic inputs conveyed through the den-
dritic tree, thereby masking LTP induced at distal synapses and resulting in LTD-like changes
in current readings at the somatic level.

Discussion
The present study provides evidence that D-serine controls NMDAR-dependent LTP in VC
L5PyNs whilst glycine influence neurotransmission at a different level, by activating extrasy-
naptic GlyRs distributed along the apical dendrite. Activation of the GlyRs when the concen-
tration of glycine increases indeed results in a shunting inhibition of afferent inputs which thus
display a depression (a LTD-like effect) instead of an LTP at the soma after dendritic
integration.

Whilst former investigations have supported that glycine is the co-agonist of NMDARs
[3,4,46,47], recent work have shown that reducing D-serine levels impairs NMDAR-mediated
processes in several structures, including the hippocampus, prefrontal cortex, nucleus accum-
bens or amygdala [9,10,12–14,17,48], suggesting that D-serine is likely to be the co-agonist for
synaptic NMDAR prevailing in many brain areas, even though glycine remains engaged in the
modulation these receptors [11, 16, 17]. Using D-serine and/or glycine, several reports indicate
that the co-agonist site of synaptic NMDARs is not saturated in the VC of cats and rats, during
and after the critical period of plasticity [49–52]. However, thus far, identity of the prevalent
co-agonist remained undetermined in this structure. Our data show that, at VC L5PyNs, reduc-
ing D-serine function using a variety of pharmacological treatments prevents the induction of
LTP whilst depleting glycine has no effect, thus demonstrating in the VC that D-serine and not
glycine is the dominant endogenous ligand of synaptic NMDARs, as seen in other brain areas
[9,12,13,16,53]. It however remains possible that modulation of extrasynaptic NMDARs is dif-
ferent and involves glycine.

Both D-serine and glycine have been reported to be present in the micromolar range in vari-
ous cortical areas [7,54], although their concentrations may differ between the in vivo vs ex
vivo situation. Insofar as our results indicate that glycine does not undertake the main role of
NMDA receptor co-agonist, we further investigated its role in this brain region. The presence
of GlyRs along the dendritic tree of L5PyNs suggests a functional role at this level. Interestingly
however, removing glycine from the preparation using BsGO throughout the experiment
showed no effect on NMDA receptor function. Thus, considering the inhibitory effect we
observed on NMDA currents and the increase in electrotonic length engendered by glycine

(grey) conductances were found to be equally affected by TBS application, regardless of the treatment, confirming that the E-I balance is unaltered by glycine
and LTP. *p<0.05, **p<0.01, ***p<0.001 compared to pre-TBS.

doi:10.1371/journal.pone.0151233.g005
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application, we propose that by opening GlyRs, rise of glycine that occurs primarily during
high regime of activity would allow for a potent filtering of synaptic inputs conveyed through
the neuron. Although membrane depolarizations may be large and sharp locally at the synapse,
the resulting changes in somatic potential are much slower and smaller after dendritic propaga-
tion [55]. Insofar as opening of chloride permeability at resting potential mainly acts as a shunt
since the equilibrium potential for Cl- is -80mV [25], activation of non-synaptic dendritic
GlyRs should indeed accentuate current attenuation upon propagation. Such interpretation is
supported by our observation that downregulation of NMDA currents and LTP by glycine is
fully prevented by the GlyRs blocker strychnine. A similar effect has also been observed in the
hippocampus where GlyRs act as a tonic shunt, thereby depressing excitatory neurotransmis-
sion and inducing LTD [37,56,57]. The present study thus shows that the situation is most
likely similar in the VC, where EPSCs arising at the synaptic level are filtered and depressed
along the dendritic tree of L5PyNs upon opening of GlyRs, this results in a LTD-like plasticity
at the soma. Such selective activation of GlyRs and not NMDARs in the VC is most likely
attributable to the differential sites of action of these receptors. It is indeed readily conceivable
that glycine remains confined to extrasynaptic sites, where GlyRs are expressed, as glycine
transporters can prevent its access to synaptic confinements, as found in the hippocampus
[12]. In the cortex and hippocampus, GlyRs have been shown to be primarily expressed at
somatic and dendritic extrasynaptic sites [58,59]. These anatomical observations are also cor-
roborated by a large body of physiological investigations reporting that synaptic currents are
abolished by antagonists of glutamate and GABA receptors in the postnatal cortex, including
our work in the VC [60,61], and thereby suggesting that cortical GlyRs are not synaptically

Fig 6. Glycine reduces VC L5PyNs dendritic current spreadA:Membrane time constants Ƭ0 and Ƭ1. were calculated by plotting the natural log of the
response expressed as percentage of the peak negative potential (% ΔEmax) to “peel” the first order exponential for time points lying between 5 and 15ms.
Ƭ0 could then be read as the slope negative inverse of the regression line. The second order exponential for time points earlier than 5ms was peeled by
plotting the difference between the Ƭ0 regression line from the points lying above this line and normalizing the y-intercept of the Ƭ1 regression line to 100%. Ƭ1
could then be read as the slope negative inverse of the normalized Ƭ1 regression line. B:Calculation of the electrotonic length (L) using the equation L = π
(Ƭ0/ Ƭ 1)

-1/2 showed that L is significantly increased in the presence of 100μM glycine, indicating that the dentritic current spread attenuation is higher in the
latter case. **p<0.01,***p<0.001.

doi:10.1371/journal.pone.0151233.g006
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activated. Such data support the early demonstration by Flint and colleagues that GlyRs are
activated non-synaptically [62]; consistent with this finding, a recent report found that applica-
tion of GlyR antagonist strychnine dampens membrane currents, without affecting spontane-
ous synaptic events [63]. In all, our findings thus represent a new framework integrating the
complex functions of D-serine and glycine in the modulation of synapse activity and the
dynamics of VC neuronal networks.

The brain uses a variety of strategies to process and extract information upon the large
range of sensory inputs it receives. Several investigations have sought the optimal strategies the
brain may employ to tune the best signal-to-noise ratio obtainable, such as, for example, gain
control [64]. Yet, in primary sensory cortices, the strategies to scale integration of the input
strength and extract relevant information from noise remain poorly understood [65,66]. One
interesting model postulates that the VC would select pertinent information by a noise-filtering
action, dampening responses to irrelevant visual noise [67]. Remarkably, a recent study pro-
vides fMRI data supporting the latter hypothesis [68]. By demonstrating that activation of
GlyRs along the L5PyNs dendrite enables efficient shunt of synaptic inputs while maintaining
the E-I balance intact, the present study shed light on a mechanism that likely participates in
the selective wave attenuation of sensory inputs, known to be necessary for the adaptation of
inputs intensity to visual processing [69].

Supporting Information
S1 Fig. NMDAR currents are antagonized by CPP and 7-Cl-KYN. A: Administration of the
selective NMDARs antagonist CPP (1μM) expectedly abolished the recorded current, thus con-
firming their nature (n = 4). B: Bath application of the co-agonist site blocker 7-Cl-KYN
decreased NMDA-EPSCs to the same extent as the selective D-serine scavenger D-amino acid
oxidase thus suggesting that D-serine is the endogenous co-agonist of NMDARs in the visual
cortex (n = 3).
(TIF)

S2 Fig. TBS induced depression depends on GlyRs and not NMDARs. A: The depression
observed after TBS administration in the presence of glycine 100μM is not affected by the
NMDAR co-agonist binding site blocker 7-Cl-KYN (50μM) indicating that putative regulation
of NMDAR by glycine does not play a role in this process (n = 4). B: Instead, GlyRs underlie
such downregulation as the GlyRs blocker strychnine (10μM) abolishes the TBS induced
depression (n = 4). �p<0.05, ��p<0.01, ���p<0.001.
(TIF)
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