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Abstract
We tackle the problem of simultaneous transformations of networks represented as graphs.

Roughly speaking, one may distinguish two kinds of simultaneous or parallel rewrite relations
over complex structures such as graphs: (i) those which transform disjoint subgraphs in parallel
and hence can be simulated by successive mere sequential and local transformations and (ii)
those which transform overlapping subgraphs simultaneously. In the latter situations, parallel
transformations cannot be simulated in general by means of successive local rewrite steps. We
investigate this last problem in the framework of overlapping graph transformation systems. As
parallel transformation of a graph does not produce a graph in general, we propose first some
sufficient conditions that ensure the closure of graphs by parallel rewrite relations. Then we
mainly introduce and discuss two parallel rewrite relations over graphs. One relation is functional
and thus deterministic, the other one is not functional for which we propose sufficient conditions
which ensure its confluence.
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1 Introduction

Graph structures are fundamental tools that help modeling complex systems. In this paper,
we are interested in the evolution of such structures whenever the dynamics is described
by means of systems of rewrite rules. Roughly speaking, a rewrite rule can be defined as
a pair l → r where the left-hand and the right-hand sides are of the same structure. A
rewrite system, consisting of a set of rewrite rules, induces a rewrite relation (→) over the
considered structures. The rewrite relation corresponds to a sequential application of the
rules, that is to say, a structure G rewrites into a structure G′ if there exits a rule l → r

such that l occurs in G. Then G′ is obtained from G by replacing l by r.
Besides this classical rewrite relation, one may think of a parallel rewrite relation which

rewrites a structure G into a structure G′ by firing, simultaneously, some rules whose left-
hand sides occur in G. Simultaneous or parallel rewriting of a structure G into G′ can be
used as a means to speed up the computations performed by rewrite systems and, in such
a case, parallel rewriting can be simulated by successive sequential rewrite steps. However,
there are situations where parallel rewrite steps cannot be simulated by sequential steps as

∗ This work has been partly funded by projects CLIMT(ANR/(ANR-11-BS02-016), PEPS égalité
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in formal grammars [6], cellular automata (CA) [15] or L-systems [11]. This latter problem
is of interest in this paper in the case where structures are graphs.

Graph rewriting is a very active area where one may distinguish two main stream ap-
proaches, namely (i) the algorithmic approaches where transformations are defined by means
of the actual actions one has to perform in order to transform a graph, and (ii) the algebraic
approaches where graph transformations are defined in an abstract level using tools borrowed
from category theory such as pushouts, pullbacks etc. [12]. In this paper, we introduce a new
class of graph rewrite systems following an algorithmic approach where rewrite rules may
overlap. That is to say, in the process of graph transformation, it may happen that some
occurrences of left-hand sides of different rules can share parts of the graph to be rewritten.
This overlapping of the left-hand sides, which can be very appealing in some cases, turns out
to be a source of difficulty to define rigorously the notion of parallel rewrite steps. In order
to deal with such a difficulty we follow the rewriting modulo approach (see, e.g. [10]) where
a rewrite step can be composed with an equivalence relation. Another complication comes
from the fact that a graph can be reduced in parallel in a structure which is not always a
graph but rather a structure we call pregraph. Thus, we propose sufficient conditions under
which graphs are closed under parallel rewriting. The rewrite systems we obtain generalize
some known models of computation such as CA, L-systems and more generally substitution
systems [15].

The paper is organized as follows. The next section introduces the notions of pregraphs
and graphs in addition to some preliminary results linking pregraphs to graphs. In Section 3,
a class of rewrite systems, called environment sensitive rewrite systems is introduced together
with a parallel rewrite relation. We show that graphs are not closed under such rewrite
relation and propose sufficient conditions under which the outcome of a rewrite step is
always a graph. Then, in Section 4, we define two particular parallel rewrite relations, one
performs full parallel rewrite steps whereas the second one uses the possible symmetries that
may occur in the rules and considers only matches up to automorphisms of the left-hand
sides. Section 5 illustrates our framework through some examples. Concluding remarks and
related work are given in Section6.

2 Pregraphs and Graphs

In this section we first fix some notations and give preliminary definitions and properties.
2A denotes the power set of A. A ] B stands for the disjoint union of two sets A and B.
In the following, we introduce the notion of (attributed) pregraphs, which denotes a class
of structures we use to define parallel graph transformations. Elements of a pregraph may
be attributed via a function λ which assigns, to elements of a pregraph, attributes in sets
underlying attributes’ structure A. For instance A may be a Σ-algebra [13] or merely a set.

I Definition 1 (Pregraph).
A pregraph H is a tuple H = (NH ,PH ,PNH ,PPH ,AH , λH) such that :
NH is a finite set of nodes and PH is a finite set of ports,
PNH is a relation PNH ⊆ PH ×NH .
PPH is a symmetric binary relation on ports, PPH ⊆ PH × PH ,
AH is a structure of attributes
λH is a function λH : NH ] PH → 2AH such that ∀x ∈ NH ] PH , card(λH(x)) is finite.

An element (p, n) in PNH means that port p is associated to node n. An element (p1, p2)
in PPH means that port p is linked to port p2. In a pregraph, a port can be associated (resp.
linked) to several nodes (resp. ports).
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Figure 1 Example of a pregraph H such that: AH = N, NH = {n1, n2, n3, n4, n5},
PH = {p1, p2, p3}, PNH = {(p1, n1), (p1, n2), (p2, n5), (p3, n3), (p3, n4)}, PPH =
{(p1, p2), (p2, p3), (p2, p1), (p3, p2)}. PPH could be reduced to its non symmetric port-port
connection {(p1, p2), (p2, p3)}. λH(ni) = {1} for i ∈ {1, 2, 4, 5}, λH(n3) = {2}. λH(pj) = ∅, for
j ∈ {1, 2, 3}. Port attributes (∅) have not been reported on the figure.

Figure 2 Example of a pregraph H such that: AH = {N ∪ {x1, x2, x3, x4, x5},+,×,=
? =}, NH = {n1, n2, n3, n4, n5}, PH = {p2, p3, p4, p5, q2, q3, q4, q5}, PNH =
{(p2, n1), (p3, n1), (p4, n1), (p5, n1), (q2, n2), (q3, n3), (q4, n4), (q5, n5)}, PPH reduced to its non
symmetric port-port connection is PPH = {(p2, q2), (p3, q3), (p4, q4), (p5, q5)}. λH(ni) = {xi} for
i ∈ {1, 2, 3, 4, 5}, λH(pj) = λH(qj) = ∅, for j ∈ {2, 3, 4, 5}.

I Example 2. Figure 1 shows an example of a pregraph where the node attributes are
natural numbers. In the second example, Figure 2, node attributes are variables ranging
over N. The introduction of variables as attributes allows one to model node neighborhood-
sensitive dynamics at the rewriting rule level as it will be illustrated in Section 5.

Below we introduce the definition of graphs used in this paper. In order to encode classical
graph edges between nodes, restrictions over port associations are introduced. Intuitively,
an edge e between two nodes n1 and n2 will be encoded as two semi-edges (n1, p1) and
(n2, p2) with p1 and p2 being ports which are linked via an association (p1, p2).

I Definition 3 (Graph). A graph, G, is a pregraph G = (N ,P,PN ,PP,A, λ) such that :
(i) PN is a relation ⊆ P ×N which associates at most one node to every port1. That is to

say, ∀p ∈ P,∀n1, n2 ∈ N , (PN (p, n1) and PN (p, n2)) =⇒ n1 = n2.
(ii) PP is a symmetric binary relation2 on ports, PP ⊆ P × P, such that ∀p1, p2, p3 ∈

P, (PP(p1, p2) and PP(p1, p3)) =⇒ p2 = p3 and ∀p ∈ P, (p, p) 6∈ PP.

The main idea of our proposal is based on the use of equivalence relations over nodes and
ports (merging certain nodes and ports under some conditions) in order to perform parallel

1 The relation PN could be seen as a partial function PN : P → N which associates to a given port p, a
node n, PN (p) = n ; thus building a semi-edge “port-node”.

2 The relation PP could also be seen as an injective (partial) function from ports to ports such that
∀p ∈ P,PP(p) 6= p and ∀p1, p2 ∈ P,PP(p1) = p2 iff PP(p2) = p1.
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graph rewriting in presence of overlapping rules. Thus, to a given pregraph H, we associate
two equivalence relations on ports, ≡P , and on nodes, ≡N , as defined below.

I Definition 4 (≡P , ≡N ). Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph. We define
two equivalence relations ≡P and ≡N respectively on ports (PH) and nodes (NH) of H as
follows:
≡P is defined as (PPH • PPH)∗
≡N is defined as (PN−H• ≡P •PN )∗

where • denotes relation composition, − the converse of a relation and ∗ the reflexive-
transitive closure of a relation. We write [n] (respectively, [p]) the equivalence class of node
n (respectively, port p).

Roughly speaking, relation ≡P is the closure of the first part of condition (ii) in Defini-
tion 3. The base case says that if two ports p1 and p2 are linked to one same port p, then
p1 and p2 are considered to be equivalent. ≡N is almost the closure of condition (i) in
Definition 3. That is, two nodes n1 and n2, which are associated to one same port (or two
equivalent ports), are considered as equivalent nodes.
I Proposition 1. Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph. The relations ≡P
and ≡N are equivalence relations.

Proof. The reflexivity and transitivity of ≡P and ≡N follow directly from their respective
definitions. The symmetry of PPH implies directly the symmetry of ≡P and ≡N .

J

I Remark. Notice that the relations ≡P and ≡N can be computed incrementally as follows:
Initial state:
≡P0 = {(x, x) | x ∈ PH}
≡N0 = {(x, x) | x ∈ NH}

Inductive steps:
Rule I: if q, q′ ∈ PH such that, q ≡Pi q′, (q, p1) ∈ PPH and (q′, p2) ∈ PPH then p1 ≡Pi+1 p2.
Rule II: if p1 ∈ PH , p2 ∈ PH , (p1, n1) ∈ PNH , (p2, n2) ∈ PNH and p1 ≡Pi p2 then
n1 ≡Ni+1 n2.
Rule III: If n1 ≡Ni n′ and n′ ≡Ni n2 then n1 ≡Ni+1 n2.
I Proposition 2. The limit of the series (≡Pi )i≥0 is ≡P .

Proof. Since the set of ports is finite then the limit of the series is reached within a finite
number of steps.
⇒ : Let p1, p2 ∈ PH , such that p1 ≡Pk p2 for some k , let us prove by induction on k,

that (p1, p2) ∈ (PP • PP)k.
case k = 0 : p1 ≡P0 p2 thus p1 = p2 and (p1, p2) ∈ (PP • PP)0.
Induction step, case k = k′ + 1 : Let us assume p1 ≡Pk′+1 p2. In this case, from rule I,
there exist q, q′ ∈ PH such that, q ≡Pk′ q′, (q, p1) ∈ PPH and (q′, p2) ∈ PPH . q ≡Pk′ q′

implies by induction hypothesis that (q, q′) ∈ (PP •PP)k′ . Thus (p1, p2) ∈ (PP •PP)k′+1.
Therefore for all k, p1 ≡Pk p2 implies (p1, p2) ∈ (PP • PP)k, and thus, p1 ≡P p2.

⇐ Let p1 ≡P p2. By definition of ≡P , there exists a natural number k such that
(p1, p2) ∈ (PP • PP)k. It is then straightforward that p1 ≡Pk p2. J

Likewise, we can easily show the following proposition regarding relation ≡N .
I Proposition 3. The limit of the series (≡Ni )i≥0 is ≡N .
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Proof. Since the sets of nodes and ports are finite then the limit of the series is reached
within a finite number of steps. ⇒ : Let n1, n2 ∈ NH , such that n1 ≡Nk n2 for some k , let
us prove by induction on k, that (n1, n2) ∈≡N .

case k = 0 : obvious.
Induction step, case k = k′ + 1 : Let us assume n1 ≡Nk′+1 n2. We distinguish two
sub-cases according to the used rules, i.e. Rule II or Rule III.

Rule III. According to Rule III, there exists a node n′ such that n1 ≡Nk′ n′ and n′ ≡Nk′ n2. From
the induction hypothesis, we have n1 ≡Nk′ n′ =⇒ n1 ≡N n′ and n′ ≡Nk′ n2 =⇒
n′ ≡N n2. Then by transitivity of ≡N we have n1 ≡N n2.

Rule II. According to Rule II, there exist two ports p1 and p2 in PH such that (p1, n1) ∈ PNH ,
(p2, n2) ∈ PNH and p1 ≡Pk′ p2. From Proposition 2, p1 ≡Pk′ p2 =⇒ p1 ≡P p2, and
thus, there exists an index i such that (p1, p2) ∈ (PPH • PPH)i. Since (p1, n1) ∈ PNH

and (p2, n2) ∈ PNH we conclude that (n1, n2) ∈ (PN−H• ≡P •PNH)

⇐ Let n1 ≡N n2. Then by definition of ≡N there exists a natural number k such that
(n1, n2) ∈ (PN−H• ≡P •PNH)k. This means that there is a chain of connections constiting
tuples of the form mi − pi ≡P p′i −mi+1 for i ∈ {0, ..., k} such that m0 = n1 and mk = n2.
From rule III, it is easy to deduce the existence of k′, such that n1 ≡Nk′ n2.

J

Intuitively, two ports or two nodes are equivalent if they are associated to a same port. The
equivalence relations ≡P and ≡N are used to introduce the notion of quotient pregraph as
defined below.

I Definition 5 (Quotient Pregraph). Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph
and ≡P and ≡N two equivalence relations over ports and nodes respectively. We write H̄ the
pregraph H̄ = (NH̄ ,PH̄ ,PN H̄ ,PPH̄ ,AH̄ , λH̄) where NH̄ = {[n] | n ∈ NH}, PH̄ = {[p] | p ∈
PH}, PN H̄ = {([p], [n]) | (p, n) ∈ PNH}, PPH̄ = {([p], [q]) | (p, q) ∈ PPH}, AH̄ = AH and
λH̄([x]) = ∪x′∈[x]λH(x′) where [x] ∈ NH̄ ] PH̄

I Example 6. Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph as depicted on the left
of Figure 3, withNH = {n1, n2, n3, n4}, PH = {p1, p2, p3, p4, p5, p6}, PNH = {(p1, n1), (p5, n1),
(p2, n2), (p6, n2), (p4, n3), (p3, n4)}, PPH = {(p1, p2), (p1, p4), (p2, p3), (p3, p4), (p5, p6)},
AH = N, λNH

(n1) = λNH
(n4) = {1}, λNH

(n2) = λNH
(n3) = {2}, ∀i ∈ {1, ..., 6}, λPH

(pi) =
∅,

We obtain H̄ = (NH̄ ,PH̄ ,PN H̄ ,PPH̄ ,AH̄ , λH̄), as depicted on the right of Figure 3, with
NH̄ = {[n1], [n2]} with [n1] = {n1, n4}, [n2] = {n2, n3},
PH̄ = {[p1], [p2], [p5], [p6]} with [p1] = {p1, p3}, [p2] = {p2, p4}, [p5] = {p5}, [p6] = {p6},
PN H̄ = {([p1], [n1]), ([p5], [n1]), ([p2], [n2]), ([p6], [n2])},
PPH̄ = {([p1], [p2]), ([p5], [p6])},
AH̄ = AH
λNH̄

([n1]) = {1}, λNH̄
([n2]) = {2}, λPH̄

([p1]) = λPH̄
([p2]) = λPH̄

([p5]) = λPH̄
([p6]) = ∅.

I Example 7. Figure 4 illustrates two computations of quotient pregraphs.

I Remark. If H is a graph, H = H (In fact H and H are isomorphic). Indeed, in a graph,
a port can be associated (resp. linked) to at most one node (resp. one port).

The following definition introduces some vocabulary and notations.
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Figure 3 (a) A pregraph H (b) and its corresponding quotient pregraph H.

I Definition 8 (Path, Loop). A path πH(p1, pk) between two (possibly the same) nodes
p1 and pk in a pregraphH is a sequence of ports ofH written πH(p1, pk) = (p1, p2, . . . , pk)
such that {(pi, pi+1) | i = 1, 2, . . . , k − 1} ⊆ PPH and k ∈ N with k > 0.
The length of a path πH(p1, pk) = (p1, p2, . . . , pk) is ](πH(p1, pk)) = k − 1.
An even path (resp. odd path) is a path such that its length is even (resp. odd).
A loop is a closed path, i.e., a path πH = (p1, p2, . . . , pk) such that p1 = pk. An even
loop (resp. odd loop) is an even closed path (resp. odd closed path).

From the definitions above, one can show the following statements.
I Proposition 4. Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph. Let q, q′ be two
ports in PH . q ≡P q′ iff there exists an even path between q and q′ in H.

Proof. If q ≡P q′ then, by definition, (q, q′) ∈ (PPH • PPH)∗ hence there exists an even
path between q and q′. Conversely, if there exists an even path between q and q′ in H then
(q, q′) ∈ (PPH • PPH)∗ and thus q ≡P q′. J

I Proposition 5. Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph. H̄ is a graph iff H
has no odd loop.

Proof. Let H̄ = (NH̄ ,PH̄ ,PN H̄ ,PPH̄ ,AH̄ , , λH̄). The relations PN H̄ and PPH̄ are func-
tional by construction. In order to show that H̄ is indeed a graph, It remains to prove that
PPH̄ is not anti-reflexive iff there is an odd loop in H.

⇒ Assume that PPH̄ is not anti-reflexive. Then, there exists q ∈ PH such that ([q], [q]) ∈
PPH̄ . Thus, either (q, q) ∈ PPH which constitute an odd loop of length one or there
exists a port q′, different from q, such that (q, q′) ∈ PPH and q′ ≡P q. In this last case,
from Proposition4, q′ ≡P q implies the existence of an even path from q′ to q. Then
adding the link (q, q′) to this path builds a loop from q to q in H of odd length.

⇐ Assume there is an odd loop containing a port q in H. Then either the loop is of
the form (q, q) and thus (q, q) ∈ PPH and in this case ([q], [q]) ∈ PPH̄ , or there exists
a port q′ different from q such that the loop is of the form (q, q′, . . . , q). In this last
case, (q, q′) ∈ PPH and the path πH(q′, q) is even. Thus, [q] = [q′] which implies that
([q], [q]) ∈ PPH̄ .

J

Below, we define the notion of homomorphisms of pregraphs and graphs. This notion
assumes the existence of homomorphisms over attributes [2].

I Definition 9 (Pregraph and Graph Homomorphism). Let l = (Nl,Pl,PN l,PP l,Al, λl) and
g = (Ng,Pg,PN g,PPg,Ag, λg) be two pregraphs. Let a : Al → Ag be a homomorphism
over attributes. A pregraph homomorphism, ha : l→ g, between l and g, built over attribute
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Figure 4 (a) A pregraph H2 and its corresponding quotient pregraph H2 which is a graph. (b)
A pregraph H3 and its corresponding quotient pregraph H3 which is not a graph.

homomorphism a, is defined by two functions haN : Nl → Ng and haP : Pl → Pg such that
(i) ∀(p1, n1) ∈ PN l, (haP (p1), haN (n1)) ∈ PN g, (ii) ∀(p1, p2) ∈ PP l, (haP (p1), haP (p2)) ∈ PPg,
(iii) ∀n1 ∈ Nl, a(λl(n1)) ⊆ λg(haN (n1)) and (iv) ∀p1 ∈ Pl, a(λl(p1)) ⊆ λg(haP (p1)).

A graph homomorphism is a pregraph homomorphism between two graphs.

Notation: Let E be a set of attributes, we denote by a(E) the set a(E) = {a(e) | e ∈ E}.

I Proposition 6. LetH andH ′ be two isomorphic pregraphs. Then H̄ and H̄ ′ are isomorphic.

Proof. Let ha : H → H ′ be a pregraph isomorphism. We define h̄a : H̄ → H̄ ′ as follows:
for all ports p, p′ in H, nodes n in H, h̄aN ([n]) = [haN (n)], h̄aP ([p]) = [haP (p)], h̄a([p], [n]) =
([haP (p)], [haN (n)]), h̄a([p], [p′]) = ([haP (p)], [haP (p′)]).

h̄a is clearly a pregraph isomorphism between H̄ and H̄ ′. h̄ is well defined as illustrated
in the following three items.

We show that for all ports p1, p2 in H, p1 ≡PH p2 iff haP (p1) ≡PH′ haP (p2) :
haP (p1) ≡pH′ haP (p2) iff there exists a path πH′(haP (p1), haP (p2)) = (q1, q2, . . . qk−1, qk) such
that q1 = haP (p1), qk = haP (p2) and ]πH′ (haP (p1), haP (p2)) is even (see, Proposition 4). It is
equivalent to say that (p1, (haP )−1(q2), . . . , (haP )−1(qk−1), p2) is an even path ofH because
h is an isomorphism. We conclude that p1 ≡pH p2.
For all nodes n1, n2 in H, we show that n1 ≡nH n2 iff haN (n1) ≡nH′ haN (n2).
By definition, haN (n1) ≡nH′ haN (n2) iff (a) haN (n1) = haN (n2) or (b) there exists q, q′ ∈ PH′ ,
q ≡pH′ q′, (q, haN (n1)) ∈ PNH′ and (q′, haN (n2)) ∈ PNH′ or (c) there exists n′′ ∈ NH′ ,
haN (n1) ≡nH′ n′′ and haN (n2) ≡nH′ n′′.
ha is an isomorphism thus (a) is equivalent to n1 = n2 and (b) is equivalent to there
exists (haP )−1(q), (haP )−1(q′) ∈ PH , (haP )−1(q) ≡pH′ (haP )−1(q′), ((haP )−1(q), n1) ∈ PNH

and ((haP )−1(q′), n2) ∈ PNH . The cases (a) and (b) are straight foward. Let us focus
our attention on the case (c) : haN (n1) ≡nH′ haN (n2) such that it exists n′′ ∈ NH′ and
q, q′ ∈ PH′ which verify the condition {(q, n′′), (q, h(n1)), (q′, n′′), (q′, haN (n2))} ⊂ PNH′ .
This is equivalent to : (haN )−1(n′′) ∈ NH and (haP )−1(q), (haP )−1(q′) ∈ PH which verify
the condition

{((haP )−1(q), (haP )−1(n′′)), ((haP )−1(q), n1), ((haP )−1(q′), (haN )−1(n′′)), ((haP )−1(q′), n2)} ⊂ PNH

and in that case n1 ≡NH n2. Moreover because ≡N is transitive we obtain that (c) is equi-
valent to : there exists (haN )−1(n′′) ∈ NH , n1 ≡nH (haN )−1(n′′) and n2 ≡nH (haN )−1(n′′).
Thus, n1 ≡nH n2.
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The pregraph homorphism of H → H ′ and H̄ → H̄ ′ are built over the same attribute ho-
momorphism a, thus by construction the points (iii) and (iv) of the previous definition im-
ply ∪ni∈[n]a(λH(ni)) ⊂ ∪ni∈[n]λH′(haN (ni)) and ∪pi∈[p]a(λH(pi)) ⊂ ∪pi∈[p]λH′(haP (pi))
thus a(λH̄([n])) ⊂ λH̄′(h̄aN ([n])) and a(λH̄([p])) ⊂ λH̄′(h̄aP ([p])) and h̄a is a pregraph
homomorphism from H̄ to H̄ ′.

J

We end this section by defining an equivalence relation over pregraphs.

I Definition 10 (Pregraph equivalence). Let G1 and G2 be two pregraphs. We say that
G1 and G2 are equivalent and write G1 ≡ G2 iff the quotient pregraphs Ḡ1 and Ḡ2 are
isomorphic.

The relation ≡ over pregraphs is obviously an equivalence relation.

3 Graph Rewrite Systems

In this section, we define the considered rewrite systems and provide sufficient conditions
ensuring the closure of graph structures under the defined rewriting process.

I Definition 11 (Rewrite Rule, Rewrite System, Variant). A rewrite rule is a pair l→ r where
l and r are graphs over the same sets of attributes. A rewrite system R is a set of rules. A
variant of a rule l → r is a rule l′ → r′ where nodes, ports as well as the variables of the
attributes are renamed with fresh names.

Let l′ → r′ be a variant of a rule l→ r. Then there is a renaming mapping ha, built over
an attribute renaming a : Al → Al′ , and consisting of two maps haN and haP over nodes and
ports respectively : haN : Nl ∪ Nr → Nl′ ∪ Nr′ and haP : Pl ∪ Pr → Pl′ ∪ Pr′ such that, the
elements in Nl′ and Pr′ are new and the restrictions of ha to l → l′ (respectively r → r′)
are graph isomorphisms.

In general, parts of a left-hand side of a rule remain unchanged in the rewriting process.
This feature is taken into account in the definition below which refines the above notion
of rules by decomposing the left-hand sides into an environmental part, intended to stay
unchanged, and a cut part which is intended to be removed. As for the right-hand sides,
they are partitioned into a new part consisting of added items and an environmental part
(a subpart of the left-hand side) which is used to specify how the new part is connected to
the environment.

I Definition 12 (Environment Sensitive Rewrite Rule, Environment Sensitive Rewrite System).
An environment sensitive rewrite rule is a rewrite rule (ESRR for short) l → r where l and
r are graphs over the same attributes A such that:

l = (Nl,Pl,PN l,PP l,A, λl) where
Nl = N cut

l ] N env
l ,Pl = Pcutl ]Penvl ,PN l = PN cut

l ]PN
env
l ,PP l = PPcutl ]PP

env
l and λl =

λcutl ]3 λenvl with some additional constraints :
(1) on PN l : ∀(p, n) ∈ PN l, (n ∈ N cut

l or p ∈ Pcutl )⇒ (p, n) ∈ PN cut
l .

(2) on PP l : ∀(p, p′) ∈ PP l, p ∈ Pcutl ⇒ (p, p′) ∈ PPcutl .
(3) on λl : ∀n ∈ N cut

l , (n, λl(n)) ∈ λcutl ;
∀p ∈ Pcutl , (p, λl(p)) ∈ λcutl .

3 Here, the function λl is considered as a set of pairs (x, λl(x)), i.e. the graph of λl.
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r = (Nr,Pr,PN r,PPr,A, λr) where
Nr = Nnew

r ]N env
r ,Pr = Pnewr ]Penvr ,PN r = PNnew

r ]PN env
r ,PPr = PPnewr ]PPenvr , λr =

λnewr ]λenvr such thatN env
r ⊆ N env

l , Penvr ⊆ Penvl , Nnew
r ∩N env

l = ∅ and Pnewr ∩Penvl = ∅
with some additional constraints :

(4) on PN r : ∀(p, n) ∈ PN r, (p, n) ∈ PN env
r iff (p ∈ Penvr and n ∈ N env

r and (p, n) ∈
PN env

l ).
(5) on PPr : ∀(p, p′) ∈ PPr, (p, p′) ∈ PPenvr iff (p ∈ Penvr and p′ ∈ Penvr and (p, p′) ∈

PPenvl ).
(6) on λr : ∀n ∈ N env

r , (∃y, (n, y) ∈ λenvr ) iff (λenvr (n) = λenvl (n)) ;
∀y ∈ Penvr , (∃y, (p, y) ∈ λenvr ) iff (λenvr (p) = λenvl (p)).

An environment sensitive rewrite system (ESRS for short) is a set of environment sensitive
rewrite rules.

Roughly speaking, constraints (1), (2) and (3) ensure that if an item (node or port) is
to be removed (belonging to a “cut” component) then links involving that item should be
removed too as well as its attributes (constraint (3)). Constraints (4) and (5) ensure that
links, considered as new (belonging to “new” components), of a given right-hand side of a
rule, should not appear in the left-hand side. Constraint (6) ensures that an item (node or
port) is newly attributed in the right-hand side iff it is a new item or it was assigned by λcutl

in the left-hand side.
I Proposition 7. Let l → r be a an ESRR such that l = (Nl = N cut

l ] N env
l ,Pl = Pcutl ]

Penvl ,PN l = PN cut
l ]PN

env
l ,PP l = PPcutl ]PP

env
l ,A, λl = λcutl ]λenvl ) and r = (Nr = Nnew

r ]
N env
r ,Pr = Pnewr ]Penvr ,PN r = PNnew

r ]PN env
r ,PPr = PPnewr ]PPenvr ,A, λr = λnewr ]λenvr ).

Then the following properties hold:
For all (p, n) ∈ PN r, (p, n) ∈ PNnew

r iff p ∈ Pnewr or n ∈ Nnew
r or (p ∈ Penvr and

n ∈ N env
r and (p, n) 6∈ PN env

l )
For all (p, p′) ∈ PPr, (p, p′) ∈ PPnewr iff p ∈ Pnewr or p′ ∈ Pnewr or (p ∈ Penvr and
p′ ∈ Penvr and (p, p′) 6∈ PPenvl (p))
For all x ∈ Nr ∪ Pr, (x, λr(x)) ∈ λnewr iff x ∈ Nnew

r ∪ Pnewr or (x, λl(x)) ∈ λcutl

I Example 13. Let us consider a rule RT : l → r which specifies a way to transform a tri-
angle into four triangle graphs. Figure 5 depicts the rule. Black parts should be understood
as members of the cut component of the left-hand side, yellow items are in the environ-
ment parts. The red items are new in the right-hand side. More precisely, lenv consists of
N env
l = {α, β, γ}, Penvl = {α1, α2, β1, β2, γ1, γ2}, PN env

l = {(α1, α), (α2, α), (β1, β), (β2, β),
(γ1, γ), (γ2, γ)}, and PPenvl = ∅. The cut component of the left-hand side consists of three
port-port connections and their corresponding symmetric connections which will not be
written : PPcutl = {(α2, β1), (β2, γ1), (γ2, α1)}. The environment component in the right-
hand side allows to reconnect the newly introduced items. renv consists of the ports Penvr =
{α1, α2, β1, β2, γ1, γ2}. rnew consists of Nnew

r = {U, V,W}, Pnewr = {u1, u2, u3, u4, v1, v2, v3,

v4, w1, w2, w3, w4}, PNnew
r = {(u1, U), (u2, U), (u3, U), (u4, U), (v1, V ), (v2, V ), (v3, V ), (v4, V ),

(w1,W ), (w2,W ), (w3,W ), (w4,W )} and PPnewr = {(α1, w2), (α2, u1), (β1, u2), (β2, v1), (γ1, v2),
(γ2, w1), (u3, w3), (u4, v4), (w4, v3)}. The sets of attributes are empty in this example.

I Remark. From the definition of an environment sensitive rule, the environment components
renv = (N env

r ,Penvr ,PN env
r ,PPenvr ,A, λenvr ) and lenv = (N env

l ,Penvl ,PN env
l ,PPenvl ,A, λenvl )

are graphs. However, since PPcutl may include ports in Penvl and PN cut
l may include nodes in

N env
l or ports in Penvl , the cut component lcut = (N cut

l ,Pcutl ,PN cut
l ,PPcutl ,A, λcutl ) is in gen-

eral neither a graph nor a pregraph. For the same reasons rnew = (Nnew
r ,Pnewr ,PNnew

r ,PPnewr ,

A, λnewr ) is in general neither a graph nor a pregraph.
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Figure 5 Rule RT

Figure 6 (a) A graph l. (b) A graph g.

Finding an occurrence of a left-hand of a rule within a graph to be transformed consists
in finding a match. This notion is defined below.

I Definition 14 (Match). Let l and g be two graphs. A match ma : l → g is defined as
a graph homomorphism which is injective. a : Al → Ag being an injective homomorphism
over attributes.

I Example 15. Figure 6 gives a graph l and a graph g. Two matches can be defined:
mid

1 : mid
1 (α) = E;mid

1 (β) = B; mid
1 (γ) = C; mid

1 (α1) = e1;mid
1 (α2) = e2;mid

1 (β1) =
b1;mid

1 (β2) = b2; mid
1 (γ1) = c1; mid

1 (γ2) = c2.
mid

2 : mid
2 (α) = C;mid

2 (β) = D; mid
2 (γ) = F ; mid

2 (α1) = c3;mid
2 (α2) = c4;mid

2 (β1) =
d1;mid

2 (β2) = d2; mid
2 (γ1) = f1; mid

2 (γ2) = f2.
Notice that the occurrences in g of mid

1 (l) and mid
2 (l) overlap on node C.

I Definition 16 (Rewrite Step). Let l→ r be a rule, g a graph and ma : l→ g a match. The
attributes of l, r and g are assumed to range over the same set (of attributes). Let l = (Nl =
N cut
l ] N env

l ,Pl = Pcutl ] Penvl ,PN l = PN cut
l ] PN env

l ,PP l = PPcutl ] PPenvl ,A, λl = λcutl ]
λenvl ) and r = (Nr = Nnew

r ]N env
r ,Pr = Pnewr ]Penvr ,PN r = PNnew

r ]PN env
r ,PPr = PPnewr ]

PPenvr ,A, λr = λnewr ] λenvr ). A graph g rewrites to g′ using a match ma, written g → g′ or
g →l→r,ma g′ with g′ being a pregraph defined as follows: g′ = (Ng′ ,Pg′ ,PN g′ ,PPg′ ,Ag′ , λg′)
such that
Ng′ = (Ng −N cut

ma(l)) ]Nnew
r

Pg′ = (Pg − Pcutma(l)) ] Pnewr

PN g′ = (PN g − PNma(l)cut) ] PNnew
ma(r)

PPg′ = (PPg − PPcutma(l)) ] PPnewma(r)

Ag′ = Ag and λg′ = (λg − λcutma(l)) ] λnewma(r)
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Figure 7 Example of a toy rule (a) and a graph H (b)

Notation: Let p, p′ be ports and n be a node, in notation ma(r) above, ma(p, p′) =
(ma(p),ma(p′)), ma(p, n) = (ma(p),ma(n)), ma(p) = p if p ∈ Pnewr and ma(n) = n if
n ∈ Nnew

r .

It is easy to see that graphs are not closed under the rewrite relation defined above. That
is to say, when a graph g rewrites into g′, g′ is a pregraph. To ensure that g′ is a graph we
provide the following conditions.

I Theorem 17. Let l→ r be an environment sensitive rewrite rule, g a graph and ma : l→ g

a match. Let g →l→r,ma g′. g′ is a graph iff the two following constraints are verified :
1. If p ∈ Penvl , (p, q) ∈ PPnewr for some port q and there is no q′ such that (p, q′) ∈ PPcutl ,

then there is no q′′ ∈ Pg such that (ma(p), q′′) ∈ PPg.
2. If p ∈ Penvl , (p, n) ∈ PNnew

r and there is no n′ such that (p, n′) ∈ PN cut
l , then there is

no n′′ ∈ Ng such that (ma(p), n′′) ∈ PN g.

Proof. (⇐) Let p be a port of g′. If the constraints 1. and 2. are verified then
If p ∈ g′ −ma(r), p has the same connections as in g. Since g is a graph, p is connected
to at most one port and one node.
If p ∈ ma(renv), thanks to constraints 1. and 2. p has at most one connection to a node
and one connection to a port in g′.
If p ∈ Pnewr . Since r is a graph, p has at most one connection to a node and one
connection to a port in g′.

Thus, g′ is a graph.
(⇒) It is easy to show, by contrapositive, that in case one of the constraints (1 and 2) is

not verified, a counter example can be exhibited.
J

Matches which fulfill the above two conditions are called well behaved matches.

I Example 18. Figure 7 (a) gives an example of toy rule. Figure 7 (b) is a graph H such
that the match mid

1 as defined below is a well behaved match, whereas the match mid
2 is

not a well behaved match. mid
1 : mid

1 (α) = A,mid
1 (β) = B,mid

1 (α1) = a1,m
id
1 (β1) = b1 and

mid
2 : mid

2 (α) = C,mid
2 (β) = B,mid

2 (α1) = c1,m
id
2 (β1) = b1. The application of the toy rule

on nodes B and C and the ports b1 and c1 (according to match mid
2 ) leads to a pregraph

which is not a graph.

In order to define the notion of parallel rewrite step, we have to restrict a bit the class
of the considered rewrite systems. Indeed, let l1 → r1 and l2 → r2 be two ESRR Applying
these two rules in parallel on a graph g is possible only if there is “no conflict” while firing
the two rules simultaneously. A conflict may occur if some element of the environment of
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renv1 is part of lcut2 and vice versa. To ensure conflict free rewriting, we introduce the notion
of conflict free ESRS. Let us first define the notion of compatible rules.

I Definition 19 (compatible rules). Two ESRR’s l1 → r1 and l2 → r2 are said to be
compatible iff for all graphs g and matches ma1

1 : l1 → g and ma2
2 : l2 → g, (i) no element of

ma1
1 (renv1 ) is in ma2

2 (lcut2 ) and (ii) no element of ma2
2 (renv2 ) is in ma1

1 (lcut1 ).

Conditions (i) and (ii) ensure that the constructions defined by ma1
1 (r1) (respectively

by ma2
2 (r2)) can actually be performed ; i.e, no element used in ma1

1 (r1) (respectively by
ma2

2 (r2)) is missing because of its inclusion in ma2
2 (lcut2 ) (respectively in ma1

1 (lcut1 )). For
instance, the reader can easily verify that two variants of the rule

are not compatible. Verifying that two given rules are compatible is decidable and can be
checked on a finite number, less than max(size(l1), size(l2)), of graphs where the size of a
graph stands for its number of nodes and ports.
I Proposition 8. The problem of the verification of compatibility of two rules is decidable.

Proof. Let ρ1 = l1 → r1 and ρ2 = l2 → r2 be two rules. Assume that ρ1 and ρ2 are not
compatible. Then there exists a graph G such that:

there exists a match ma1
1 : l1 → G

there exists a match ma2
2 : l2 → G

w.l.o.g, we assume that there exists an element, say e, in ma1
1 (renv1 ) which belongs also

to ma2
2 (lcut2 ).

Graph G can be built as follows: Let d be a graph such that there exist two injective
homomorphisms h1 : d→ ma1

1 (l1) and h2 : d→ ma2
2 (l2) such that G is obtained as a pushout

of h1 and h2. That is to say, there exit two injective homomorphisms h′1 : ma1
1 (l1)→ G and

h′2 : ma2
2 (l2)→ G such that h′1(h1(d)) = h′2(h2(d)). We consider subgraphs d which contain

at least h−1
1 ((ma1

1 )−1(e)) which is equal to h−1
2 ((ma2

2 )−1(e)). Notice that elements of graph
d could be attributed by empty sets.

Therefore, to check whether two rules ρ1 = l1 → r1 and ρ2 = l2 → r2 are compatible, one
has to check whether there exist a subgraph d and two injective homomorphisms h : d→ l1
and h′ : d → l2 such that d contains an item, e, such that h(e) ∈ lcut1 and h′(e) ∈ renv2
(h(e) ∈ renvl and h′(e) ∈ lcut2 ) . Since homomorphisms h and h′ are injective, the size
(number of nodes and ports) of d is less than max(size(l1), size(l2)). Obviously, d, h and
h′ exist iff the two rules are not compatible. Indeed the graph G′ obtained as a pushout of
homomorphisms h and h′ contains at least one item which can be matched either by lenvi

(and remains in renvi ) and lcutj with (i, j) ∈ {(1, 2), (2, 1)}.
Since the set of possible d’s is finite (up to isomorphism), verifying whether two rules are

compatible is decidable. J

I Definition 20. A conflict free environment sensitive graph rewrite system is an ESRS
consisting of pairwise compatible rules.

I Definition 21 (parallel rewrite step). Let R be a conflict free environment sensitive graph
rewrite system R = {Li → Ri | i = 1 . . . n}. Let G be a graph. Let I be a set of variants
of rules in R, I = {li → ri | i = 1 . . . k} and M a set of matches M = {mai

i : li → G | i =
1 . . . k}. We say that graph G rewrites into a pregraph G′ using the rules in I and matches
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H̄ = G′

Figure 8 A parallel rewrite step with overlapping between two triangles. Notice that two variants
of RT with fresh new variables have been provided in order to produce the pregraph H. In the
quotient graph H̄ = G′, [S] = {S, Y }, [s1] = {s1, y1}, [s2] = {s2, y2}.

in M , written G⇒I,M G′, G⇒M G′ or simply G⇒ G′ if G′ is obtained following the two
steps below:
First step: A pregraph H = (NH ,PH ,PNH ,PPH ,AH , λH) is computed using the different
matches and rules as follows:
NH = (NG − ∪ki=1N cut

m
ai
i

(li)
) ] ∪ki=1Nnew

ri

PH = (PG − ∪ki=1Pcutm
ai
i

(li)
) ] ∪ki=1Pnewri

PNH = (PNG − ∪ki=1PN
cut
m

ai
i

(li)) ] ∪
k
i=1PN

new
m

ai
i

(ri)

PPH = (PPG − ∪ki=1PP
cut
m

ai
i

(li)) ] ∪
k
i=1PP

new
m

ai
i

(ri)

AH = AG and λH = (λG − ∪ki=1λ
cut
m

ai
i

(li)
) ∪ ∪ni=1λ

new
m

ai
i

(ri)

second step: G′ = H̄

Notice that the rewrite step G⇒ G′ is a rewrite modulo step [10] of the form G→ H ≡ H̄.

I Example 22. Let us consider the graph g depicted below and the following matches of
the rule RT depicted in Figure 5.

m1 : m1(α) = E;m1(β) = B; m1(γ) =
C; m1(α1) = e1;m1(α2) = e2;m1(β1) =

b1;m1(β2) = b2; m1(γ1) = c1; m1(γ2) =
c2. The isomorphism of the port-node
and port-port connections are easily de-
duced.
m2 : m2(α) = B;m2(β) = D; m2(γ) =
C; m2(α1) = b2;m2(α2) = b3;m2(β1) =
d2;m2(β2) = d1; m2(γ1) = c3; m2(γ2) =
c1.

The two matches have an overlap.

Figure 8 shows the different steps of the application of two matches of the rule defined
in Figure 5. The pregraph, H, in the middle is obtained after the first step of Definition 21.
Its quotient pregraph, G′, is the graph on the right. G′ has been obtained by merging the
nodes S and Y and the ports s1 and y1 as well as ports s2 and y2. These mergings are
depicted by the quotient sets [S], [s1] and [s2]. For sake of readability, the brackets have
been omitted for quotient sets reduced to one element.

As a quotient pregraph is not necessarily a graph (see Figure 4), the above definition of
parallel rewrite step does not warranty, in general, the production of graphs only. Hence, we
propose hereafter a sufficient condition, which could be verified syntactically, that ensures
that the outcome of a parallel rewrite step is still a graph.
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I Theorem 23. Let R be a conflict free environment sensitive graph rewrite system R =
{Li → Ri | i = 1 . . . n}. Let G be a graph. Let I be a set of variants of rules in R,
I = {li → ri | i = 1 . . . k} and M a set of matches M = {mai

i : li → G | i = 1 . . . k}. Let G′
be the pregraph such that G⇒I,M G′. If ∀p, p′ ∈ PenvLi

, (p, p′) /∈ PPnewRi
, then G′ is a graph.

Proof. We have to prove that H does not contain odd loops. Because of the previous
constraint, it is enough to prove that all ports of H are not parts of a loop.

If p ∈ ∪ni=1PnewRi
, it is a new port contained in the graph Ri thus p has at most one

connection port-port.
If p ∈ ∪ni=1Penvm

ai
i

(Ri)
, p belongs to the graph G and the only new port-port connections

where p is involved are those of ∪ni=1PnewRi
.

Else, if p ∈ G/ ∪ni=1 PnewRi
] ∪ni=1Penvm

ai
i

(Ri)
, p belongs to the non modified part of the

graph. Its connections are unchanged and thus p has at most one port-port connection.
Finally, p belongs to a path which is not a loop and H̄ = G′ is a graph.

J

4 Two Parallel Rewrite Relations

The set of matches, M , in Definition 21 is not constrained and thus the induced parallel
rewrite relation is too nondeterministic since at each step one may choose several sets of
matches leading to different rewrite outcomes. In this section, we are rather interested
in two confluent parallel rewrite relations which are realistic and can be good candidates
for implementations. The first one performs all possible reductions (up to node and port
renaming) whereas the second relation is more involved and performs reductions up to left-
hand sides’ automorphisms.

4.1 Full Parallel Rewrite Relation
We start by a technical definition of an equivalence relation, ≈, over matches.

I Definition 24 (≈). Let L→ R be a rule and G a graph. Let l1 → r1 and l2 → r2 be two
variants of the rule L→ R. We denote by ha1

1 (respect. ha2
2 ) the (node, port and attribute)

renaming mapping such that the restriction of ha1
1 (respectively, ha2

2 ) to L→ l1 (respectively
L → l2) is a graph isomorphism. Let mb1

1 : l1 → G and mb2
2 : l2 → G be two matches. We

say that mb1
1 and mb2

2 are equivalent and write mb1
1 ≈ m

b2
2 iff for all elements x (in PL, NL,

PPL or PNL) of L, mb1
1 (ha1

1 (x)) = mb2
2 (ha2

2 (x)) and for all x in AL, b1(a1(x)) = b2(a2(x)) .

The relation ≈ is clearly an equivalence relation. Intuitively, two matches mb1
1 : l1 → G

and mb2
2 : l2 → G are equivalent, mb1

1 ≈ mb2
2 , whenever (i) l1 and l2 are left-hand sides of

two variants of one same rule, say L→ R, and (ii) mb1
1 and mb2

2 coincide on each element x
of L.

I Definition 25 (full parallel matches). Let R be a graph rewrite system and G a graph.
Let MR(G) = {mai

i : li → G | mai
i is a match and li → ri is a variant of a rule in R}. A

set, M , of full parallel matches, with respect to a graph rewrite system R and a graph G, is
a maximal set such that (i) M ⊂MR(G) and (ii) ∀ma1

1 ,ma2
2 ∈M,ma1

1 6≈ m
a2
2 .

A set of full parallel matches M is not unique because any rule in R may have infinitely
many variants. However the number of non equivalent matches could be easily proven to be
finite.
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I Proposition 9. Let M be a set of full parallel matches with respect to a graph rewrite
system R and a graph G. Then M is finite.

Proof. We assume that G has a finite number of nodes, ports and attributes and R has a
finite number of rules. Let li → ri be a rule in R. Let us assume now that nodes and ports
of the left-hand side li are attributed with the empty set. In this case, matching li with
subgraphs in G remains to find a (non attributed) graph homomorphism between li and G.
Therefore, in this case, the number of possible matches of the left-hand side li in graph G
is at most

(
ki

n

)
× ki! where n = card(NG) + card(PG) and ki = card(Nli) + card(Pli). Thus

card(M) is bounded by Π1≤i≤card(R)
(
ki

n

)
× ki! which is finite since n and the ki’s are finite.

Let us consider now the case where li is attributed (that is to say, there exists at leat a
node or port, say x, such that λli(x) 6= ∅). Letma : li → G be a match. m is a non-attributed
graph homomorphism and a : Ali → AG is an attribute homomorphism which corresponds
to a match over attributes in the case where attributes in li contain variables. We assume
that the matching problem over attributes is finitary. Thus for every m there is a finite
number, say Cm, of possible matchings over attributes a. Let l′i be the graph obtained from
li by removing all attributes (or equivalently said, by setting the attribute function λl′

i
to

the empty set. Let Ci = max(Cm|m is a non-attributed graph homomorphism m : l′i → G).
Ci exists since we assume that the matching problem is finitary. Then card(M) is bounded
by Π1≤i≤card(R)

(
ki

n

)
× ki!× Ci which is finite since n, the ki’s and the Ci’s are finite.

J

I Definition 26 (full parallel rewriting). Let R be a ESRS and G a graph. Let M be a set
of full parallel matches with respect to R and G. We define the full parallel rewrite relation
and write G⇒M G′ or simply G⇒ G′, as the parallel rewrite step G⇒M G′.

I Proposition 10. Let R be a ESRS. The rewrite relation⇒ is deterministic. That is to say,
for all graphs g, (g ⇒ g1 and g ⇒ g2) implies that g1 and g2 are isomorphic.

Proof. The proof is quite direct. Let M1 and M2 be two different sets of full parallel
matches such that g ⇒M1 g1 and g ⇒M2 g2. By definition of sets of full parallel matches,
for all matches mb ∈ M1 there exists a match m′b

′ ∈ M ′2 such that mb ≈ m′b
′ . Since

M1 and M2 are finite (see Proposition 9), there exists a natural number k such that M1 =
{mb1

1 ,m
b2
2 , . . . ,m

bk

k } and M2 = {m′b
′
1

1 ,m
′b′

2
2 , . . . ,m

′b′
k

k } such that for all i ∈ {1, . . . , k}, mbi
i ≈

m
′b′

i
i . Therefore, for every i such that 1 ≤ i ≤ k, there exist a rule Li → Ri in R and two

variants of it li → ri and l′i → r′i together with two renaming mappings hai
i : Li → li and

h
′a′

i
i : Li → l′i such that for all elements x ∈ Li, mbi

i (hai
i (x)) = m

′b′
i

i (h′a
′
i

i (x)).
By Definitions 21 and 26, graphs g1 and g2 are quotient pregraphs of two pregraphs,

respectively H1 and H2, obtained after the first step of parallel rewrite steps. The sets of
nodes and ports of pregraphs H1 and H2 are defined as follows

NH1 = (Ng − ∪ki=1Nmbi
i

(lcut
i

)) ] ∪
k
i=1Nrnew

i

NH2 = (Ng − ∪ki=1N
m′

b′
i

i
(l′cut

i
)
) ] ∪ki=1Nr′new

i

PH1 = (Pg − ∪ki=1Pmbi
i

(lcut
i

)) ] ∪
k
i=1Prnew

i

PH2 = (Pg ∪ki=1 P
m′

b′
i

i
(l′cut

i
)
) ] ∪ki=1Pr′new

i

λH1 = (λg − ∪ki=1λ
cut

m
bi
i

(li)
) ] ∪ki=1λ

new
ri

λH2 = (λg − ∪ki=1λ
cut

m′b′
i

i
(li)

) ] ∪ki=1λ
new
ri
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Now, We define a map f c : H1 → H2 by means of three maps on nodes, ports and
attributes f cN : NH1 → NH2 , f cP : PH1 → PH2 and c : AH1 → AH2 as follows

f cN (x) =

x if x ∈ (Ng − ∪ki=1Nmbi
i

(lcut
i

))

h′
a′

i
i ((hai

i )−1(x)) if x ∈ Nrnew
i

, for 1 ≤ i ≤ k

f cP (x) =

x if x ∈ (Pg − ∪ki=1Pmbi
i

(lcut
i

))

h′
a′

i
i ((hai

i )−1(x)) if x ∈ Prnew
i

, for 1 ≤ i ≤ k

and c(x) =
{
b′i ◦ a′i ◦ a

−1
i ◦ b

−1
i (x) if ∃i ∈ {1, . . . , k},∃e ∈ (NH1 ∪ PH1), (e, x) ∈ λnewri

x otherwise
f c is clearly a pregraph isomorphism between H1 and H2. As g1 and g2 are obtained as

quotient pregraphs of H1 and H2 respectively, we conclude by using Proposition 6, that g1
and g2 are isomorphic.

J

I Example 27.

Let us consider the ruleRT defined in Fig-
ure 5 and the subgraph s depicted on the
side. The reader can verify that there are
six different matches, m1 . . .m6, between the
left-hand side of RT and graph s.

These matches are sketched below. Variants of RT have been omitted for sake of readability.

m1 : m1(α) = E;m1(β) = B; m1(γ) = C; m1(α1) = e1;m1(α2) = e2;m1(β1) =
b1;m1(β2) = b2; m1(γ1) = c1; m1(γ2) = c2.
m2 : m2(α) = E;m2(β) = C; m2(γ) = B; m2(α1) = e2;m2(α2) = e1;m2(β1) =
c2;m2(β2) = c1; m2(γ1) = b2; m2(γ2) = b1.
m3 : m3(α) = B;m3(β) = E; m3(γ) = C; m3(α1) = b2;m3(α2) = b1;m3(β1) =
e2;m3(β2) = e1; m3(γ1) = c2; m3(γ2) = c1.
m4 : m4(α) = B;m4(β) = C; m4(γ) = E; m4(α1) = b1;m4(α2) = b2;m4(β1) =
c1;m4(β2) = c2; m3(γ1) = e1; m4(γ2) = e2.
m5 : m5(α) = C;m5(β) = B; m5(γ) = E; m5(α1) = c2;m5(α2) = c1;m5(β1) =
b2;m5(β2) = b1; m5(γ1) = e2; m5(γ2) = e1.
m6 : m5(α) = C;m5(β) = E; m5(γ) = B; m5(α1) = c1;m5(α2) = c2;m5(β1) =
e1;m5(β2) = e2; m5(γ1) = b1; m5(γ2) = b2.

Here, the homomorphisms over attributes are always the identity, that is why they have
been omitted. Thanks to the six matches and the rule RT , the reader may check that the
subgraph s can be rewritten, by using six different variants of rule RT , into a pregraph
containing 3 × 6 new nodes and 12 × 6 new ports. The quotient pregraph has only 3 new
nodes but has 42 new ports. Each pair of new nodes has 6 connections.



R. Echahed and A. Maignan 17

Figure 9 (a) Subgraph s with distinguishing attributes on ports. The attributes are {1, 2, 3}.
(b) Rule RT with distinguishing attributes.

This example shows that the full parallel rewriting has to be used carefully since it
may produce non intended results due to overmatching the same subgraphs. To overcome
this issue, one may use attributes in order to lower the possible matches. We call such
attributes distinguishing attributes. In order to consider only one match of the subgraph s
considered in Example 27 by the rule RT , one option is to apply full parallel rewrite relation
with distinguishing attributes on the subgraph depicted in Figure 9 (a) and rule RT with
distinguishing attributes given in Figure 9 (b), leading to a pregraph whose quotient is a
graph with 3 new nodes and 12 new ports. This graph is the expected one.

Another way to mitigate the problems of overmatching subgraphs, in addition to the use
of distinguishing attributes, consists in taking advantage of the symmetries that appear in
the graphs of rewrite rules. This leads us to define a new rewrite relation which gets rid of
multiple matches of the same left-hand-side of a fixed rule. We call this relation parallel up
to automorphisms and is defined below.

4.2 Parallel Rewrite Relation up to Automorphisms
Let us consider a graph g which rewrites into g1 and g2 using an ESRR l → r. This means
that there exist two matches mbi

i : l → g with i ∈ {1, 2} such that g ⇒
l→r,mbi

i

gi. One
may wonder whether g1 and g2 are the same (up to isomorphism) whenever matches mb1

1
and mb2

2 are linked by means of an automorphism of l. That is to say, when there exists an
automorphism ha : l → l with mb1

1 = mb2
2 ◦ ha. Intuitively, matches mb1

1 and mb2
2 could be

considered as the same up to a permutation of nodes. We show below that g1 and g2 are
actually isomorphic but under some syntactic condition we call symmetry condition.

Notation: Let g be a graph with attributes in A. We write H(g) to denote the set
of automorphisms of g, i.e. H(g) is the set of isomorphisms hb : g → g, with b being an
isomorphism on the attributes of g, b : A → A.

I Proposition 11. Let l→ r be an ESRR. Let g be a graph and g′1 and g′2 be two pregraphs.
Let g ⇒

l→r,mb1
1
g′1 and g ⇒

l→r,mb2
2
g′2 be two rewrite steps such that there exists an auto-

morphism ha : l→ l with mb1
1 = mb2

2 ◦ ha. In case there exists an automorphism h′a : r → r

such that for all elements x of renv, h′a(x) = ha(x), then g′1 and g′2 are isomorphic.

Sketch. The proof is done in a more general case where the rules used in the rewrite steps
g ⇒

m
b1
1
g′1 and g ⇒m2

2
g′2 are variants of the rule l → r. So, let l1 → r1 (resp. l2 → r2)

be two variants of the rule l → r. Thus, there exist four isomorphisms (node and port
renaming) reflecting the variant status of these two rules, say vc11 : l → l1, v′c11 : r → r1,
vc22 : l→ l2 and v′c22 : r → r2 such that li = vci

i (l), ri = v′ci
i (r) and vci

i (renvi ) = v′ci
i (renvi ) for
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Figure 10 Sketch of the proof of Proposition 11

i ∈ {1, 2}. The sketch of the proof is depicted in Figure 10. Let us assume that there exist
two automorphisms ha : l → l and h′a : r → r such that h′a(renv) = ha(renv). From the
hypotheses above, we can easily infer the exitence of two isomorphisms hcv

v : l1 → l2 and
h′cv
v : r1 → r2 such that hcv

v = vc22 ◦ha ◦ (vc11 )−1 and h′cv
v = v′cv

2 ◦h′a ◦ (v′c11 )−1. And we have
cv = c2 ◦ a ◦ c−1

1 .
Let g ⇒

l1→r1,m
b1
1
g′1 and g ⇒

l2→r2,m
b2
2
g′2 such that mb1

1 (l1) = mb2
2 (l2). By definition of a

rewrite step, there exist a pregraph g1 (respect. a pregraph g2) and an injective homomorph-
ism m′b11 : r1 → g1 (respect. m′b22 : r2 → g2) such that g′1 = ḡ1 (respect. g′2 = ḡ2). Moreover,
since, by definition, renv is included in lenv for any environment sensitive rewrite rule l→ r,
we have m′b11 (renv1 ) = mb1

1 (renv1 ) (respect. m′b22 (renv2 ) = mb2
2 (renv2 )). For i ∈ {1, 2},m′bi

i is
defined as follows:

for n ∈ Nri ,m
′bi

i (n) =
{
mbi
i (n) if n ∈ Nrenv

i

n otherwise(n ∈ Nrnew
i

)

for p ∈ Pri ,m
′bi

i (p) =
{
mbi
i (p) if p ∈ Prenv

i

p otherwise(p ∈ Prnewi )
Now, let us define h”d : g1 → g2 with d = b2 ◦ cv ◦ b−1

1 .
Let us consider x such that x is an element of renv (port or node). We havemb1

1 (vc11 (x)) =
mb2

2 (vc22 (ha(x))) is an element of g. Moreover m′b11 (v′c11 (x)) ∈ g1 and m′b22 (v′c22 (h′a(x)) ∈
g2. Let us denote y = mb1

1 (vc11 (x)). By construction m′b11 (v′c11 (x)) = mb1
1 (vc11 (x)) = y

because x ∈ renv. From the hypothesis we have ha(x) = h′
a(x). Thus m′b22 (v′c22 (h′a(x)) =

m′b22 (v′c22 (ha(x)) and then we have m′b22 (v′c22 (h′a(x)) = mb2
2 (vc22 (ha(x)) = y. Then, for all

elements z of the non-modified part of g which is g−mb1
1 (vc11 (l)) (z can be a port or a node if

y is not a node) such that (z, y) ∈ g, we have that (z, y) ∈ g1 and (z, y) ∈ g2 and h′′d = Idd

on g1 −m′b11 (v′c11 (r)).
Finally the definition of h′′d is :

For y ∈ Ng1 ∪ Pg1 , h
′′d(y) =

{
m′b22 (h′cv

v ((m′b11 )−1(y))) if y ∈ m′b11 (r1)
y otherwise

For all types of existing connections (y, z) of g1 where y and z in Ng1 ∪ Pg1 , h′′d(y, z) =
(h′′d(y), h′′d(z)) is in g2. Thus, h′′d : g1 → g2 is a pregraph homomorphism. Moreover, h”d
is bijective by construction.

From h′′d and Proposition 6, we infer the isomorphism h(3)d : g′1 → g′2, where g′1 = ḡ1
and g′2 = ḡ2.

J

I Definition 28 (Symmetry Condition). An ESRR l→ r verifies the symmetry condition iff
∀ha ∈ H(l), ∃ uc ∈ H(r), such that ∀x ∈ renv, ha(x) = uc(x)
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The reader can check that the rule RT verifies the symmetry condition.

I Definition 29 (Matches up to automorphism, ∼l). Let l → r be an ESRR satisfying the
symmetry condition. Let l1 → r1 and l2 → r2 be two different variants of the rule l → r.
Let vc11 : l→ l1 and vc22 : l→ l2 be the isomorphisms that reflect the variant status of l1 and
l2 of l. Let mb1

1 : l1 → g and mb2
2 : l2 → g be two matches such that mb1

1 (l1) = mb2
2 (l2). We

say that matches mb1
1 and mb2

2 are equal up to (l-)automorphism and write mb1
1 ∼l m

b2
2 iff

there exists an automorphism ha : l→ l such that mb1
1 = mb2

2 ◦ v
c2
2 ◦ ha ◦ v

c1
1
−1.

I Definition 30 (Rewriting up to automorphisms). Let R be a conflict free environment sens-
itive graph rewrite system whose rules satisfy the symmetry condition and g a graph. Let
M(R, g)auto = {mai

i : li → g | li is the left-hand side of a variant of a rule l→ r in R and mai
i

is a match up to automorphism}. We define the rewrite relation⇒auto which rewrites graph
g by considering only matches up to automorphisms. I.e., the set of matches M of Defini-
tion 21 is M(R, g)auto.

I Remark. For all two matches mb1
1 and mb2

2 in M(R, G)auto, mb1
1 6∼l m

b2
2 . This means that

the choice of matchings in M(R, G)auto are not unique. From every equivalence class of a
match w.r.t. the equivalence relation ∼l, only one representative is considered. Therefore,
one may wonder if the relation ⇒auto is confluent. The answer is positive, that is to say,
whatever the match representatives are chosen (up to automorphism), the relation ⇒auto

rewrites a given graph to a same pregraph up to isomorphism.

I Theorem 31. Let R be a conflict free environment sensitive graph rewrite system whose
rules satisfy the symmetry condition. Then ⇒auto is deterministic. That is, for all graphs
g, (g ⇒auto g1 and g ⇒auto g2) implies that g1 and g2 are isomorphic.

Sketch. Let M1 (resp. M2) be the set of matches used in the rewrite step g ⇒auto g
′
1

(resp. g ⇒auto g
′
2). Let us assume that M1 6= M2. By definition of sets M1 and M2, for

all matches mbi
i : li → g in M1, there exits a match m

′b′
i

i : l′i → g in M2 such that li and
l′i are the left-hand sides of two variants li → ri and l′i → r′i of a rule l → r in R such
that mbi

i (li) = m
′b′

i
i (l′i). That is to say, there exist four isomorphisms reflecting the variant

status of these two rules, say vci
i : l → li, v′ci

i : r → ri, wdi
i : l → l′i and w′di

i : r → r′i
such that li = vci

i (l), ri = v′ci
i (r), l′i = wdi

i (l), r′i = w′di
i (r), vci

i (renvi ) = v′ci
i (renvi ) and

wdi
i (r′env

i ) = w′di
i (r′env

i ).
From the hypotheses, there exist two automorphisms hai

i : li → li and h′ai
i : ri → ri and

two isomorphisms hiei
v : li → l′i and h′i

ei

v : ri → r′i such that hiei
v = wdi

i ◦ h
ai
i ◦ (vci

i )−1 and
h′i
ei

v = w′ei
i ◦ h

′ai
i ◦ (v

′ci
i )−1.

By following the same reasoning as in Proposition 11, we can build h′′f : g1 → g2 defined
as follows, where µtii : ri → g1 and µ′tii : r′i → g2 are induced by definition of rewrite
steps (µtii and µ′tii play the same role, for every two rules, as m′b11 and m′b22 in the proof of
Proposition 11).

for n ∈ Ng1 , h
′′f (n) =

{
µ′tii (h′i

ei

v ((µtii )−1(n))) if n ∈ µtii (ri)
n otherwise

for p ∈ Pg1 , h
′′f (p) =

{
µ′tii (h′i

ei

v ((µtii )−1(p))) if p ∈ µtii (ri)
p otherwise

for (p, n) ∈ Ng1 , h
′′f (p, n) = (h′′f (p), h′′f (n))

for (p, p′) ∈ Ng′
1
, h′′f (p, p′) = (h′′f (p), h′′f (p′))

Clearly h′′f is an isomorphism between pregraphs g1 and g2. Therefore, by Proposition 6,
g′1 (which equals ḡ1) is isomorphic to g′2 (which equal ḡ2).

J
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5 Examples

We illustrate the proposed framework through three examples borrowed from different fields.
We particularly provide simple confluent rewrite systems encoding cellular automata, the
koch snowflake and the mesh refinement.

5.1 Cellular automata (CA)
A cellular automaton is based on a fixed grid composed of cells. Each cell computes its
new state synchronously. At instant t + 1, the value of a state k, denoted xk(t + 1) may
depend on the valuations at instant t of the state k itself, xk(t), and the states xn(t) such
that n is a neighbor of k. Such a formula is of the following shape, where f is a given
function and ν(k) is the set of the neighbors of cell k: xk(t+ 1) = f(xk(t), xn(t), n ∈ ν(k))
In the case of a graph g, the neighbors of a cell (node) k, ν(k), is defined by : l ∈ ν(k)
iff ∃p1,∃p2, (p1, k) ∈ PN g ∧ (p2, l) ∈ PN g ∧ (p1, p2) ∈ PPg. Usually, the grid is oriented
such that any cell of ν(k) has a unique relative position with respect to the cell k. This
orientation is easily modeled by distinguishing attributes on ports. For instance, one can
consider Moore’s neighborhood [4] on a 2-dimensional grid. This neighborhood of radius
1 is composed of 8 neighbors. The distinguishing attributes on ports belong to the set
A = {e, w, n, s, ne, se, nw, sw} which defines the 8 directions where e = east, w = west, n =
north, s = south etc.

The grid is defined by a graph g = (Ng,Pg,PN g,PPg,Ag, λg) such that :
Ng = {mi,j}i∈I,j∈J , where intervals I and J are defined as I = [−N,N ] ∩ Z and J =
[−N ′, N ′] ∩ Z for some natural numbers N and N ′.
Pg = {ei,j , wi,j , si,j , ni,j , nei,j , nwi,j , sei,j , swi,j | i ∈ I, j ∈ J},
PN g = {(ei,j ,mi,j), (wi,j ,mi,j), (si,j ,mi,j), (ni,j ,mi,j), (nei,j ,mi,j), (nwi,j ,mi,j), (sei,j ,
mi,j), (swi,j ,mi,j)|i ∈ I, j ∈ J},
PPg = {(ei,j , wi,j+1), (wi,j , ei,j−1), (ni,j , si−1,j), (si,j , ni+1,j), (nei,j , swi−1,j+1), (sei,j ,
nwi+1,j+1), (nwi,j , sei−1,j−1), (swi,j , nei+1,j−1)| i ∈ I, j ∈ J},
∀i ∈ I, ∀j ∈ J , λg(mi,j) ⊆ Ag,
∀i ∈ I, ∀j ∈ J , λg(ei,j) = {e}, λg(wi,j) = {w},λg(si,j) = {s}, λg(ni,j) = {n}, λg(nei,j) =
{ne, λg(nwi,j) = {nw}, λg(sei,j) = {se}, λg(swi,j) = {sw}.

The attributes of the nodes correspond to states of the cells. They belong to a set A.
To implement the dynamics of the automaton one needs only one rewrite rule {ρ = l → r}
which corresponds to the function f . The rule does not modify the structure of the grid but
modifies the attributes of nodes. Thus a left-hand side has a structure of a star with one
central node (see Figure 11), for which the rule at hand expresses its dynamics, surrounded
by its neighbors. Nodes, ports and edges of the left-hand side belong to the environment
part of the rule. Only the attribute of the central node belongs to the cut part since this
attribute is modified by the rule. In the left-hand-side, the attributes of nodes are variables
to which values are assigned during the matches. The right-hand-side is reduced to a single
node named i. Its attribute corresponds to the new part of the right-hand side. Figure 11
illustrates such rules by implementing the well known game of life. It is defined using Moore’s
neighborhood and the dynamics of the game is defined on a graph g such that attributes of
nodes are in {0, 1} and

xi(t+ 1) = ((
∑
l∈ν(i) xl(t)) =? = 3) + ((xi(t) =? = 1) ×(

∑
l∈σ(i) xl(t)) =? = 2))

where (x =? = y)⇔
{

1 if x = y

0 otherwise
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Figure 11 game of life rule

{0} {0} {0} {0}
{0} {1} {1} {0}
{0} {0, 1} {1} {0}
{0} {0} {0} {0}

{0} {0} {0} {0}
{0} {1} {1} {0}
{0} {1} {1} {0}
{0} {0} {0} {0}

(a) (b)

Figure 12 (a) initial grid; (b) fixed point

The neighborhood of a node i and its dynamics verify the symmetry condition, thus
there is no need to define attributes on ports. The rewriting relation⇒auto is applied on the
rewrite system R = {ρ = l → r} reduced to one rule depicted in Figure 11. More precisely
the graphs of the rule as defined as follows:

l = (Nl,Pl,PN l,PP l,Al, λl) with
Nl = N env

l = {i, a, b, c, d, e, f, g, h},
Pl = Penvl = {i1, i2, i3, i4, i5, i6, i7, i8, a1, b1, c1, d1, e1, f1, g1, h1},
PN l = PN env

l = {(a1, a), (b1, b), (c1, c), (d1, d), (e1, e), (f1, f), (g1, g), (h1, h), (i1, i)(i2, i), (i3, i),
(i4, i), (i5, i), (i6, i), (i7, i), (i8, i)},
PP l = PPenvl = {(i1, a1)(i2, b1), (i3, c1), (i4, d1), (i5, e1), (i6, f1), (i7, g1), (i8, h1)}.
Al = {0, 1, xi} ∪ {yq | q ∈ {a, b, c, d, e, f, g, h}} and λl = λenvl ∪ λcutl with λcutl : {i} → Al
such that λcutl (i) = {xi} ; and λenvl : {a, b, c, d, e, f, g, h} → Al such that λenvl (q) = {yq}

r = (Nr,Pr,PN r,PPr,Ar, λr) with
Nr = N env

r = {i},
Pr = ∅, PN r = ∅, PPr = ∅.
Ar = Al
Moreover, on nodes, λr = λnewr (λenvr being empty) with λnewr : {i} → Attr and λnewr (i) =
{((ya + yb + yc + yd + ye + yf + yg + yh) =? = 3) + ((xi =? = 1)× ((ya + yb + yc + yd + ye
+ yf + yg + yh) =? = 2))}.

In the classical formulation of cellular automata, a cell contains one and only one value.
The model we propose can deal with cells with one or several values. For instance, the initial
state of the game of life can be a grid containing {0}’s except for 4 cells describing a square
(see Figure 12(a)).

In this configuration one cell have 2 values which means, on the example, that the cell is
dead or alive or we don’t have any information on the state of the cell. The behavior of all
possible trajectories is computed in parallel and the fixed point is reached. The initial state
Figure 13(a) yields Figure 13(b) as a fixed point. Here we observe that the indeterminacy
concerns at most 4 cells over time.
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{0} {0} {0} {0}
{0} {1} {0} {0}
{0} {0, 1} {1} {0}
{0} {0} {0} {0}

{0} {0} {0} {0}
{0} {0, 1} {0, 1} {0}
{0} {0, 1} {0, 1} {0}
{0} {0} {0} {0}

(a) (b)

Figure 13 (a) initial grid; (b) fixed point

Figure 14 Flake rule with the node attribute computation λg(i) = 2
3λg(a) + 1

3λg(b), λg(j) =
1
2 (λg(a) + λg(b)) +

√
3

6 (−λg(a)T + λg(b)T ) , λg(k) = 1
3λg(a) + 2

3λg(b)

5.2 The Koch snowflake
The well-known Koch snowflake is based on segment divisions (variants exist on surfaces,
both can be modeled by our formalism).

Each segment is recursively divided into three segments of equal length as described in
the following picture :

Let us consider the following triangle g as an initial state.
g = (Ng,Pg,PN g,PPg,Ag, λg) with Ng = {1, 2, 3} , Pg = {p1, q1, p2, q2, p3, q3}, PN g =

{(p1, 1), (q1, 1), (p2, 2), (q2, 2), (p3, 3), (q3, 3)} , PPg = {(p1, q2), (p2, q3), (p3, q1)}.

λg(1) =
(
−1
0

)
, λg(2) =

(
0√
2

)
, λg(3) =

(
1
0

)
, λg(p1) = λg(p2) = λg(p3) = {−},

λg(q1) = λg(q2) = λg(q3) = {+}.
The attributes of ports are distinguishing attributes. The attributes of nodes corresponds

to the R2 positions of the nodes. Every node got one attribute in R2, thus by abuse of
notation, we get rid of the set notation of attributes and use a functional one. The ⇒ or
⇒auto relation applied using the rule depicted in Figure 14 gives the well known pictures of
flakes in Figures 15.

Let us denote λg(a) =
(
xa
ya

)
and λg(b) =

(
xb
yb

)
. In this example, the attributes

of nodes i, j and k are defined as follows: λg(i) = 2
3λg(a) + 1

3λg(b) =
( 2

3xa + 1
3xb

2
3ya + 1

3yb

)
,

λg(j) = 1
2 (λg(a) + λg(b)) +

√
3

6 (λg(a)T + λg(b)T ) =
(

1
2 (xa + xb) +

√
3

6 (ya − yb)
1
2 (ya + yb) +

√
3

6 (−xa + xb)

)
, and

λg(k) = 1
3λg(a) + 2

3λg(b) =
( 1

3xa + 2
3xb

1
3ya + 2

3yb

)

5.3 Mesh refinement
Mesh refinement consists in creating iteratively new partitions of the considered space. The
initial mesh g we consider is depicted Figure 17. Distinguishing attributes are given on
ports. Attributes on nodes are omitted but we can easily consider coordinates. Triangle
refinements are given in Figure 16. The three rules verify the symmetry condition and we
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Figure 15 Flake results : flake at the different time steps 1,2,3 and 4

Figure 16 The rules R′
T , RU , RV are refinement rules defined e.g. in [1]

apply the ⇒auto relation on g to obtain the graph g′ described in Figure 17. Iteratively, the
rewrite system can be applied again on g′ and so forth.

6 Conclusion and Related Work

Parallel rewriting technique is a tough issue when it has to deal with overlapping reducible
expressions. In this paper, we have proposed a framework, based on the notion of rewriting
modulo, to deal with graph transformation where parallel reductions may overlap some parts
of the transformed graph. In general, these transformations do no lead to graphs but to
a structure we call pregraphs. We proposed sufficient conditions which ensure that graphs
are closed under parallel transformations. We also defined two parallel transformations: (i)
one that fires all possible rules in parallel (full parallel) and (ii) a second rewrite relation
which takes advantage of the possible symmetries that may occur in the rules by reducing
the possible number of matches that one has to consider. The two proposed parallel rewrite
relations are confluent (up to isomorphisms).

Our proposal subsumes some existing formalisms where simultaneous transformations
are required such as cellular automata [15] or (extensions of) L-systems [11]. Indeed, one
can easily write graph rewriting systems which define classical cellular automata, with pos-
sibly evolving structures (grids) and where the content of a cell, say C, may depend on
cells not necessary adjacent to C. As for L-systems, they could be seen as formal (context
sensitive) grammars which fire their productions in parallel over a string. Our approach here
generalizes L-systems at least in two directions: first by considering graphs instead of strings
and second by considering overlapping graph rewrite rules instead of context sensitive (or
often context free) rewrite rules. Some graph transformation approaches could also be con-
sidered as extension of L-systems such as star-grammars [9] or hyperedge replacement [5].
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Figure 17 g ⇒auto g
′

These approaches do not consider overlapping matches but act as context free grammars.
However, in [3] parallel graph grammars with overlapping matches have been considered.
In that work, overlapping subgraphs remain unchanged after reductions, contrary to our
framework which does not require such restrictions. The idea behind parallel graph gram-
mars has been lifted to general replacement systems in [14]. Amalgamation, see e.g.[7], aims
at investigating how the parallel application of two rules can be decomposed into a common
part followed by the remainder of the two considered parallel rules. Amalgamation does not
consider full parallel rewriting as investigated in this paper. Another approach based on
complex transformation has been introduced in [8]. This approach can handle overlapping
matches but requires from the user to specify the transformation of these common parts.
This requires to provide detailed rules. For instance, the two first cases of the triangle
mesh refinement example requires about sixteen rules including local transformations and
inclusions, instead of two rules in our framework.

The strength of our approach lies in using an equivalence relation on the resulting pre-
graph. This equivalence plays an important role in making graphs closed under rewriting.
Other relations may also be candidate to equate pregraphs into graphs. we plan to investig-
ate such kind of relations in order to widen the class of rewrite systems that may be applied
in parallel on graph structures in presence of overlaps. We also plan to investigate other
issues such as stochastic rewriting and conditional rewriting which would be a plus in mod-
eling some natural phenomena. Analysis of the proposed systems remains to be investigated
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further.
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