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Abstract—In this paper, we investigate the retrieval of paper
watermark by visual similarity. We propose to perform the
visual similarity by encoding small regions of the watermark
using a non-negative dictionary optimized on a large collection
of watermarks. The local codes are then aggregated into a
single vector representing the whole watermark. Experiments
are carried out on a test of tracings (manual binarization of
watermarks).

I. INTRODUCTION

Hand-made papers with paper watermarks were produced
in paper-mills by using a wire mesh. From the thirteenth cen-
tury on nearly all European paper-makers signed their paper
production by watermarks. These watermarks were made by
wire figures, which were fixed on the wire mesh. During the
paper making process the molds were dipped into a liquid
pulp. When lifting them out, the liquid drained out through
the wire mesh. The fibers became interwoven to a sheet of
paper. The pattern of the mesh with the attached watermark
wire-figure became as imprinted on the paper.

Paper watermarks in ancient paper are significant clues
to historical investigations and can play a major role in the
authentication, dating and attribution of art to a certain artist.
Furthermore, watermarks and paper structures can provide
information about the local usage of a paper (for example,
shed light on the traveling of a writer) It can allow the
detection of falsification. It has become increasingly important
to be able to identify the watermarks so as to retrieve the
date and location of the paper producer. Thanks to growing
collections of paper watermarks, similar watermarks are more
likely to be found. The largest aggregator in this field is the
Bernsteinportal (www.memoryofpaper.eu). This database
consists of more than 227.000 watermarks of 28 different
watermark collections. All watermarks of these collections
are described by verbal terms in different languages. Such a
verbal system has limits due to the many categories used and
many more subcategories. There are many ways to describe
watermarks, and after a wrong description a watermark might
never again be detected. Furthermore, manual browsing of
such collections is impossible due to the sheer amount of
available data.

In this paper, we investigate a query by example system
where a user submits a new watermark and retrieves the most

visually similar watermarks in the collection. In order to per-
form this query by example scheme, we propose to represent
watermarks by specially crafted vectors. Our representation
aims at matching similar small regions of the watermark. To
perform that, we extract many regions from the watermark
and compute features on these regions. Inside a region, we
consider watermarks to be the union of basic patterns. We thus
propose to encode the region as a non-negative combination
of positive patterns taken from a dictionary learned on a set of
watermarks. We finally aggregate the codes into a single vector
such that the dot product emulates matching the regions.

The remaining of this paper is as follows: First we discuss
the encoding procedure for the regions. Then, we explain the
code matching procedure, before we detail the aggregation of
all codes into a single vector. Finally, we present experiments
on a set of tracings (manual binarization of watermarks) before
we conclude.

II. SPARSE NON-NEGATIVE DICTIONARY LEARNING

We consider the image as a collection of regions spanned
by a sliding window. Each window is then encoded on a
dictionary and the codes are used as local features. Similar
regions should be encoded by similar atoms of the dictionary,
allowing us to use the codes as a proxy for comparing regions.

We propose to learn the dictionary from a large quantity
of images using a reconstruction based criterion, to which we
add several constraints to reflect the high specificity of our
input images. Let D be the dictionary, {r} the input regions
of all available images and xr their corresponding codes, we
consider the following optimization problem:

min
D,α

.
1

2

∑
r∈{r}

‖r−Dxr‖2 (1)

s.t. ∀i,Di ≥ 0, ‖Di‖22 = 1 (2)
∀r,xr ≥ 0, ‖xr‖1 ≤ k (3)

In this problem, Dαx is the reconstruction of r using D,
which we want as close as possible to the original sample.
The first constraint on D states that all atoms of the dictionary
have positive components, which means that atoms can only be
constructive and not destructive. In our model, it makes sense



Fig. 1. Example of learned dictionary with 64 atoms of size 32× 32 pixels.

to forbid destructive atoms since the watermark pattern are a
superposition of strokes. The norm constraint on D ensures
that no atoms diverges to infinite components. The positivity
constraint on xr follows the same principle as for D: In our
model, it makes no sense to use an atom to remove a part
of the pattern in the region. Finally, the `1 norm constraint
on xr enforces sparsity in the codes, which means that only
a few atoms are used to reconstruct the original pattern. The
benefits of this sparsity constraint are twofold: First it makes
the codes more robust to noise by removing small coefficients,
and second it tends to favor more unique decompositions in
the case of over-complete dictionaries, which is essential when
using the code to compute similarities.

To train the dictionary, we follow a stochastic gradient
descent as proposed in [1]. We used mini-batches consisting
of all non-empty regions spanned by a sliding window at 5
different scales for each image. To compute the codes of all
these region, we used the Frank-Wolfe algorithm [2] which
proved to be very efficient for the considered constraints. An
example of a learned dictionary at convergence is shown in
Figure 1.

III. LOCAL FEATURES MATCHING

For a given image, we can now compute a set of codes
corresponding to the non-empty regions spanned by the sliding
window. In order to compare two images, we could simply
count the number of matching codes using the sum of simi-
larities between codes:

sI(Ir, Is) =
∑

xr∈Ir

∑
xs∈Is

sx(xr,xs) (4)

The similarity between two codes can be defined in different
ways, but a popular choice in computer vision tasks [3] is to
count 1 if xs is the nearest neighbor of xr in Is and the second
nearest neighbor is a much less similar code (i.e., d(xr,xs) <
ηd(xr,x2), with x2 the second nearest neighbor of xr in Is
and η a contrast parameter, typically 0.6).

To further improve the similarity between images, we can
discard proposed matches that do not preserve the global
geometry of the image. Indeed, if the tracings are very similar,
an affine transform should be able to map the location of all
matching regions in Ir to the location of the corresponding re-
gions in Is. In computer vision tasks, such transform is usually
estimated using a consensus algorithm like RANSAC [4]. An
example of matching regions filtered by RANSAC is shown on
Figure 2. Without the geometric filtering, all regions crossing
a chainline would match similar region in the second image.
However, these matches have no global geometric coherence
and are easily removed, leaving only those that are coherent
with the transform of more complex patterns (for example, on
top of Figure 2).

However, this involves a number of comparison quadratic
with the number of regions in the images, which quickly
becomes intractable. In our case, since we used 5 different
scales of the input image, we obtain about 4500 codes per
image, which makes the computation of the similarity between
two images in the order of one second, which then has to be
multiplied by the number of images in the collection. The use
of local feature matching is thus not possible at search time.

IV. LOCAL FEATURES AGGREGATION

To overcome the computational time of pairwise matching
of local features, we propose to use aggregation schemes that
reduce the set of codes to a single representation.

We use approaches based on advanced Bag of Word models
very popular in the object recognition community. In partic-
ular, we focus on the tensor framework developed in [5], [6]
which finds an embedding of the set of local features so as to
approximate the matching function.

The main idea is to provide an alternative pairwise matching
function, as follows:

s(Ir, Is) =
∑

xr∈Ir

∑
xs∈Is

sq(xr,xs)e
−γ‖xr−xs‖2 (5)

With sq defined using a quantized version of x over a
codebook {µc}:

sq(xr,xs) = 〈q(xr), q(xs)〉 =
∑
c

qc(xr)qc(xs), (6)

qc(x) =

{
1 if c = argminm ‖x− µm‖
0 else

Then, this matching function is approximated using a Taylor
expansion of the Gaussian kernel:

s(Ir, Is) =
∑

xr∈Ir

∑
xs∈Is

〈q(xr), q(xs)〉
∞∑
n=0

An〈xr,xs〉n (7)

=

∞∑
n=0

An〈
∑

xr∈Ir

q(xr)⊗ x⊗nr ,
∑
xs∈Is

q(xs)⊗ x⊗ns 〉

Where ⊗ denote the tensor (outer) product between vectors.
By setting different stop to the Taylor expansion, we can

recover several methods from the literature, namely Vector of



Fig. 2. Examples of matching regions after applying outliers removal following the RANSAC estimation of the affine transform between the pairs of regions.
First and last column correspond to the original images, while column 2 and 3 correspond to the processed tracings with the matching regions highlighted.
Most of the matching regions are centered on the tracings, which is a desirable property in the case of similarity search. Note that regions of different scales
can be matched.

Locally Aggregated Descriptors (VLAD) [7] for the first order,
and Vector of Locally aggregated Tensors (VLAT) [5] for the
second order.

The main advantage of such methods, is that all local
features are processed ahead of time to produce the n + 1
order tensor. At search time, only the dot product (inner
product) between the obtained tensors is required to compute
the similarity. However, high order tensors are difficult to use
because of their increased size.

To further improve the results, we use a principal component
analysis inside each cluster {µc} followed by `2 normalization
for each code [8]. This is known to obtain better results [9].
The final representation are then processed by a component-
wise signed square root followed by a global `2 norm, which
is a standard procedure when using such methods.

V. EXPERIMENTAL RESULTS

The dataset on which we performed experiments consists
in 658 tracings of which about 10% are labeled. Examples
of such tracings are shown in Figure 3. The labels consist in
groups of tracings that should be the first to be retrieve when
taking one image of the group as query. The performances are
measured as the average rank of the first relevant result (i.e.,
given a query tracing, we sort all other images by decreasing
similarity and return the index of the first relevant image). A

random sorting of the 657 remaining images would lead to a
mean average rank of about 168.

The results for different parameters are shown in Table I. We
varied the order of the Taylor approximation and the step size
at which regions are extracted. Codes are computed using the
same dictionary trained on regions extracted from the whole
dataset at 5 different scales. Only the clusters are recomputed
for each setup of different step size and approximation order.

Our best result is an average rank of 30, which is signifi-
cantly better than the random sorting (average rank of 168). As
we can see, using a smaller step size of 8 instead of 16 pixels
leads to better performances. This can be explained by the
increase of the number of selected regions which automatically
increases the number of correct matches for complex patterns
(i.e., not translation invariant like chainlines). Similarly, using
a second order expansion significantly improves the results.
This can be explained by the added precision which tends
to also favor complex patterns over simpler ones like the
chainlines.

VI. CONCLUSION

In this paper, we proposed a method for the retrieval
of paper watermarks based on sparse non-negative matrix
factorization. We train a dictionary on non-negative patterns
on many images using a stochastic gradient descent algorithm.
Using a sliding window, we compute non-negative sparse



Fig. 3. Examples of paper watermark tracings after preprocessing, showing
the diversity of encountered patterns.

dictionary support step clusters order average 1st
64 32 8 64 1 39.8
64 32 8 64 2 30.6
64 32 16 64 1 61.7
64 32 16 64 2 36.5

TABLE I
1ST RELEVANT IMAGE AVERAGE RANK FOR VARYING PARAMETERS.

codes on many regions of the image based on the dictionary.
These codes are then aggregated in a single image repre-
sentation using either first order approximation (VLAD) or
second order approximation (VLAT). We perform experiments
on a dataset of watermarks that show our method is able
to retrieve relevant watermarks with an average rank of the
first relevant result of about 30/657. Further investigations
involve considering invariance to specific transforms (scale,
flip, rotation) when optimizing the dictionary, as proposed
in [10]. Also, the aggregation scheme could be improved by
preserving the spatial layout of the codes as proposed in [11].
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