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Abstract—This paper describes a fast audiovisual attention 

model applied to human detection and localization on a 

companion robot. Its originality lies in combining static and 

dynamic modalities over two analysis paths in order to guide 

the robot’s gaze towards the most probable human beings’ 

locations based on the concept of saliency. Visual, depth and 

audio data are acquired using a RGB-D camera and two 

horizontal microphones. Adapted state-of-the-art methods are 

used to extract relevant information and fuse them together via 

two dimensional gaussian representations. The obtained 

saliency map represents human positions as the most salient 

areas. Experiments have shown that the proposed model can 

provide a mean F-measure of 66 percent with a mean precision 

of 77 percent for human localization using bounding box areas 

on 10 manually annotated videos. The corresponding 

algorithm is able to process 70 frames per second on the robot. 

Keywords-audiovisual attention; saliency; RGB-D; human 

localization; companion robot. 

I.  INTRODUCTION 

With the rapid advances in robotics, companion robots 
will tend to be more and more integrated in the human daily 
life [12]. These robots have the particularity to be both 
sociable, mobile and destined to evolve in an indoor 
domestic environment. One of the main requirement for 
them is to be able to quickly analyze their surrounding in 
order to interact with humans. That is why it is necessary to 
prioritize the perception, detection and localization of 
humans. They also need to behave as natural as possible in 
order to become acceptable presences for the humans [12].  

To reach these requirements, cognitive based audiovisual 
attention mechanisms are a possibility that has been 
investigated in this work. Their related concepts can indeed 
provide the robot with the natural idea that it should give 
more attention to some positions than others.  

A fast multimodal attention model for human detection 
and localization on a companion robot has thus been 
conceptualized and developed.  

This model is distinctive from state-of-the-art methods 
presented in Section II due to both its application on a robot 
that can travel between different places during time, and to 

its architecture that combines visual, depth and audio data 
through two independent static and dynamic analysis paths. 
Moreover, since the robot and the humans can both move, 
the robot will not ever be in a situation where a specific 
characteristic of a human (face, leg, etc.) would be 
detectable. And since the detectors associated with these 
characteristics may sometimes fail, it has been decided not to 
use them in the proposed model in order to avoid false 
detections. This model may thus be considered as a bottom-
up external information guided model.  

It has been realized using the open source robot Qbo Pro 
Evo (Fig. 1) produced by TheCorpora©. Qbo’s height is of 
456 millimeters. It integrates an Intel i3-2120T 2.6 gigahertz 
processor and 4 gigabytes of random access memory. This 
hardware is conducted by a Linux Mint 17.1 operating 
system that has been enhanced with the Indigo’s version of 
the Robotic Operating System (ROS). It embeds an Asus 
Xtion Pro Live RGB-D camera at the top of its head. This 
camera can stream depth and color images with a resolution 
of 640 by 480 pixels at 30 frames per second (FPS). It also 
provides two stereo microphones with a gap of 147.5 
millimeters between them. Thanks to this system, the 
proposed model is able to analyze multimodal data as soon 
as they arrive. 

The rest of this paper is organized as follows. Section II 
describes state-of-the-art ideas about audiovisual attention 
and its applications to robotics. Section III describes the 
proposed model in details. Section IV presents the dataset 
that has been used and the results of the evaluation. Section 
V concludes this study and presents future work perspectives 
related to the proposed model. 

 
 

Figure 1.  Photography of the robot Qbo Pro Evo without the Asus 

Xtion Pro Live RGB-D Camera. 

 



II. PREVIOUS WORK 

This section presents previous work related to the 

proposed model. 

A. Audiovisual attention 

Audiovisual attention is a fast human cognitive process 
that aims to guide human interest through the most salient 
(i.e., remarkable) areas [7]. This process has been widely 
studied during the past three decades in neurosciences, 
psychology and computer sciences. This section focuses on 
the computational models developed using computer 
sciences methods.  

Their goal is to represent the saliency level of different 
sources on a grayscale image called saliency map. On this 
map, the more salient an element is, the higher its intensity is 
[7]. Most attention models are referred as saliency models. 

As described in [2], a huge number of saliency models 
have been implemented during time. Their efficiencies have 
been evaluated on different benchmarks using neurosciences 
ground truth results [3]. 

Anyway, these benchmarks are mostly available for the 
models designed for static two dimensional images only. 
They are not suitable to evaluate a multimodal or a 
dynamical model. This may be explained by the fact that 
most of state-of-the-art work are only based on static visual 
data (“single input image” [3]). These models have the 
particularity to give out salient regions independently of the 
content of the scene. This means that they may detect 
elements that do not correspond to a given target. In order to 
bias the results obtained with those classical models, some 
works have however incorporated other modalities, such as 
depth, motion, or sound.  

Reference [5] demonstrated the utility to use a depth bias 
over two dimensional visual saliency results in order to 
increase their efficiency on ground truth evaluations obtained 
through eye-tracking processes. The authors notably 
concluded that humans are more attentive to close elements.  

Reference [9] proposed to use motion detection on video 
images in order to localize areas that are moving and to 
combine them with a 2D static saliency model. The idea 
behind this is that the human gaze may be more attracted by 
moving objects than static objects. The authors proposed to 
drastically increase the saliency of moving objects. 

Reference [4] has shown that adding sound analysis to 
visual cues may help to increase the saliency of a talking 
human for dynamic conversational purposes. Reference [10] 
used a visual additive two dimensional Gaussian bias 
centered on a horizontal sound localized position to improve 
the detection of a target in a complex visual environment.  

B. Applications in robotics 

Applications of the attention’s concepts in the field of 
robotics are still uncommon but are gaining more and more 
importance in the design of methods for robots’ perception. 

Reference [11] proposed to combine a static visual 
attention model with a two dimensional sound localization to 
guide the gaze of a static humanoid robot thanks to the Head 
Related Transfer Function (HRTF) transform. This transform 
is effective to localize a sound in a human manner. However, 

it requires precisely designed humanoid ears covering the 
microphones, making the results of the HRTF difficult to 
reproduce with a standard robot such as Qbo. 

Reference [12] used a multimodal approach to control the 
emotions of a sitting conversational humanoid robot 
according to the most interesting face of the human being. 
The authors used color, depth and sound data. In their 
method, they considered that the human faces will always be 
present in the scene. They used specific methods for human 
characterization such as emotion and head pose recognition. 
Their camera was detached of the robot and connected to an 
external computer. They did not consider algorithm speed 
issues. 

III. PROPOSED MODEL 

This section presents a novel approach for human 
detection and localization using audiovisual attention 
concepts on a companion robot. It has been inspired by the 
previously described independent literature results that have 
rarely been combined all together. The corresponding model 
thus combines multiple state-of-the-art ideas and methods in 
an all-in-one modular model represented on Fig. 2. It extracts 
independent static and dynamic features using visual, depth, 
and sound data. These features are then fused together in 
order to increase the saliency of the areas that may 
correspond the most to a human being.  

In order to achieve this goal, the proposed model has 
been designed considering real domestic conditions through 
the following hypotheses: hypothesis (1) the robot will 
sometimes not be in presence of a human being, hypothesis 
(2) the robot may move over time, and will thus see different 
places with different points of view, hypothesis (3) a human 
being is a multimodal entity that can move and emit sound 
that the robot should be attentive to, hypothesis (4) the robot 
should be more attentive to close elements in order to avoid 
background salient elements detection, and hypothesis (5) 
the model has to be fast in order to eventually enable other 
processes to run at the same time on the robot. Its 
development was made considering the robot stationary 
while analyzing a scene. The mobility constraint has been 
considered through hypothesis (2). 

A. Processing architecture of the model 

As shown on Fig. 2, the proposed model has been 
decomposed in five steps and two independent static and 
dynamic analysis paths. It combines static visual 2D saliency 
with depth, motion and sound biases as referred in Section 
II.A. These modalities have been chosen according to the 
hypothesis (3) made in Section III. From a computational 
point of view, the model has been first developed using 
Matlab toolboxes before it was implemented on the robot 
using the C++ language through the ROS packages structure 
and the open source libraries OpenNI and OpenCV. 

In the following sections, the proposed model is going to 
be presented step by step, from static to dynamic modalities 
and from visual to audio cues. 

B. Step 1 – Data retrieval 

This step’s goal is to get the data from the sensors.  



As explained in Section I, color and depth images are 

both acquired at a speed of 30 FPS with a resolution of 640 

by 480 pixels thanks to the RGB-D camera.  

Stereo sound signals are discretized using a sample 

frequency of 44.1 kilohertz and bufferized in a one 

dimensional array. 

C.  Step 2 – Preprocessing 

This step aims to reduce observation noises and 

computational time using simple but efficient operations. 

The following observations about the data have been made 

during this study:  

 Color channels are not used in Step 3. 

 Illumination variations generate noise on both 

color and depth images. 

 Randomly located “holes” can be observed on 

depth images (i.e., not out of range areas that 

are considered as if they were out of range). 

 Sound signals show an inconstant amplitude 

offset coming from the functionning robot’s 

system ego-sound. 

The following operations have been realized. Their 

results are shown on Fig. 3.   

First, the last retrieved color image is converted in 

grayscale, dividing by three times its computational cost.  

Second, in order to improve the robustness of the images 

to noisy variations during time, a simple but efficient 

approach, driven by empirical considerations, has been 

chosen. It consists in blending the current image with the 

previous blended image. The resulting image is named 

reference image. Equation (1) describes this temporal 

fusion. This method has the advantage to take care of the 

hypothesis (2) made in section III because it does not 

consider explicit background information for illumination 

noise removing. 

 

 
 

In (1), α represents a parameter that can increase or 
decrease the importance of the previous images over time. 
The lower α is, the higher their importance is. Therefore, 
having a low α is important to consequently reduce noise 
variations over time, but it also gives less importance to the 
current image and tends to generate a less precisely localized 
motion. In the proposed model, α has been set to 0.8 for 
color (grayscaled) images and to 0.2 for depth images in 
order to smooth the depth holes while not having a high 
incident on the motion localization described in Sections 
III.D.3 and III.D.4. 

Third, the noise from sound data is filtered with a low-
pass 6

th
 order Butterworth filter using a cut off frequency of 

(1) 

 
 

Figure 2.  Flow chart of the proposed model. 

 



4 kilohertz designed on Matlab. It is then thresholded 
according to the intensity of its energy in order to avoid false 
detections coming from the ego-sound of the robot. The 
threshold used has been determined by analyzing energy 
values on 33 milliseconds records with and without external 
sound.  

D. Step 3 – Feature extraction 

This step represents the multiple processes that are 

applied to extract the interesting features used in the fusion 

step. It has been separated in two paths. The static path 

includes modalities that will always be detected. The 

dynamic path includes modalities that may be present at 

instant “t” but may be absent at instant “t+1”. After each 

process of a same step, resulting images are normalized. The 

results are shown on Fig 4. 

1)  2D salient areas localization: This process consists 

in applying a visual static saliency model to the previously 

grayscaled reference image. Like in [1], the model of [6] has 

been choosen for its efficency and its rapidity. Its principle 

is based on the spectral residual concept. The idea behind 

this is that salient areas on natural images (i.e., not artificial) 

may be considered as the less redundant ones. The method 

of [6] consists in applying a fast discrete two dimensional 

Fourier transform on a grayscale image of size 64 by 64 

pixels. A logarithmic transform and a 3 by 3 mean filter are 

then applied to the amplitude spectrum of this image. The 

spectral residual spectrum is obtained via the substraction of 

the mean logarithmic representation with the original 

amplitude spectrum. The inverse fast discrete 2D Fourier 

transform is then used with the spectral residual spectrum 

instead of the amplitude spectrum. The resulting image is 

filtered with a 7 by 7 gaussian filter in order to obtain a 2D 

saliency map representing gaussian salient areas. 

2)  Depth bias determination: The goal of this process is 

to make the depth reference image represent closest values 

with the highest intensities in order to use the depth bias 

concept of [5] in the fusion step. It provides the robot with a 

more human-like perception model. It also helps to consider 

the hypothesis (4) described in Section III. First, the image 

is subsampled to a resolution of 64 by 64 pixels in order to 

be spatially equivalent to the saliency map. Its intensity 

values are then inversed. Values that are out of the sensor’s 

range are set to zero in order to represent the absence of 

information. Finally, a closing operator with 3 by 3 

rectangular structuring element is applied in order to remove 

the small detected holes. 

3)  2D fine motion localization and fine salient motion 

bias determination: These processes aim to detect motion 

between consecutive reference images and to represent the 

saliency levels of the moving areas. This motion is 

considered as fine because it is detected on full resolution 

images. It is thus considered as able to capture motion 

having both small and high amplitudes. Since this process 

needs to be fast, a well known mean of the absolute 

difference operation is used via (2). The mean filter helps to 

remove false and small detected moving areas. Its size is of 

N by N pixels. N is equal to 7 in this model. 

The process described in Section III.D.1. is then applied 

on the resulting difference image. The obtained result 

represents the detected motion through a salient gaussian 

areas representation: the 2D fine salient motion bias. 

4) 3D coarse motion localization and coarse motion 

bias determination: These processes aim to detect motion 

between consecutive reference images that have been 

subsampled to a resolution of 64 by 64 pixels. It has been 

supposed to be only able to detect motions having a high 

enough amplitude. This motion is thus considered only if a 

fine motion as been detected. Moreover, since we have 

access to both depth and color (grayscaled) images, the 

coarse motion is detected on both in order to provide a more 

robust motion localization with the idea of a three 

dimensionnal motion. First, (2) is applied on the subsampled 

reference images. Second, an additive mean of the two 

difference images is realized in order to combine both 

motion representations. The result is binarized keeping only 

pixels with an intensity higher than 60% of the maximal 

possible value. The binarized areas are named blobs. Only 

blobs containing at least 40 pixels are considered as true 

moving areas. Their centroids are found and convoluted 

with a vertical gaussian whose size depends of the mean 

depth value obtained on a 3 by 3 area around the centroids. 

This representation is the 3D coarse motion bias. 

5) 1D sound localization and sound bias determination: 

The sound is localized on the horizontal dimension using 

the cross correlation and the Interaural Time Difference 

(ITD) of [8]. First, a sound buffer of 33 milliseconds is 

retrieved from the two microphones. The size of this buffer 

corresponds to the required time in order to get an image 

with the camera. A cross correlation between left and right 

      
 

      
 

       
 

Figure 3.   Example of data as obtained before (left) and after (right) the 

pre-process step. (a) color images; (b) depth images; (c) sound. 

(a) 

(b) 

(c) 

(2) 

 



sound components is applied using a moving window of 20 

samples. The ITD is then determined. It gives the angle 

position of the detected sound in the robot coordinates. This 

angle is converted in the 64 by 64 image pixels coordinates 

and a vertical gaussian is set at the sound location according 

to [10]. This is the 1D sound bias. 

E. Step 4 – Feature fusion 

This step aims to obtain the final saliency map by 

successively combining the various detected features from 

step 3 according to the hypotheses developed in Section III. 

First, saliency and depth bias are combined through an 

element by element multiplication. This operation has been 

chosen in order to only impact the already salient areas. 

Then, the non-zero dynamic biases are successively added 

to the result. These operations are weighted additions in 

order to modify the relative saliency levels between the 

areas of the previously obtained image. The weights for fine 

motion, coarse motion and sound biases are respectively 

60%, 60% and 30% in order to give a lot of importance to 

motions. Since experiments have shown that sound cannot 

be localized as precisely as visual features and as it is added 

after the motions, its weight is lower than motions’ ones.  

F. Step 5 – Determination of human positions 

Human positions are retrieved using bounding boxes 

generated from the final saliency map.  Bounding boxes are 

localized over the areas with a final saliency intensity of at 

least 50% of the maximal possible intensity in order to 

eliminate outliers without advantaging precision nor recall. 

In order to define whether a detected bounding box 

should be considered as a human position, the correlation 

between a human being presence and the detected dynamic 

modalities has been learned. These modalities are 

represented by the dynamic biases and are the only available 

information sources that can help to make a decision about 

the eventual detection of a human being. The dataset 

described in Section IV has been used. The results are 

shown on Tab. 1. True positives (TP) correspond to a 

modality detection while a human is present, and false 

positives (FP) correspond to a detection when no human is 

present. True negatives (TN) and false negatives (FN) are 

also represented. The total detected (TD) values indicate 

when a modality has been detected over all the images. 

Since all the false positive rates are low, it has been 

decided to use a simple binary decision for this model: if at 

least a fine motion or a sound has been detected, then it 

means that a human has been detected (i.e., is present).  
 

TABLE I. CORRELATIONS BETWEEN DETECTED MODALITIES 
AND A HUMAN BEING PRESENCE (34 VIDEOS, 4 SOUND 

RECORDS). 
 

 Fine Motion (%)  Coarse Motion (%) Sound (%) 

TD 82.7 42.5 2.2 

TP 80 42.4 2.2 

FP 2.7 0.1 0 

TN 11.5 14.0 24.0 

FN 5.8 43.5 73.8 

At this step, detected bounding boxes may be classified 

using their mean saliency values in order to determine 

which area is the most interesting. This operation may be 

useful in order to keep only one area to guide the robot’s 

gaze towards the most interesting position. 

IV. EVALUATION OF THE RESULTS 

The results obtained by the proposed model have been 

evaluated on a dataset that has been acquired with the robot 

in two different rooms. It is made of 34 videos with 

durations between 7 and 20 seconds for a total of 10312 

images. Only 4 videos also include sound data. At least one 

human is present on a part of each video. This human may 

be moving, sitting, standing or talking at any distance from 

the robot, but he is not necessarily always in the field of 

vision of the camera. The videos have been manually 

annotated with the frame ranges on which humans are 

present. For 10 of these videos (2 with sound), annotations 

also include the bounding box locations (ground truth) 

corresponding to the human 2D positions.  

    
 

    
 

    
 

    
 

    
 

    
 

    
 

    
 

Figure 4. Example of results obtained by the model. Black images 
mean no information.  (a) color (grayscaled) reference image; (b) 

salient areas; (c) depth bias; (d) fine motion bias; (e) coarse motion 

bias; (f) sound bias; (g) final saliency map; (h) bounding boxes. Red 
boxes indicate a lack of information for human detection, green boxes 

indicate probable human areas. 
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TABLE II.  MEAN PRECISION, RECALL AND F-MEASURE WITH 

BOUNDING BOXES AFTER EACH FUSION (+). DETAILS FOR 2 
VIDEOS WITH SOUND (W/+-) ARE PROVIDED. HIGHEST VALUES 

ARE IN GREEN, SECOND HIGHEST VALUES ARE IN BLUE. 

DECISION KEEPS ONLY BONDING BOXES WHEN HUMANS 
SHOULD HAVE BEEN DETECTED. 

 

 
Precision 

(%) 

Recall  

(%) 

F-measure 

(%) 

Decision? yes no yes no yes no 

Saliency 28 22 35 29 32 26 

+ Depth 44 35 42 35 43 35 

+ Fine Motion 72 56 60 50 66 53 

+ Coarse Motion 77 60 55 46 66 53 

w/- Sound 79 73 44 39 57 51 

w/+ Sound 76 70 49 44 59 54 

 

First, the resulting bounding box locations from step 5 

have been compared with the ground truth using Matlab. 

The comparison method was to determine the precision, the 

recall and the F-measure between the bounding box areas 

obtained by the model and the ground truth. It has been 

determined that the model is able to generate a mean F-

measure of 66% with a precision of 77% for human 

localization. The detailed results are shown on Tab. 2. 

The following are a detailed explanation of these results. 

First, depth helps to increase both the recall and the 

precision of the human localization generated by the 

saliency. This corresponds to the fact that when humans are 

close to the robot, it is difficult to define very salient areas 

because humans are recovering a large amount of the image, 

it gives them an important spatial redundancy and induces 

difficulties for the method of [6]. Second, the hypotheses 

that have been made about the dynamic data are confirmed: 

they greatly improve the human localization. It is interesting 

to observe that the coarse motion bias does not improve the 

F-measure but the precision, and that the sound bias 

improves both the recall and the F-measure. Moreover, 

these results do not support the fact that humans may be 

detected even in the absence of dynamic data thanks to 

saliency. This means that one should use a specific detector 

on the detected areas in order to characterize them. In that 

case, the specific detector would not be used as an input of 

the model like in [12], but like a final recognition step.  

Third, since a fast model was desired through the 

hypothesis (5) detailed in Section III, the computational 

time of the proposed model has been evaluated at different 

instants in time after the algorithm has been adapted in C++. 

The robot is able to process incoming flow at a mean speed 

of 70 FPS, which is twice more than required to process 

every frame using the Asus Xtion Pro Live RGB-D camera.   

V. CONCLUSION AND FUTURE WORK 

In this paper, an original approach to detect and localize 

human beings using audiovisual attention’s concepts on an 

indoor companion robot has been presented. It is able to 

detect and localize humans at 70 FPS with a mean F-

measure of 66% and a precision of 77% using bounding 

boxes on a stationary robot.  

Since the proposed model uses motion and sound 

localization, future work will focus on studying the effect of 

ego motion compensation on this model using visual and 

non-visual odometry state-of-the-art methods. Adding a 

supplementary step in order to characterize detected areas 

while no dynamic data is available will also be studied.  The 

adaptation of the proposed model to other depth sensors will 

be considered in order to make it suitable for an outdoor 

use.  
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