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LOWER BOUNDS FOR MAASS FORMS ON SEMISIMPLE GROUPS

FARRELL BRUMLEY AND SIMON MARSHALL

Abstract. Let G be an anisotropic semisimple group over a totally real number field F .
Suppose that G is compact at all but one infinite place v0. In addition, suppose that
Gv0 is R-almost simple, not split, and has a Cartan involution defined over F . If Y is a
congruence arithmetic manifold of non-positive curvature associated to G, we prove that
there exists a sequence of Laplace eigenfunctions on Y whose sup norms grow like a power
of the eigenvalue.
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1. Introduction

Let M be a compact Riemannian manifold of dimension n and with Laplace operator
∆. Let {ψi} be an orthonormal basis of Laplace eigenfunctions for L2(M), which satisfy
‖ψi‖2 = 1 and (∆ + λ2

i )ψi = 0. We assume that {ψi} are ordered by eigenvalue, so that
0 = λ1 6 λ2 6 . . .. It is an important question in harmonic analysis to determine the
asymptotic size of ψi, i.e. the growth rate of ‖ψi‖∞ in terms of λi. The basic upper bound
for ‖ψi‖∞ was proved by Avacumović [1] and Levitan [19], and is

(1) ‖ψi‖∞ � λ
(n−1)/2
i .

Moreover, this bound is sharp on the round n-sphere.
Our interest in this paper is in lower bounds on sup norms. One way of viewing the

existence of large eigenfunctions on Sn is via the link between the asymptotics of ψi and the
geodesic flow on M provided by the microlocal lift. Roughly speaking, this implies that the
eigenfunctions on M should exhibit the same degree of chaotic behaviour as the geodesic flow.
On Sn, for instance, the geodesic flow is totally integrable, and this is reflected in the fact
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that one can both write down an explicit basis of eigenfunctions, and find eigenfunctions with
large peaks. Conversely, if M is negatively curved then its geodesic flow is highly chaotic,
and one expects this to be reflected in the asymptotics of ψi. One example of this is the
Quantum Unique Ergodicity (QUE) conjecture of Rudnick and Sarnak [24], which predicts
that the measures |ψi|2dV tend weakly to dV for these M .

In light of this, one would like to know to what extent the upper bounds (1) can be
improved when M is negatively curved. When n = 2, Iwaniec and Sarnak [13] conjecture
the strong bound

(2) ‖ψi‖∞ �ε λ
ε
i .

This is often referred to as a Lindelöf type bound, as it implies the classical Lindelöf conjec-
ture on the Riemann zeta function in the case of the modular surface. Their conjecture is
consistent with the Random Wave model and is supported by numerical computations as well
as a power improvement over (1) established in [13]. Moreover it is generally believed that
generic sequences of L2-normalised eigenfunctions on a negatively curved manifold satisfy a
Lindelöf type bound. Any sequence violating (2) will then be called exceptional.

Unlike the setting of the QUE conjecture, compact manifolds M of negative curvature
which support exceptional sequences in the above sense do in fact exist. Rudnick and Sar-
nak were the first to investigate this question, proving in [24] the existence of an arithmetic
hyperbolic 3-manifold Y and a sequence of L2-normalised eigenfunctions φi on Y for which

‖φi‖∞ �ε λ
1/2−ε
i . This result was generalised to n-dimensional hyperbolic manifolds for

n > 5 by Donnelly [4], and an alternative proof, valid in a wide class of arithmetic hyper-
bolic 3-manifolds, was given by Milićević [22]. Finally, in the spirit of the above example
involving the Riemann zeta function, Lapid and Offen in [18] discovered a series of higher rank
arithmetic manifolds supporting exceptional sequences through the link with automorphic
L-functions (conditionally on standard conjectures on the size of automorphic L-functions
at the edge of the critical strip). A synthesis of these developments, as well as a general
conjecture restricting the possible limiting exponents for exceptional sequences, can be found
in the influential letter [29].

In this paper, we extend these results to a wide range of compact congruence manifolds.

Theorem 1.1. Let F be a totally real number field, and let v0 be a real place of F . Let
G/F be a connected anisotropic semisimple F -group. We make the following additional
assumptions on G.

(1) Gv0 is noncompact, not split, and R-almost simple.
(2) Gv is compact for all real v 6= v0.
(3) There is an involution θ of G defined over F that induces a Cartan involution of Gv0.

Let Y be a congruence manifold associated to G as in Section 3.8. Then there exists δ > 0
and a sequence of linearly independent Laplacian eigenfunctions ψi on Y that satisfy

‖ψi‖2 = 1, (∆ + λ2
i )ψi = 0, and ‖ψi‖∞ � λδi .

Theorem 1.1 goes some distance toward answering the basic question of determining the
precise conditions under which one should expect a Lindelöf type bound on a compact
congruence negatively curved manifold. The three numbered conditions on the group G are
a particularly convenient way of asking that a large enough compact subgroup of G∞ admits
a rational structure, which is a key ingredient in our proof. Although the condition that Gv0
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is not split should be necessary, one should be able to relax the other conditions somewhat.
For example, throughout most of the paper, the condition that Gv0 is R-almost simple could
be weakened to G being F -almost simple. The stronger form of this condition is only used
in Lemma 6.1, to simplify the application of a theorem of Blomer and Pohl [2, Theorem 2]
and Matz-Templier [21, Proposition 7.2].

Note that Theorem 1.1 includes the examples of Rudnick-Sarnak, Donnelly, and Milićević,
although without explicit exponents. It is unable to reproduce the examples of Lapid
and Offen due to the compactness requirement, but it can produce compact quotients of
SL(n,C)/SU(n) with an exceptional sequence of eigenfunctions.

We address the question of whether one can find many groups satisfying the rationality
hypothesis of Theorem 1.1 in Section 9. One consequence of the results proved there is that,
for any G/R that is connected, R-almost simple, not compact, and not split, Theorem 1.1
produces a manifold Y of the form Γ\G/K with an exceptional sequence of eigenfunctions.

Finally, while our approach was largely inspired by that of Milićević, we have made an
effort to emphasize (in Section 2) the common features it shares with the techniques of
Rudnick-Sarnak and Lapid-Offen.

1.1. A hybrid result in the level-eigenvalue aspect. We in fact prove a stronger result
than that described in Theorem 1.1, establishing a lower bound in the level and eigenvalue
aspects simultaneously. We present this separately, as it requires more care to state; indeed,
any notion of non-trivial lower bound must overcome the lower bound one may prove when
the eigenspaces have large dimension. More precisely, ifM is a compact Riemannian manifold
and V is the space of ψ ∈ L2(M) with a given Laplace eigenvalue, one may show that there

is ψ ∈ V satisfying ‖ψ‖∞ >
√

dimV ‖ψ‖2.
If we consider a tower of congruence covers YN of Y , then the Laplace eigenspaces will have

growing dimension because of multiplicities in the corresponding representations at places
dividing N . Computationally, one observes that this (and its stronger form involving Arthur
packets) is the only source of dimension growth. Although we believe that the dimensions of
the joint eigenspaces we consider should be small (partly as a result of our choice of “large”
congruence subgroup), we do not know how to prove this in general. As a result, we shall be

satisfied if we can beat the bound
√

dimV , where V is now a space of Hecke-Maass forms
with the same Laplace and Hecke eigenvalues. This motivates the following definitions.

Let G be as in Theorem 1.1. Let H be the identity component of the group of fixed points
of θ. We let D be a positive integer such that G and H are unramified at places away from
D and ∞; see Section 3 for a precise definition. Let K and KH be compact open subgroups
of G(Af ) and H(Af ) that are hyperspecial away from D. If N is a positive integer prime
to D, we let K(N) be the corresponding principal congruence subgroup of K, and define
YN = G(F )\G(A)/K(N)KHK∞. We give each YN the probability volume measure.

Let A ⊂ G∞ be a maximal R-split torus with real Lie algebra a and Weyl group W . We
let aC = a ⊗ C. Let G0

∞ be the connected component of G∞ in the real topology. Any
unramified irreducible unitary representation of G0

∞ gives rise to an element ξ ∈ a∗C/W via
the Harish-Chandra isomorphism, where we have normalised so that the tempered spectrum
corresponds to a∗/W . We let ‖·‖ be the norm on a and a∗ coming from the Killing form, and
if µ, λ ∈ a∗/W we will sometimes abuse notation and write ‖µ − λ‖ to mean the minimum
of this norm over representatives for the orbits.
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By a Hecke-Maass form we mean a joint eigenfunction ψ ∈ L2(YN) for the Hecke algebra
(away from N and D) and the ring of invariant differential operators D on YN . We may view
the associated eigenvalues as elements in the unramified unitary dual of Gv at finite places
v (via the Satake isomorphism), while at infinity they determine an element ξ ∈ a∗C/W . We
define a spectral datum c for (G,N) to be a choice of element ξ(c) ∈ a∗/W and an element
πv(c) in the unramified unitary dual of Gv for all v - ND∞. Given a spectral datum c for
(G,N), we define V (N, c) to be the space of Hecke-Maass forms on YN whose D-eigenvalues
are given by ξ(c) (the spectral parameter) and whose Hecke eigenvalues at v - ND∞ are
given by πv(c). In particular, we require that these Maass forms are tempered at infinity.

Theorem 1.2. With the notation and hypotheses of Theorem 1.1, there is δ > 0 and Q >
1 with the following property. For any positive integer N with (N,D) = 1 and spectral
parameter ξ ∈ a∗ such that N(1 + ‖ξ‖) is sufficiently large, there is a spectral datum c for
(G,N) with ‖ξ(c)− ξ‖ 6 Q and a Hecke-Maass form ψ ∈ V (N, c) such that

‖ψ‖∞ � N δ(1 + ‖ξ‖)δ
√

dimV (N, c)‖ψ‖2.

Note that a Hecke-Maass form as in Theorem 1.1 has Laplacian eigenvalue of size roughly
(1 + ‖ξ‖)2.

The only previous results giving lower bounds in the level aspect are for GL2 over a number
field, due to Saha [25] and Templier [32]. They use the fact that local Whittaker functions
of highly ramified p-adic representations are large high in the cusp, and in particular rely on
the noncompactness of the manifold.

1.2. An example: complex hyperbolic manifolds. We now give an example of a family
of manifolds to which our theorem can be applied, and which to our knowledge does not
already appear in the literature. Let F be a totally real number field, and let E be a CM
extension of F . Let the rings of integers of these fields be OF and OE respectively. Let v0

be a distinguished real place of F , and let w0 be the place of E over v0. Let V be a vector
space of dimension n+ 1 over E with a Hermitian form 〈·, ·〉 with respect to E/F . Assume
that 〈·, ·〉 has signature (n, 1) at w0 and is definite at all other infinite places of E. Let G be
the F -algebraic group SU(V, 〈·, ·〉), so that Gv0 ' SU(n, 1).

Let L ⊂ V be an OE lattice on which the form 〈·, ·〉 is integral. Let L∗ be the dual lattice
L∗ = {x ∈ V : 〈x, y〉 ∈ OE for all y ∈ L}. Let Γ be the group of isometries of V that have
determinant 1, preserve L, and act trivially on L∗/L. If F 6= Q, completion at w0 allows us
to consider Γ as a discrete, cocompact subgroup of SU(n, 1), which will be torsion free if L
is chosen sufficiently small.

One may associate a complex hyperbolic manifold to Γ in the following way. Let D denote
the space of lines in Vw0 on which the Hermitian form is negative definite. SU(n, 1) acts on
D, and D carries a natural SU(n, 1)-invariant metric under which it becomes a model for
complex hyperbolic n-space. The quotient Y = Γ\D is then a compact complex hyperbolic
n-manifold, and is an example of a congruence manifold associated to G as in Theorem 1.1.

If n > 2, G satisfies conditions (1) and (2) of Theorem 1.1. We now show that (3) is
satisfied. Let W ⊂ V be a codimension 1 subspace defined over E such that the Hermitian
form is positive definite on Ww0 . Let θ be the isometry of reflection in W . Then g 7→ θgθ−1

gives an F -involution of G that is a Cartan involution on Gv0 , as required. Theorem 1.1 then
implies that there is a sequence of Laplace eigenfunctions {ψi} on Y satisfying ‖ψi‖∞ �
λδi‖ψi‖2.
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1.3. The method of proof. There are several methods that may be used to prove power
growth of eigenfunctions on arithmetic manifolds. The original proof of Rudnick and Sarnak
uses a distinction principle. This means that, for certain period integrals, if an automorphic
form φ has a nonzero period then φ is exceptional in some sense, which can mean being a
transfer from a smaller group, or being nontempered. We illustrate this in a special case,
taken from Rudnick and Sarnak’s proof.

Let Q be the quadratic form Q(x) = x2
1+x2

2+x2
3−7x2

4. If we let V = {x ∈ R4 : Q(x) = −1},
then V is a two-sheeted hyperboloid and the upper sheet is a model for H3. If we let Γ be
the intersection of O(Q,Z) with the identity component of O(Q,R), then Y = Γ\H3 is a
compact hyperbolic 3-manifold. The distinction result that Rudnick and Sarnak prove is
that if ψ ∈ L2(Y ) is orthogonal to all theta lifts of cusp forms of weight 1 on Γ1(28), then
ψ((2, 1, 1, 1)) = 0. The result then follows from the local Weyl law and a counting argument.
Indeed, the local Weyl law says that the average size of |ψ((2, 1, 1, 1))|2 must be 1. However,
the number of eigenfunctions on X with eigenvalue λ 6 R is roughly R3, while the number
of theta lifts in this range is roughly R2. Because the number of nonvanishing eigenfunctions
is small, their values must be large to make up the right average.

The generalisation of this principle, namely that an automorphic form on SO(n, 1) that is
orthogonal to theta lifts from SL2 must have vanishing SO(n) periods, was used by Donnelly
[4]. It is likely that this could be used to prove Theorem 1.1 on other groups of the form
SO(m,n), U(m,n), or Sp(m,n). Another distinction principle that one could apply is due
to Jacquet [14] (and later refined by Feigon, Lapid, and Offen in [6, 18]), which states that a
form on GL(n,C) with a nonvanishing U(n) period must come from quadratic base change.
See [15] for a general discussion of these ideas.

The proof of power growth for H3 by Milićević [22] does not use distinction, and instead
compares an amplified trace and pre-trace formula. Our proof works by extending this
method to general groups. The main work is in proving asymptotics for the trace formula.
While writing this paper, Erez Lapid pointed out to us that there was another approach
to proving Theorems 1.1 and 1.2 based on a theorem of Sakellaridis on the unramified C∞

spectrum of symmetric varieties. We have included a discussion of this in Section 2. We have
also included an explanation of why the condition of G being nonsplit at v0 is natural, and
motivated our choice of test functions in the trace formula, based on a related conjecture of
Sakellaridis and Venkatesh on the L2 spectrum.

Acknowledgements. We would like to thank Tobias Finis, Erez Lapid, Zeev Rudnick,
Yiannis Sakellaridis, Sug Woo Shin, Nicolas Templier, and Akshay Venkatesh for helpful
conversations during the elaboration of this paper. The first author benefited from many
enlightening discussions with Nicolas Bergeron and Djordje Milićević.

2. Relations with the spectra of symmetric varieties

In this section, we describe how a conjecture of Sakellaridis and Venkatesh on the L2 spec-
trum of symmetric varieties relates to the method we have used in this paper, in particular
our choices of test functions in the trace formula. We also describe an alternative approach
to proving Theorems 1.1 and 1.2 based on a theorem of Sakellaridis on the unramified C∞

spectrum.
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2.1. Symmetric varieties. Let F be a field of characteristic 0. A symmetric variety over
F is a variety X = G/H where G is a reductive F -group, θ is an involution of G over F ,
and H is an open F -subgroup of the fixed point group Gθ. We say that a torus A ⊂ G is
(F, θ)-split if it is F -split and θ acts on it by −1. All maximal (F, θ)-split tori are conjugate
in G, and we define the θ-split rank of G to be their common dimension. We say that G
is θ-split if its θ-split rank is equal to its absolute rank, that is if G contains a (F, θ)-split
maximal torus. We say that G is θ-quasi-split if G contains a Borel subgroup B over F such
that B and θ(B) are opposed. If A is a maximal (F, θ)-split torus in G, G is θ-quasi-split if
and only if ZG(A) is a torus.

2.2. Plancherel measures. We now let F be a p-adic field. We will denote G(F ) by G
etc. in this section. We assume that G is split (and therefore unramified) over F , and let
K be a hyperspecial maximal compact subgroup. We let H be the spherical Hecke algebra

with respect to K. We let Ĝ be the unitary dual of G, and let Ĝsph be the spherical unitary
dual with respect to K. We recall the existence of a Plancherel measure µX associated with
the separable Hilbert space L2(X), viewed as a G-representation; roughly speaking, this is

a measure on Ĝ satisfying

L2(X) =

∫
Ĝ

M(π)⊗ π dµX(π),

where M(π) is some multiplicity space. Notice that µX is only defined up to absolutely
continuous equivalence (we shall only be concerned with its support).

We let ΠH : L1(G)→ L1(X) be given by integration over H. If we let v0 = ΠH(1K), there

is a second measure, the spherical Plancherel measure µsph
X , which satisfies

〈ω · v0, v0〉L2(X) =

∫
Ĝsph

ω̂(ν) dµsph
X (ν)

for all ω ∈ H. In particular, the support of µsph
X is contained in the support of µX . Note

that, here and in Lemma 2.1, ω · v0 denotes the action of ω on v0, given by

ω · v0 =

∫
G

ω(g)(g · v0)dg.

The next lemma shows that µsph
X determines the period of ω along H.

Lemma 2.1. The measure µsph
X satisfies

ΠHω(1) =

∫
Ĝsph

ω̂(ν) dµsph
X (ν)

for any ω ∈ H(G).

Proof. First note that for any ω1, ω2 ∈ H(G), we have

(3) 〈ΠHω1,ΠHω2〉L2(X) =

∫
G

∫
H

ω1(g)ω2(gh)dgdh,
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by unfolding the integral in ΠHω1. We then have

ΠHω(1) =

∫
H

ω(h)dh =

∫
H

∫
K

(ω · 1K)(kh)dhdk

=

∫
G

∫
H

(ω · 1K)(gh)1K(g)dhdg = 〈ΠH(ω · 1K), v0〉L2(X),

where we have used (3). But ΠH(ω ·1K) = ω · v0, by the G-equivariance of the map ΠH . �

2.3. The conjecture of Sakellaridis and Venkatesh. Let A0
X be a maximal (F, θ)-split

torus in G. By [12, Lemma 4.5], our assumption that G is split implies that A0
X is also a

maximal θ-split torus in G×F . This implies that G is θ-(quasi-)split if and only if G×F is.
Let Ǧ be the complex dual group of G. In [28, Section 2.2], Sakellaridis and Venkatesh

define a dual group ǦX , which is a reductive complex algebraic group associated to X, and
a homomorphism ι : ǦX × SL(2,C) → Ǧ whose restriction to ǦX has finite kernel. (Note
that this requires imposing certain conditions on X, which we shall ignore as this section
is purely expository.) In our special case where X is symmetric, and again under technical
assumptions that we shall ignore, ι(ǦX) is equal to the group Ȟ constructed by Nadler in
[23]. (Note that Nadler works over C rather than a p-adic field, but passing to F as in the
remark above allows us to compare the two constructions.) We recall the following facts
about ǦX and ι.

• The rank of ǦX is equal to the θ-split rank of G.
• ι(ǦX) = Ǧ if and only if G is θ-split.
• ι is trivial on the SL(2,C) factor if and only if G is θ-quasi-split.

The first claim is stated in [23, Section 1.1] and proved in Proposition 10.6.1 there, and the
second may be shown by examining the construction in [23, Section 10]. The third follows
from the condition that ι be a distinguished morphism in the sense of [28, Section 2.2].
Indeed, by the comment before Theorem 2.2.3 there, if we define L to be the Levi ZG(A0

X),
then ι is trivial on SL(2,C) if and only if ρL is trivial, i.e. L is a torus. Sakellaridis and
Venkatesh conjecture that the support of µX may be described in terms of the tempered dual
of ǦX and the map ι. They define an X-distinguished Arthur parameter to be a commutative
diagram

ǦX × SL2

ι

$$

LF × SL2

φ⊗Id
88

// Ǧ

where LF is the local Langlands group of F , and φ is a tempered Langlands parameter for
ǦX . This naturally gives rise to an Arthur parameter for Ǧ. We shall say that an Arthur
parameter for Ǧ is X-distinguished if it arises from such a diagram, and likewise for an
X-distinguished Arthur packet.

Conjecture 1 (Sakellaridis-Venkatesh). The support of µX is contained in the Fell closure
of the union of the X-distinguished Arthur packets for Ǧ.

Note that this conjecture has been proved for µsph
X in [27] under certain combinatorial

assumptions. Let us now discuss what Conjecture 1 implies for µsph
X under the assumptions
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that G is θ-split, θ-quasi-split, or neither. We say that µsph
X is strongly tempered if µsph

X 6
Cµsph

G for some C > 0, where µsph
G is the spherical Plancherel measure on G.

• If G is θ-split, then ι(ǦX) = Ǧ and ι is trivial on SL(2,C). Conjecture 1 then implies
that µX is supported on the tempered dual of G. In fact, it may be shown in this
case that µsph

X is strongly tempered.
• If G is θ-quasi-split but not θ-split, ι is still trivial on the SL(2,C) factor. This

implies that µX is still tempered. However, because rank(ǦX) < rank(Ǧ), if we
identify the tempered spherical dual of G with a quotient of a compact torus by the
Weyl group, the support of µsph

X will be contained in a union of lower dimensional

tori. In particular, µsph
X will not be strongly tempered.

• If G is not θ-quasi-split, then all X-distinguished Arthur parameters have nontrivial
SL(2,C) factor. It follows that if ψ is X-distinguished with packet Πψ, and π ∈ Πψ

is spherical, then π must be non-tempered. From Conjecture 1 we deduce that the
same is true for any π in the support of µsph

X .

2.4. The relation to this paper. As mentioned in §1.3, we prove Theorems 1.1 and 1.2
by comparing a trace formula for G with a trace formula for G relative to H. After proving
asymptotics for both, the problem reduces to finding ω in the global Hecke algebra with
the property that ΠH(ωω∗)(1)/(ωω∗)(1) is large. This may in turn be reduced to a local
problem, namely that of finding k ∈ Hv with k(1) = 0, ‖k‖2 = 1, and ΠHk(1) � 1, for v
in a set of places having positive density. Let v be a finite place at which G is split and all
data are unramified. We let µsph

G,v and µsph
X,v denote the spherical Plancherel measures of Gv

and Xv = Gv/Hv. If we rephrase our conditions on k in terms of the Satake transform using
Lemma 2.1, they are equivalent to

(4)

∫
k̂(ν)dµsph

G,v(ν) = 0,

∫
|k̂(ν)|2dµsph

G,v(ν) = 1,

∫
k̂(ν)dµsph

X,v(ν)� 1.

We also note that Gv0 is (quasi-)split over R if and only if Gv0 ×C is θ-(quasi-)split, and by
the comment at the start of Section 2.3 this is equivalent to Gv being θ-(quasi-)split. We
obtain the following consequences of Conjecture 1 for the existence of the required function
k.

• If Gv0 is not quasi-split, µsph
X,v has non-tempered support. The exponential growth

of k̂(ν) away from Ĝsph
v,temp should make it easy (barring unforseen cancellation) to

obtain (4).

• If Gv0 is split, the oscillation of k̂ and the strong temperedness of µsph
X,v should prevent

one from satisfying (4).
• If Gv0 is quasi-split but not split, the existence of k satisfying (4) depends on how

singular µsph
X,v is. By the remarks below, it seems that µsph

X,v is still singular enough to
allow (4) to be satisfied.

In practice, we take a much easier approach to constructing k. In [20], it is shown that
Gv0 being non-split is equivalent to a certain inequality on the roots of G and H. We refer to
this by saying that H is large in G; see Definition 3.1. (Note that the proof of this involves
studying the spectra of symmetric varieties.) It is then straightforward to show that if H is
large in G then a function k of the required type exists; see Section 6.
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2.5. A result of Sakellaridis on the unramified C∞ spectrum. We now describe a C∞

version of the above ideas that we expect would provide an alternative approach to Theorems
1.1 and 1.2 in the case when Gv0 is not quasi-split. We begin by stating a local result, due
to Sakellaridis. As in Section 2.2 we let F be a p-adic field, and assume that G is split over
F .

We again let A0
X be a maximal (F, θ)-split torus of G, and let A be a maximal split torus

containing A0
X . It is θ-stable. We let AX be the quotient A/Aθ, which is also a quotient of

A0
X . Let ǍX and Ǎ be the dual tori, so that we have a map ǍX → Ǎ with finite kernel. In

fact, ǍX is a maximal torus of ǦX , and the map ǍX → Ǎ extends to the map ι : ǦX → Ǧ of
Section 2.3. Let W be the Weyl group of A and Ǎ. Then irreducible admissible unramified
representations of G are in bijection with Ǎ/W , via the map taking π to its Satake parameter.
Let B be a Borel subgroup of G containing A, and let δ denote the modular character of A
with respect to B. One may consider the positive square root δ1/2 as an element of Ǎ. The
following theorem is an immediate consequence of [26, Theorem 1.2.1]; note that the torus
denoted A∗X there is equal to ι(ǍX).

Theorem 2.2. If an irreducible admissible unramified representation π of G occurs as a
subrepresentation of C∞(X), then the Satake parameter of π lies in the image of δ−1/2ι(ǍX)
in Ǎ/W .

It is known that δ1/2 ∈ ι(ǍX) if and only if G is θ-quasi-split. Combined with the above
theorem, this gives the following.

Corollary 2.3. If G is not θ-quasi-split, any irreducible admissible unramified representation
π of G that occurs as a subrepresentation of C∞(X) must be non-tempered.

2.6. Period integrals. We now describe how one might use Corollary 2.3 to prove asymp-
totic lower bounds for periods. The argument is in the same style as that of Rudnick and
Sarnak described in Section 1.3.

Let G/Q be a semisimple group. Assume that G(R) has a Cartan involution θ defined over
Q. If we let H = Gθ, then H(R) is a maximal compact subgroup of G(R). Let Kf =

∏
Kp

be a compact open subgroup of G(Af ), and let K∞ = H(R). Define Y = G(Q)\G(A)/K.
The image of H(A) in Y is a finite number of points, and we shall assume for simplicity
that it is a single point p. Let PH : C∞([G]) → C be the period map f 7→

∫
[H]
fdh. (Here

[G] denotes the usual adelic quotient G(F )\G(A).) When restricted to C∞(Y ), PH is just
evaluation at p.

Suppose that G is not quasi-split over R. If G is split at a finite place v, then passing
between places as before and applying Corollary 2.3 gives that any unramified representation
πv occurring in C∞(Gv/Hv) must be non-tempered.

Let π be a cuspidal automorphic representation of G, and let φ ∈ π be invariant under K.
If PH(φ) 6= 0, this implies that each factor πv admits a non-zero smooth linear functional
invariant under Hv. This is equivalent to the existence of an embedding πv → C∞(Gv/Hv),
so that if v is finite, G splits at v, and all data are unramified, then πv is non-tempered.
The strategy would then be to use the trace formula to show that the number of such φ is
a power smaller than the total number of φ. Combining this with the local Weyl law would
then produce asymptotic growth. Note that this approach does not deal with the case when
G is quasi-split but not split over R, unlike Theorems 1.1 and 1.2.
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2.7. Higher dimensional periods. One advantage of the method described in Section 2.6
is that it applies equally well to periods along positive dimensional submanifolds of Y arising
from rational subgroups. Note that this would produce a result of the form “there are certain
eigenfunctions whose periods are larger than the average by a power of the eigenvalue”, while
determining the size of the average period is a separate problem. It should be pointed out
that the average size of a positive dimensional period should be a negative power of the
eigenvalue, so even if one could improve over this one would not necessarily obtain power
growth of sup norms as a result.

In comparison, the relative trace formula approach we use is more difficult in the positive
dimensional case, because the analysis of the error terms becomes much more complicated.
In the case of a point, one needs to bound the value of a spherical function ϕλ away from
its center of symmetry. In the positive dimensional case, one needs to bound the value of
an oscillatory integral whose kernel is constructed from ϕλ, and which is taken over two
copies of the submanifold in question. Moreover, the bound obtained must be uniform as
the submanifolds move.

3. Notation

3.1. Algebraic groups. Let O denote the ring of integers of F . Let A and Af be the adeles
and finite adeles of F .

Let G and θ be as in Theorems 1.1 and 1.2. Let H again denote the identity component
of the group of fixed points of θ. We let T ⊂ G and TH ⊂ H be maximal tori defined over
F with TH ⊂ T . We fix an F -embedding ρ : G → SLd. We choose an integer D > 1 such
that G, H, T , and TH extend to smooth group schemes over O[1/D], all of whose fibers are
connected reductive. We assume that all the inclusions we have defined over F extend to
inclusions of smooth closed subgroups over O[1/D]. Let Z be the center of G.

Let X∗(T ) and X∗(T ) denote the group of characters and cocharacters of T ×F F . Let ∆
be the set of roots of T in G, and let ∆+ be a choice of positive roots. Let W be the Weyl
group of (G, T ) over F . We define

X+
∗ (T ) = {µ ∈ X∗(T ) : 〈µ, α〉 > 0, α ∈ ∆+}.

Similarly, we may define ∆H ,∆
+
H , WH , and X+

∗ (TH). Letting ρ and ρH denote, as usual, the
half-sum of positive roots for G and H, we introduce the norms

‖µ‖∗ = max
w∈W
〈wµ, ρ〉

‖µ‖∗H = max
w∈WH

〈wµ, ρH〉

on X∗(T ) and X∗(TH) respectively. (Note that these are in fact norms; the condition that
‖µ‖∗ = ‖ − µ‖∗ follows from the fact that ρ and −ρ lie in the same Weyl orbit.)

Definition 3.1. We say that G is H-large if there exists a nonzero µ ∈ X∗(TH) such that

(5) 2‖µ‖∗H > ‖µ‖∗.

It follows from [20, Prop 7.2] that a group G satisfying the hypotheses of Theorem 1.1 is
H-large. Indeed, by that proposition it is equivalent to know that G ×F F is not θ-split.
However, this is equivalent to Gv0 × C not being θ-split, and this is equivalent to Gv0 not
being split over R.

10



3.2. Local fields. If v is a place of F , we denote the completion by Fv. If v is finite, we
denote the ring of integers, uniformiser, and cardinality of the residue field by Ov, πv, and
qv respectively. If v - D∞, we have the following consequences of our assumptions on D and
ρ above.

• We have G(Ov) = ρ−1(ρ(Gv) ∩ SLd(Ov)) and H(Ov) = ρ−1(ρ(Hv) ∩ SLd(Ov)), so
that G(Ov) ∩Hv = H(Ov)
• G(Ov) and H(Ov) are hyperspecial maximal compact subgroups of Gv and Hv re-

spectively.
• If T (and hence TH) split at v, the subgroups G(Ov) and H(Ov) correspond to points

in the Bruhat-Tits buildings of Gv and Hv that lie in the apartments of T and TH
respectively.

We let P be the set of finite places of F that do not divide D and at which T splits. If
v ∈ P , our assumptions imply that Gv has a Cartan decomposition

Gv =
∐

µ∈X+
∗ (T )

G(Ov)µ(πv)G(Ov)

with respect to G(Ov) and T .

3.3. Metrics. For any place v of F and g ∈ G(Fv) let ‖g‖v denote the maximum of the
v-adic norms of the matrix entries of ρ(g). For g ∈ G(Af ), let ‖g‖f =

∏
v-∞ ‖gv‖v. Fix a

left-invariant Riemannian metric on G(Fv0). Let d(·, ·) be the associated distance function.
We define d(x, y) =∞ when x and y are in different connected components of G(Fv0) with
the topology of a real manifold.

3.4. Compact subgroups. We choose a compact subgroup K =
∏

vKv of G(A) such that

• Kv0 = Hv0 ,
• Kv = Gv for all other real places,
• ρ(Kv) ⊂ SLd(Ov) for all finite v,
• Kv = G(Ov) for finite places v - D, and
• Kf =

∏
v-∞Kv is open in G(Af ).

We shall suppose thatKv for v|D is sufficiently small to ensure that the finite group Z(F )∩Kf

is reduced to {e}.
The following lemma implies that the compact subgroup Kv0 = Hv0 is connected in the

real topology; it will then follow, by passing to the Lie algebra, that Kv0 is a maximal
compact connected subgroup of Gv0 .

Lemma 3.2. Let K/R be a Zariski-connected reductive algebraic group such that K(R) is
compact. Then K(R) is connected in the real topology.

Proof. Because K is a connected algebraic group, it is irreducible, and [30, Ch. VII §2.2]
implies that K(C) is a connected Lie group. Now K(R) is a compact subgroup of K(C);
it is therefore contained in some maximal compact subgroup K ′, which must be connected.
However, K ′ and K(R) must have the same Lie algebra, so that K ′ = K(R).

�
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3.5. Measure normalizations. For any place v of F , let µcan
G,v be the canonical measure on

G(Fv) as defined by Gross in [9, Section 11]; we recall this construction in Section 5.2. Then
for all finite places v - D one has µcan

G,v(Kv) = 1. We may then form the product measure
µcan
G =

∏
v µ

can
G,v on G(A). All convolutions (local and global) on G will be defined with respect

to these measures. If f ∈ C∞c (G(A)), we define the operator π(f) on L2(G(F )\G(A)) by

[π(f)φ](x) =

∫
G(A)

φ(xg)f(g)dµcan
G (g).

If f ∈ C∞c (G(A)), we define f ∗ by f ∗(g) = f(g−1), so that π(f) and π(f ∗) are adjoints.
The choice of canonical measure for G is imposed by the use of the Arthur-Selberg trace

formula in Section 5; indeed one wants a uniform way of normalizing measures on the col-
lection of connected reductive groups appearing as centralizers. We can afford to be more
casual with measure normalizations for H, in light of our treatment of the geometric side of
the relative trace formula in Section 4. For finite places v we choose Haar measures dhv on
H(Fv) so that H(Fv)∩Kv is assigned measure 1. Because Hv is compact for archimedean v,
at these places we choose Haar measures dhv so that Hv has volume 1. We set dh = ⊗vdhv.

3.6. Hecke algebras. If S is any set of places prime to D∞, let HS be the convolution
algebra of functions on G(FS) that are compactly supported and bi-invariant under KS. We
identify HS with a subalgebra of C∞c (G(Af )) in the natural way. We define Hf to be HS

with S the set of all places prime to D∞. If G0
∞ denotes the connected component of the

identity in G∞ in the real topology, we define H∞ to be the subspace of C∞c (G0
∞) consisting

of functions that are bi-invariant under K∞, and define H = H∞ ⊗Hf . We will sometimes
denote Hv = H(Gv).

3.7. Lie algebras. Let g be the real Lie algebra of G(F∞), and let g = k+ p be the Cartan
decomposition associated to K∞. Let a ⊂ p be a Cartan subalgebra. We let ∆R be the roots
of a in g, and let ∆+

R be a choice of positive roots. We let WR be the Weyl group of ∆R.
For α ∈ ∆R, we let m(α) denote the dimension of the corresponding root space. We denote
the Killing form on g and g∗ by 〈·, ·〉, and let ‖ · ‖ be the associated norm on a and a∗. For
ξ ∈ a∗, we define

β(ξ) =
∏
α∈∆+

R

(1 + |〈α, ξ〉|)m(α).

3.8. Congruence subgroups and adelic quotients. Fix an integer N > 1 prime to
D. For v - D∞ we write Kv(N) for the level N principal congruence subgroup, given by
Kv(N) = Gv ∩ SLd(Ov)(N), and likewise for H, where SLd(Ov)(N) denotes the principal
congruence subgroup of SLd(Ov).

Then, recalling from §3.4 the choice of compact open subgroup Kv for v | D, we put

K(N) =
∏
v-D∞

Kv(N)
∏
v|D

Kv and KS(N) =
∏
v-D∞
v/∈S

Kv(N)
∏
v|D
v/∈S

Kv.

For every finite v we define KH,v = Hv ∩Kv. Letting

KH =
∏
v-∞

KH,v and KS
H =

∏
v/∈S∪∞

KH,v,

12



then the congruence manifold of interest to us is

YN = G(F )\G(A)/K(N)KHK∞.

Let VolN be the volume assigned by
∏

v-∞ µ
can
G,v to the compact open subgroup K(N)KH . For

convenience, in the following proposition we use the standard notation

[G] = G(F )\G(A) and [H] = H(F )\H(A)

for the automorphic spaces associated with G and H. We shall identity L2(YN) with the
functions in L2([G]) fixed under K(N)KHK∞.

3.9. Hecke-Maass forms. Let D be the algebra of differential operators on G0
∞/K∞ that

are invariant under the left action of G0
∞. Note that if we define K+

v0
to be the group of fixed

points of θ on Gv0 , and let K+
∞ be the group obtained by replacing Kv0 with K+

v0
in K∞, then

K+
∞ is a maximal compact subgroup of G∞, we have G∞/K

+
∞ ' G0

∞/K∞, and the elements
of D are also invariant under the larger group G∞. It follows that D descends to an algebra
of operators on YN in a natural way.

We define a Hecke-Maass form to be a function on YN that is an eigenfunction of the
ring D on YN and the Hecke algebra Hf (and hence of H). If ψ is a Hecke-Maass form
and ω ∈ H, we define ω̂(ψ) by the equation π(ω)ψ = ω̂(ψ)ψ. We define the spectral
parameter of ψ to be the unique ξ ∈ a∗C/WR such that ψ has the same eigenvalues under the
action of D as the associated spherical function ϕξ. The Laplace eigenvalue of ψ is given by
(∆ + C1(G) + 〈ξ, ξ〉)ψ = 0 for some C1(G) ∈ R.

4. The amplified relative trace formula

For ψ ∈ C∞(G(F )\G(A)) we consider the H-automorphic period

PH(ψ) =

∫
H(F )\H(A)

ψ(h)dh.

In this section, we examine the average size of these periods over an orthonormal basis {ψi}
of Hecke-Maass forms for L2(YN).

4.1. Statement and reduction to off-diagonal estimates. Our first task is to define a
certain class of test functions to insert into the relative trace formula.

Let S be a finite set of finite places v of F such that v - D. Let N be a positive integer prime
to S and D and let ξ ∈ a∗. We shall consider test functions of the form φ = 1SN ⊗ kS ⊗ kξ,
for kS ∈ HS and kξ ∈ H∞, where we have put

(6) 1SN = 1KS(N)KS
H
.

We assume that

(PS) : there is R > 1 such that ‖g‖S 6 R for all g ∈ supp(kS),
(P∞) : kξ is supported in {g ∈ G(F∞) : d(g,Hv0) < 1}, and satisfies

kξ(g)� β(ξ)(1 + ‖ξ‖d(g,Hv0))
−1/2.

The resulting formula will be expressed in terms of the averaging map

ΠH : L1(G(FS)) −→ L1(G(FS)/H(FS))
13



given by

ΠHkS(g) =

∫
H(FS)

kS(gh)dh.

Proposition 4.1. There is A > 0 such that the following holds. Let S, N , and ξ be as
above. Let kS ∈ HS satisfy (PS) and kξ ∈ H∞ satisfy (P∞). Then

VolN
∑
i>0

k̂S ⊗ kξ(ψi)|PH(ψi)|2

= vol([H])ΠHkS(1)kξ(1) +O
(
#(supp kS/KS)β(ξ)(1 + ‖ξ‖)−1/4N−1/4RA‖kS‖∞

)
,

where {ψi} runs over an orthonormal basis of Hecke-Maass forms for L2(YN).

Proof. For φ = 1SN ⊗ kS ⊗ kξ we let

K(x, y) =
∑

γ∈G(F )

φ(x−1γy) and KH(x, y) =
∑

γ∈H(F )

φ(x−1γy).

Integrating the spectral expansion

K(x, y) = VolN
∑
i>0

k̂S ⊗ kξ(ψi)ψi(x)ψi(y)

over [H]× [H], we obtain∫
[H]×[H]

K(x, y)dxdy = VolN
∑
i>0

k̂S ⊗ kξ(ψi)|PH(ψi)|2.

On the other hand, by unfolding we have∫
[H]×[H]

KH(x, y)dxdy =

∫
H(A)

k(x)dx = vol([H])ΠHkS(1)kξ(1).

We have used the fact that KS(N)KS
H ∩H(AS) = KS

H and the volume of this is volKS
H = 1.

For the remaining terms, first observe that

#{G(F ) ∩ supp(k)} � #(supp kS/KS),

uniformly in N . Indeed, suppose g, g′ ∈ G(F )∩ supp(k) lie in the same coset in supp kS/KS.
Then g−1

∞ g′∞ lies in a fixed compact set and g−1
f g′f ∈ Kf , so there are finitely many possibilities

for g−1g′. Therefore the map G(F )∩ supp(k)→ supp kS/KS has O(1) fibers. Using this, we
simply estimate ∫

[H]×[H]

∑
γ∈G(F )−H(F )

k(x−1γy)dxdy

with the pointwise bounds of Corollary 4.3. �

4.2. Bounding the off-diagonal contributions. In this section we establish Corollary
4.3, which was used in the proof of Proposition 4.1 above. It is based on the following
Diophantine lemma which shows, roughly speaking, that any γ ∈ G(F ) −H(F ) cannot be
too close to Hv for various v. We shall use the notation introduced in §3.3.

Lemma 4.2. There are A,C > 0 such that the following properties hold for any γ ∈ G(F )−
H(F ):
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(1) d(γ,Hv0) > C‖γ‖−Af ;

(2) if (N,D) = 1 is such that N > C‖γ‖Af , and d(γ,Hv0) < 1, then there is a place v|N
such that γv /∈ K(N)vKH,v.

Proof. We consider H and G as subvarieties of F d2 via the embedding ρ. Let p1, . . . , pk ∈
O[1/D, x1, . . . , xd2 ] be a set of defining polynomials for H that are integral over O[1/D].
Now if γ ∈ G(F )−H(F ) then pi(γ) 6= 0 for some i.

There are A,C1 > 0 such that for all γ ∈ G(F ) one has
∏

v-∞ |pi(γ)|v 6 C1‖γ‖Af . For

γ ∈ G(F )−H(F ) the product formula applied to pi(γ) ∈ F× implies that the archimedean
norms satisfy

∏
v|∞ |pi(γ)|v > ‖γ‖−Af /C1. Because Gv is compact for all v | ∞ other than

v0, |pi(γ)|v is bounded for all such v. But then we have |pi(γ)|v0 > C‖γ‖−Af for some C > 0,
and so d(γ,Hv0) satisfies the same bound. This establishes (1).

As above there are A1, C1 > 0 such that
∏

v-∞N |pi(γ)|v 6 C1‖γ‖A1
f for all γ ∈ G(F ).

Moreover, we have |pi(γ)|v � 1 for v|∞ by our assumption d(γ,Hv0) < 1. Now suppose
γv ∈ K(N)vKH,v for all v|N . Then pi descends to a map Kv/K(N)v → Ov/NOv which is
trivial on KH,v, and so |pi(γ)|v 6 |N |v. It follows that

∏
v|N |pi(γ)|v 6 N−|F :Q|. If N > C‖γ‖Af

for suitable A,C > 0, we obtain a contradiction by again applying the product formula to
pi(γ) ∈ F×. This establishes (2). �

Corollary 4.3. There is A > 0 such that the following holds. Let S, N , and ξ be as in §4.1.
Let kS ∈ HS satisfy (PS) and kξ ∈ H∞ satisfy (P∞). Put φ = 1SN ⊗ kS ⊗ kξ. Then for all
γ ∈ G(F )−H(F ) and all x, y ∈ H(A), we have

φ(x−1γy)� β(ξ)(1 + ‖ξ‖)−1/4N−1/4RA‖kS‖∞.

Proof. Let ΩH ⊂ H(A) be a compact set containing a fundamental domain for [H]. We
assume that ΩH = ΩH,D∞ ×

∏
v-D∞KH,v after possibly enlarging D. Because G(F )−H(F )

is bi-invariant under H(F ), we may assume that x, y ∈ ΩH .
We may also clearly assume that k(x−1γy) 6= 0. It then follows from Property (PS) that
‖x−1γy‖S 6 R; in fact we have ‖x−1γy‖f 6 R, using the condition x−1γy ∈ KS(N)KS

H ⊂
KS. When combined with x, y ∈ ΩH this gives ‖γ‖f � R. We may now apply part (1)
of Lemma 4.2, to find that d(γ,Hv0) � R−A. All together, since x, y ∈ Hv0 , we deduce
that d(x−1γy,Hv0)� R−A. Similarly, from kξ(x

−1γy) 6= 0 and Property (P∞) it follows that
d(x−1γy,Hv0) < 1, and hence d(γ,Hv0)� 1.

Suppose that 1 + ‖ξ‖ > N . We have (kS ⊗ kξ)(x
−1γy) 6 ‖kS‖∞kξ(x−1γy). We then

combine (P∞) with d(x−1γy,Hv0)� R−A to get

kξ(x
−1γy)� β(ξ)(1 + ‖ξ‖d(x−1γy,Hv0))

−1/2

� β(ξ)(1 + ‖ξ‖CR−A)−1/2

� β(ξ)(1 + ‖ξ‖)−1/2RA/2

� β(ξ)(1 + ‖ξ‖)−1/4N−1/4RA/2,

which completes the proof in this case.
Now suppose that 1 + ‖ξ‖ < N . Because ‖γ‖f � R, part (2) of Lemma 4.2 implies

that there are A,C > 0 such that if N > CRA, then there is a place v|N for which γv /∈
K(N)vKH,v. Because x, y ∈ ΩH , we have x, y ∈ KH,v, and so x−1γy /∈ K(N)vKH,v. It
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follows that if N > CRA, then φ(x−1γy) = 0. We may rephrase this as saying that

φ(x−1γy) 6 ‖kSkξ‖∞N−1CRA � ‖kS‖∞β(ξ)N−1CRA,

and the bound N−1 6 N−1/2(1 + ‖ξ‖)−1/2 completes the proof. �

5. The amplified trace formula

In this section we establish a trace formula asymptotic with uniform error term. Our
proof relies crucially on recent work of Shin-Templier [31] on bounding centralizer volumes
and p-adic orbital integrals as well as work of Finis-Lapid [7] bounding intersection vol-
umes of conjugacy classes with congruence subgroups. We must supply our own bounds on
archimedean orbital integrals; these are proven in Sections 7 and 8. Note that in this section,
we can and will relax our condition that Gv0 is R-almost simple to the condition that G is
F -almost simple.

5.1. Statement of main theorem. To control for the degree of Hecke operators in our
estimates, it will be convenient to work with the truncated Hecke algebras H6κT defined in
[31]. Recall the Weyl-invariant norm ‖ · ‖∗ on X∗(T ). Let v be a finite place not dividing
D. Because Gv is unramified, we may let Av be a maximal Fv-split torus in Gv such that
Kv corresponds to a point in the apartment of Av. We may conjugate Av inside T ×F F v

over F v, and obtain a norm ‖ · ‖v on X∗(Av) that is independent of our choice of conjugation
by the Weyl invariance of ‖ · ‖∗. If µ ∈ X∗(Av) we define τ(v, µ) ∈ Hv to be the function

supported on G(Ov)µ(πv)G(Ov) and taking the value q
−‖µ‖v
v there. We then define

H6κv = spanC {τ(v, µ) : µ ∈ X+
∗ (Av), ‖µ‖v 6 κ},

and if T is any finite set of places not dividing D, H6κT = ⊗v∈TH6κv .
If U is any finite set of finite places, we define qU =

∏
v∈U qv.

Theorem 5.1. There are constants A,B, δ, η > 0 such that the following holds. Let T be a
finite set of finite places away from those dividing D and N . Let ξ ∈ a∗. For any kT ∈ H6κT
and any kξ ∈ H∞ satisfying (P∞) we have

VolN
∑
i>0

k̂T ⊗ kξ(ψi) = µcan
G ([G])kT (1)kξ(1) +O(N−δqAκ+B

T β(ξ)(1 + ‖ξ‖)−η‖kT‖∞),

where {ψi} runs over an orthonormal basis of Hecke-Maass forms for L2(YN). The implied
constant depends only on G and the cardinality of T .

5.2. Canonical and Tamagawa measures. If G is a general connected reductive group
over F , Gross [9, (1.5)] attaches to G an Artin-Tate motive

MG =
⊕
d>1

MG,d(1− d)

with coefficients in Q. Here (1− d) denotes the Tate twist. We let ε(MG) be the ε-factor of
this motive, which is given by

ε(MG) = |dF |dimG/2
∏
d>1

NF/Q(f(MG,d))
d−1/2,
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where f(MG,d) denotes the conductor of the Artin motive MG,d (see [9, (9.8)]). We let
L(M∨

Gv
(1)) denote the L-function of the local motive M∨

Gv
(1), and L(M∨

G(1)) and Λ(M∨
G(1))

denote the finite and completed L-functions of M∨
G(1). Then L(M∨

Gv
(1)) is a positive real

number, and L(M∨
G(1)) and Λ(M∨

G(1)) are finite if Z(G) does not contain an F -split torus
(see [9, Proposition 9.4]). From now on we shall assume that G satifies this condition.

In [9, §11] Gross defines a canonical measure |ωGv | on Gv at any place of F . We define
µcan
G,v = L(M∨

Gv
(1)) · |ωGv | as in [9]. When v is finite and G is unramified at v, µcan

G,v assigns
volume 1 to a hyperspecial subgroup of G(Fv), and so we can define the measure µcan

G =∏
v µ

can
G,v on G(A).

Now let ω be a nonzero differential form of top degree on G defined over F . For each v,
one may associate to ω a Haar measure |ω|v on G(Fv). For almost all v, L(M∨

Gv
(1)) · |ω|v

assigns volume 1 to a hyperspecial subgroup of G(Fv). Let µTam
G be the Tamagawa measure

on G(A), which is defined by

µTam
G = Λ(M∨

G(1))−1|dF |− dimG/2
⊗
v

L(M∨
Gv(1))|ω|v

(see [9, (10.2)]) and satisfies

µTam
G (G(F )\G(A)) = |π0(Z(Ĝ)Γ)|| ker1(F,Z(Ĝ))|−1.

The comparison between µcan
G and µTam

G is given by [9, Theorem 11.5],

(7)
µcan
G

µTam
G

= ε(MG)Λ(M∨
G(1)).

5.3. The trace formula. The trace formula is a distributional identity

Ispec(φ, µ
can
G ) = Igeom(φ, µcan

G ),

for φ ∈ C∞c (G(A)). More precisely,

Ispec(φ, µ
can
G ) =

∑
π

m(π)tr(π(φ)),

where π runs over all irreducible subrepresentations of L2(G(F )\G(A)) occuring with mul-
tiplicity m(π), and

Igeom(φ, µcan
G ) =

∑
{γ}

µcan
Iγ

(Iγ(F )\Iγ(A))

|Gγ : Iγ|
Oγ(φ),

where {γ} runs over all G(F )-conjugacy classes, Gγ is the centraliser of γ in G, Iγ is the
connected component of Gγ, and

Oγ(φ) =

∫
Iγ(A)\G(A)

φ(x−1γx)dµγ(x).

The measure µγ above denotes the quotient measure dµcan
G /dµcan

Iγ
.

We shall bound the terms in Igeom(φ, µcan
G ) using the Weyl discriminant. For any v and

γ ∈ Gv, this is defined by

Dv(γ) = | det(1− Ad(γ)|gv/gv,γ )|v,
where gv,γ denotes the centraliser of γ in gv. If S is any set of places and γ ∈ G(F ), we
define DS(γ) =

∏
v∈S Dv(γ) and DS(γ) =

∏
v/∈S Dv(γ).
17



5.4. Bounding volumes. We again let G denote a group satisfying the conditions of The-
orem 1.1. Throughout this rest of this section, A,B and C will denote sufficiently large
positive constants that may vary from line to line, and will never depend on a choice of place
of F .

In preparation for the following result, we introduce some additional notation. Given
κ > 0 and a finite set of finite places T , we write U6κT for the open compact subset suppH6κT .
Furthermore, we denote by C6κT the set of G(F )-conjugacy classes of elements in G(F )−Z(F )
whose G(A)-conjugacy classes have non empty intersection with KT · U6κT ·G(F∞).

Proposition 5.2. There exist A,B > 0 such that for any κ > 0, any finite set of finite
places T away D, and any {γ} ∈ C6κT , we have

µcan
Iγ (Iγ(F )\Iγ(A))� qAκ+B

T .

The implied constant depends only on G.

Proof. Let SD denote the set of places dividing D. Put Sγ = {v /∈ SD ∪∞ : Dv(γ) 6= 1}. We
begin by noting that for any γ ∈ G(F ) we have

(8) µcan
Iγ (Iγ(F )\Iγ(A))� qBSγ ,

where the implied constant depends only on G. Indeed, from the proof of [31, Corollary
6.16] we have

ε(MIγ )L(M∨
Iγ (1))�

∏
v∈Ram(Iγ)

qBv � qBSγ ,

where Ram(Iγ) is the set of finite places where Iγ is ramified. Note that the last bound
follows from the inclusion Ram(Iγ) ⊂ SD ∪ Sγ. Moreover, from the definition of the local
archimedean factors in (7.1) and (7.2) of [9], combined with [31, Proposition 6.3], we find
that L∞(M∨

Iγ
(1)) � 1, the implied constant depending only on G. Finally, Corollary 8.12

and Lemma 8.13 of [31] imply µTam
Iγ

(Iγ(F )\Iγ(A))� 1. By combining these estimates with

(7) we obtain (8).
Now for {γ} ∈ C6κT we have

Dv(γ) 6


qAκ+B
v , for v ∈ T,
C, for v | ∞,
1, for v /∈ T ∪∞.

From this and the product formula we deduce that

(9) 1 =
∏
v∈T

Dv(γ)
∏

v∈SD∪∞

Dv(γ)
∏

v∈Sγ ,v /∈T

Dv(γ)� qAκ+B
T q−1

Sγ
,

since Dv(γ) 6 q−1
v for every v ∈ Sγ. Inserting this into (8) gives the proposition. �

5.5. Bounding adelic orbital integrals. Let T be a finite set of places away from those
dividing N , D, and ∞. Recall the definition of 1TN from (6). Let ξ ∈ a∗. For kT ∈ H6κT and
kξ ∈ H∞ satisfying (P∞) we put

φ = 1TN ⊗ kT ⊗ kξ.
We now look at Oγ(φ).
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Proposition 5.3. There are constants A,B, δ, η > 0 such that

Oγ(φ)� N−δβ(ξ)(1 + ‖ξ‖)−ηqAκ+B
T ‖kT‖∞

for every γ ∈ G(F )− Z(F ). The implied constant depends only on G.

Proof. Note that we may write kT as a sum of at most qAκ+B
T pure tensors in H6κT , whose

sup norms are all bounded by ‖kT‖∞. We shall therefore assume that kT , and hence φ,
is a pure tensor product. This assumption implies that the orbital integral factorizes as
Oγ(φ) =

∏
v Oγ(φv), where for any γv ∈ G(Fv) we have

Oγv(φv) =

∫
Iγv (Fv)\G(Fv)

φv(x
−1
v γvxv)dµγ,v(xv)

and µγ,v = µcan
G,v/µ

can
Iγv ,v

. It therefore suffices to work place by place.

In [31, Theorems 7.3 and B.1] it is shown that

Oγ(kT )� qAκ+B
T DT (γ)−C‖kT‖∞.

We may prove the following bound for the integral at infinity using the resuts of Section 7.

Lemma 5.4. We have the bound

Oγ(kξ)� β(ξ)(1 + ‖ξ‖)−ηD∞(γ)−C .

Proof. Let Gcpt and Gcpt,v0 be the groups associated to G∞ and Gv0 in Section 7.2. We begin
by showing that, as a consequence of Proposition 7.4, the following statement holds. Let
0 < η < min(η0, 1/2), and let kξ ∈ H∞ satisfy property (P∞). Then

(10) Oγ(kξ)� β(ξ)(1 + ‖ξ‖)−ηD∞(γ)−A

for every semisimple γ ∈ G∞ −Gcpt.
To see how (10) follows from Proposition 7.4, first note that for any non-negative f ∈

C∞c (G∞) such that f(1) = 1 on the support of kξ, we have

kξ(g)� β(ξ)(1 + ‖ξ‖d(g,Hv0))
−1/2f(g)

6 β(ξ)(1 + ‖ξ‖d(g,Hv0))
−ηf(g)

� β(ξ)(1 + ‖ξ‖)−ηd(g,Hv0)
−ηf(g).

Thus

Oγ(kξ)� β(ξ)(1 + ‖ξ‖)−ηOγ(fd(g,Hv0))
−η),

to which we may apply (22). Indeed, since Z is finite, the function ‖X(g)‖ used there satisfies
‖X(g)‖ � d(g,Hv0).

The proof of Lemma 5.4 then follows from (10) once we have verified that a non-central
element γ ∈ G(F ) cannot lie in Gcpt. Because G∞ =

∏
v|∞Gv, we have Gcpt = Gcpt,v0 ×∏

v 6=v0 Gv, and so it suffices to verify that γv0 /∈ Gcpt,v0 .
In the case at hand, Gcpt,v0 is a compact normal subgroup of Gv0 ; this is the content of

Lemma 7.2. If we let H+ be the fixed point set of θ in G (we write H+ to distinguish it
from its identity component H), then H+

v0
is a maximal compact subgroup of Gv0 , and so we
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have Gcpt,v0 ⊂ gH+
v0
g−1 for all g ∈ Gv0 . Thus, if γv0 ∈ Gcpt,v0 , we have γ ∈ gH+(F )g−1 for

all g ∈ G(F ). The group ⋂
g∈G(F )

gH+(F )g−1

is a proper normal F -subgroup of G, and so (using the assumption that G is F -almost
simple) it must be contained in Z(G). We therefore have γ ∈ Z(F ), a contradiction. �

It remains then to address the size of the orbital integral at finite places away from T . We
claim that

(11) Oγ(1
T
N)� N−δqAκ+B

T DT∞(γ)−C .

Taken together (and using the product rule for the product of Weyl discriminants), the above
estimates imply the proposition.

Recall the sets SD and Sγ from the proof of Proposition 5.2. Let SN denote the set of
places dividing N . We are free to take γ ∈ C6κT , for otherwise the orbital integral vanishes.

• If v /∈ SD ∪ SN ∪ Sγ ∪ T ∪∞, then Kv(N)KHv = Kv and we have Oγ(1Kv) = 1; see, for
example, [16, Corollary 7.3].

• If v ∈ SD, then Kv(N)KHv = KvKHv and a general bound of Kottwitz [31, Theorem A.1]
establishes that Oγ(1KvKHv )�v Dv(γ)−1/2.

• If v ∈ SN ∪ Sγ, v /∈ T , we argue as follows.
We begin by estimating the orbital integrals at places v ∈ SN , for which we will use as a

critical input the work of Finis-Lapid [7]. As the setting of [7] is that of Q-groups, we shall
need to restrict scalars from F to Q to properly invoke their results. We thus let p denote
the rational prime over which v lies, and we note that all places lying over p belong to SN .
We set Kp =

∏
v|pKv, and Kp(N)KH,p =

∏
v|pKv(N)KH,v. Factorize N =

∏
p|N p

np and put
Np = pnp .

Let µcan
G,p (resp., µcan

Iγ ,p
) be the product measure on Gp =

∏
v|pGv (resp., Iγ,p =

∏
v|p Iγ,v).

Write Cγ,Gp for the Gp-conjugacy class of γ. Letting µγ,p = µcan
G,p/µ

can
Iγ ,p

be the natural measure
on Cγ,Gp , we have

Oγ(1Kp(N)KHp
) = µγ,p(Cγ,Gp ∩Kp(N)KHp).

Now Cγ,Gp is closed since γ is semi-simple. We may therefore break up the compact in-
tersection Cγ,Gp ∩ Kp(N)KHp into a finite number of (open) Kp-conjugacy classes meeting
Kp(N)KHp . Choose representatives xi ∈ Kp for these, and let Cxi,Kp denote the correspond-
ing Kp-conjugacy class. Then Cγ,Gp ∩Kp(N)KHp =

∐
Cxi,Kp and we get

Oγ(1Kp(N)KHp
) =

∑
i

µγ,p(Cxi,Kp ∩Kp(N)KH,p).

Note that for any open compact subgroup K ′p of Gp, and any x ∈ Kp, we have

µγ,p(Cx,Kp ∩K ′p) =
µcan
G,p(k ∈ Kp : k−1xk ∈ K ′p)

µcan
Iγ ,p

(Ix,p ∩Kp)
.

We deduce from this, and the fact that µcan
G,v(Kv) = 1 for all v /∈ SD ∪∞, that

µγ,p(Cx,Kp ∩K ′p)
µγ,p(Cx,Kp)

= µcan
G,p(k ∈ Kp : k−1xk ∈ K ′p).
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One can deduce from Propositions 5.10 and 5.11 in [7] (see Remark 5.5 below) that there
are constants ε, δ > 0 (independent of p) such that for x ∈ Kp with Dp(x) > N−εp one has

(12) µcan
G,p(k ∈ Kp : k−1xk ∈ Kp(N)KH,p)�G,ρ N

−δ
p .

(Here �G,ρ means that, in particular, the implied constant is independent of p.) On the
other hand

∑
i µγ,p(Cxi,Kp) = µγ,p(Cγ,Gp ∩Kp) = Oγ(1Kp). Noting that Dp(γ) = Dp(xi) for

all i, we deduce that for Dp(γ) > N−εp we have

(13) Oγ(1Kp(N)KHp
)�G,ρ N

−δ
p

∑
i

µγ,p(Cxi,Kp) = N−δp Oγ(1Kp).

In the remaining range Dp(γ) 6 N−εp , we have

Oγ(1Kp(N)KHp
) 6 N−δp Dp(γ)−δ/εOγ(1Kp).

We now return to the product of orbital integrals over all v ∈ SN ∪ Sγ, v /∈ T . Recalling
that Oγ(1Kv) = 1 for v /∈ Sγ, we have just shown∏

v∈SN

Oγ(1Kv(N)KHv
)
∏
v∈Sγ

v/∈SN∪T

Oγ(1Kv)� N−δDSN (γ)−C
∏
v∈Sγ
v/∈T

Oγ(1Kv),

since Dv(γ) 6 1 for all v /∈ T ∪∞ (and we shrink δ to absorb the implied constant in (13)).
For v ∈ Sγ we again apply [31, Theorems 7.3 and B.1] to get Oγ(1Kv) 6 qBv Dv(γ)−C . Since
{γ} ∈ C6κT we may invoke (9) to obtain∏

v∈Sγ
v/∈T

Oγ(1Kv)�
∏
v∈Sγ
v/∈T

qBv Dv(γ)−C � DSγ−T (γ)−C
∏
v∈Sγ

qBv � qAκ+B
T DSγ−T (γ)−C .

Putting these estimates together completes the proof of (11) and hence the proposition. �

Remark 5.5. We make a few remarks on the various bounds we have imported into the above
proof.

As the authors point out in [31, Remark 7.4], the bound [31, Theorems 7.3 and B.1] is
uniform in the place v /∈ SD whereas the bound [31, Theorem A.1] of Kottwitz applies to
v ∈ SD but it not uniform in v. As we allow the implied constant in Proposition 5.3 to
depend on the group, this non-uniformity is not an issue.

We now explain how to extract from Propositions 5.10 and 5.11 of [7] the bound we stated
in (12). In what follows, we simplify notation by writing K ′p for Kp(N)KH,p. We recall that
N =

∏
p|N p

np and that x is taken to lie in Kp.

•We first remark that we may assume that x lies inK ′p, for if there is no such representative
then the left-hand side of (12) is zero. We then have

µcan
G,p(k ∈ Kp : k−1xk ∈ K ′p) = µcan

G,p(k ∈ Kp : [k, x] ∈ K ′p).
If we let φK′p(x) be as in [7, Definition 5.1], then

µcan
G,p(k ∈ Kp : [k, x] ∈ K ′p)�G,ρ φK′p(x).

(Note that the two expressions are not necessarily equal because of the passage to Gad in
[7]).
• Define λp(x) as in [7, Definition 5.2]. We claim that one can deduce from Propositions

5.10 and 5.11 of [7] that for every ε > 0 small enough there is δ > 0 such that if λp(x) < εnp
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then φK′p(x)�G,ρ p
−δnp . The argument is already present in [7, §5.2] in the deduction of the

global result [7, Theorem 5.3] from these two local results.
From [7, Proposition 5.11] it follows that there are positive constants a, b > 0 and c > 0

(depending on G and ρ) such that φK′p(x) 6 pa(c+λp(x)−bnp). The presence of the constant c

renders this bound useless for small np. Taking ε small enough to satisfy 0 < ε < (c+ 1)−1b,
we shall apply this bound only in the range np > ε−1; we obtain φK′p(x) 6 p−a(b−ε(c+1))np . In

the remaining range np 6 ε−1 we see that λp(x) < 1 so that in fact λp(x) = 0. In this case [7,
Proposition 5.10] ensures1 that φK′p(x)�G,ρ p

−1 6 p−εnp . Taking δ = min{ε, a(b− ε(c+1))},
we establish the claim.
• It remains to show that if Dp(x) > p−εnp then λp(x) < εnp. To see this, we may assume

that x is semisimple. Write x = (xv)v|p. As a point of reference, note that for x ∈ Kp we
have λp(x) > 0, and Dv(xv) 6 1 for all xv ∈ Kv. Now if λp(x) > εnp then there is some
v | p and some eigenvalue of 1 − Ad(xv)|g/gxv with v-adic valuation at least evεnp, where ev
is the ramification index of Fv over Qp. (As these eigenvalues may not lie in Fv, we extend
the valuation on Fv to the field containing the eigenvalue in such a way that restricting to
Fv gives the original valuation.) This then implies that Dv(xv) 6 |$v|evεnpv = p−εnp , so that
Dp(x) 6 p−εnp .

5.6. Proof of Theorem 5.1. We retain the notation for the test function φ from §5.5 and
for the set C6κT from §5.4. Then

Ispec(φ, µ
can
G ) = VolN

∑
i>0

k̂T ⊗ kξ(ψi),

the sum ranging over an orthonormal basis of Hecke-Maass forms for YN , and

Igeom(φ, µcan
G ) = µcan

G ([G])kT (1)kξ(1) +
∑
{γ}∈C6κT

µcan
Iγ

(Iγ(F )\Iγ(A))

|Gγ : Iγ|
Oγ(φ).

Here we have used the hypothesis on Kf from §3.5 that Z(F ) ∩ Kf = {e}. Now by [31,
Corollary 8.10] we have |C6κT | � qAκ+B

T . From this and Propositions 5.2 and 5.3 we find

Igeom(φ, µcan
G ) = µcan

G ([G])kT (1)kξ(1) +O(qAκ+B
T N−δβ(ξ)(1 + ‖ξ‖)−η‖kT‖∞),

as desired. This completes the proof of Theorem 5.1.

6. Comparison of trace formulae and the proof of Theorem 1.2

In this section we prove our main result, Theorem 1.2. The argument is based on a
comparison of the trace formulae described in the preceding two sections. For this, we must
choose test functions kξ ∈ H∞ and kS ∈ HS to insert into Proposition 4.1 and Theorem 5.1
and explicate the error terms in those results.

1Note that [7, Proposition 5.10] assumes that G is simply connected. As was pointed out to us by Finis
and Lapid, this assumption can be dropped for those subgroups K ′

p not containing the intersection of Kp

with G+
p . (The statement of [7, Proposition 5.10] provides bounds on φK′

p
(x) for every proper subgroup K ′

p

of Kp.) Here, G+
p denotes the image in Gp of the Qp-points of the simply connected cover of Gp. That our

subgroups K ′
p = Kp(N)KH,p satisfy this condition (for p large enough with respect to G and F ) can be seen

from comparing indices. The subgroups Kp(N)KH,p have indices growing like a power of p, whereas those
containing Kp ∩G+

p are of index bounded in terms of G and F .
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6.1. The archimedean test function. Let G0
∞ denote the connected component of the

identity in G∞ in the real topology. If µ ∈ a∗C, we define ϕµ to be the corresponding spherical
function on G0

∞. If k∞ ∈ C∞c (G0
∞), we define its Harish-Chandra transform by

k̂∞(µ) =

∫
G∞

k∞(g)ϕ−µ(g)dµcan
G,∞(g).

We shall choose kξ so that its spherical transform concentrates around ξ ∈ a∗. For this
we first take a function h0 ∈ C∞(a∗) of Paley-Wiener type that is real, nonnegative, and
satisfies h0(0) = 1. Let

hξ(ν) =
∑
w∈WR

h0(wν − ξ),

and let kξ be the bi-K∞-invariant function on G0
∞ satisfying k̂ξ = hξ. Note that k̂ξ(ξ) =

hξ(ξ) > 1.

Lemma 6.1. The function kξ satisfies property (P∞).

Proof. Note that kξ is of compact support independent of ξ from the Paley-Wiener theorem
of [8]; we may thus take h0 so that the support of kξ lies in {g ∈ G(F∞) : d(g,Hv0) < 1} for
all ξ.

If kξ is bi-invariant under K∞, we have the inversion formula

kξ(g) =
1

|W |

∫
a∗
k̂ξ(µ)ϕµ(g)|c(µ)|−2dµ,

where c(µ) is Harish-Chandra’s c-function; see [11, Ch. II §3.3]. We can now quote either
Theorem 2 of [2] or Proposition 7.2 of [21], and apply our conditions on G∞, to find

(14) ϕµ(x)�C (1 + ‖µ‖d(x,K∞))−1/2,

for µ ∈ a∗ and x in a compact set C ⊂ G∞. By inverting the Harish-Chandra transform and
applying (14) as in Lemma 2.7 of [20], it follows that

kξ(x)� β(ξ)(1 + ‖ξ‖d(x,K∞))−1/2,

whence the claim. �

6.2. The S-adic test function. Recall from Section 3.2 that P denotes the set of finite
places of F that do not divide D and at which T splits. For v ∈ P and µ ∈ X∗(T ), we define

τ(v, µ) ∈ Hv to be the function supported on G(Ov)µ(πv)G(Ov) and taking the value q
−‖µ‖∗
v

there. (Note that this is compatible with the conventions of the first paragraphs of Section
5 if we choose Av = Tv there.) Let P be a positive integer and put

(15) S = {v ∈ P : P/2 6 qv < P}.
To define a test function at places in S, choose any non-zero ν ∈ X∗(T ), and let

(16) ωS =
∑
v∈S

τ(v, ν),

where, as in §3.6, we are identifying Hv with a subalgebra of HS in the natural way. The
parameter P and the cocharacter ν will be chosen later in §6.3. Then define kS = ωSω

∗
S ∈ HS.

Lemma 6.2. The following properties hold for the above function kS.
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(a) There is B > 0 such that ‖g‖S � PB for all g ∈ supp(kS).

(b) We have ‖kS‖∞ � P .

(c) There is C > 0 such that #(supp kS/KS)� PC.

The exponents B and C depend on the underlying choice of ν in the definition of kS. All
implied constants depend on G and ν.

Proof. (a) It may be shown as in [20, Lemma 2.4] that there is B > 0 such that for all v ∈ P
and all g in the support of τ(v, ν) one has ‖g‖v � qBv . From this one easily deduces that ωS
satisfies the first property. As supports add under convolution, the same holds for kS.

(b) We note that

(17) kS =
∑
v∈S

τ(v, ν)τ(v, ν)∗ +
∑
v,w∈S
v 6=w

τ(v, ν)τ(w, ν)∗.

The bound is clear for the second sum, because the terms satisfy ‖τ(v, ν)τ(w, ν)∗‖∞ 6 1 and
the supports of the terms are disjoint. For the first sum, we have

‖τ(v, ν)τ(v, ν)∗‖∞ 6 ‖τ(v, ν)‖2
2,

and ‖τ(v, ν)‖2 � 1 follows from #(Kvν(πv)Kv)/Kv ∼ q
2‖ν‖∗
v .

(c) We may write the first sum in (17) as a linear combination of τ(v, µ) with µ lying in a
finite set depending on ν. The bound now follows from the asymptotic #(Kvµ(πv)Kv)/Kv ∼
q

2‖µ‖∗
v . The second sum may be treated similarly. �

6.3. Proof of Theorem 1.2. We are now in a position to prove Theorem 1.2.
We first note that kξ(1) � β(ξ), where kξ is defined as in §6.1. Moreover, β(ξ) is bounded

above (and below) by a power of (1 + ‖ξ‖).
We borrow the constructions from §6.2. Namely, we take S as in (15) (for a parameter P

to be chosen later) and ωS ∈ HS as in (16) (relative to a cocharacter ν ∈ X∗(T ) to be chosen
in Lemma 6.4).

We now apply Proposition 4.1 with test functions kSkξ, where kS = ωSω
∗
S. Moreover, for

every pair v, w ∈ S we put T = {v, w} and apply Theorem 5.1 with test function kTkξ where
kT = τ(v, ν)τ(w, ν)∗; we then sum over such pairs v, w. As a result, we deduce the existence
of constants A > 2 (depending on ν) and δ > 0 such that

(18) VolN
∑
i>0

|ω̂S(ψi)|2hξ(ξi) � ωSω
∗
S(1)β(ξ) +O(PAN−δβ(ξ)(1 + ‖ξ‖)−δ)

and

(19) VolN
∑
i>0

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi) � ΠHωSω
∗
S(1)β(ξ) +O(PAN−δβ(ξ)(1 + ‖ξ‖)−δ).

The error term in (18) was obtained by observing that τ(v, ν)τ(w, ν)∗ ∈ H6κT , for some κ
depending only on ν, and qT = qvqw < P 2, so that qAκ+B

T is bounded by a power of P ; we
must also insert the L∞ norm estimate for kT coming from the proof of Lemma 6.2. The error
term in (19) was obtained by taking B as in Lemma 6.2 and setting R = PB in condition
(PS), and inserting the L∞ norm estimate of Lemma 6.2. It remains then to explicate the
size of ΠHωSω

∗
S(1) and ωSω

∗
S(1) (upon taking an appropriate ν), truncate the spectral sums,
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and choose the length of the amplifier P in terms of N and ‖ξ‖. We continue to use the
convention that the values of the exponents A, δ > 0 can vary from line to line.

We first examine (19). We begin by truncating the spectral sum about ξ.

Lemma 6.3. For any Q > 1 the left-hand side of (19) can be written as

VolN
∑

‖ξi−ξ‖6Q

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi)

+OM(ΠHωSω
∗
S(1)β(ξ)Q−M) +O(PAN−δβ(ξ)(1 + ‖ξ‖)−δ).

Proof. Break the region in the positive chamber a∗+ defined by ‖µ−ξ‖ > Q into an overlapping
union of O(1)-balls B(µn) centered at points µn ∈ a∗. On each ball we apply the rapid decay
estimate hξ(µ)�M ‖µ− ξ‖−M to obtain∑

ξi∈B(µn)

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi)�M ‖µn − ξ‖−M
∑

ξi∈B(µn)

|ω̂S(ψi)|2|PH(ψi)|2.

We may use (19) with the test function hµn together with the positivity of the spectral terms
to show that∑

ξi∈B(µn)

|ω̂S(ψi)|2|PH(ψi)|2 � ΠHωSω
∗
S(1)β(µn) + PAβ(µn)(1 + ‖µn‖)−δN−δ.

Summing over n we obtain

∑
‖ξi−ξ‖>Q

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi)�M ΠHωSω
∗
S(1)

∑
n

‖µn − ξ‖−Mβ(µn)

+ PAN−δ
∑
n

‖µn − ξ‖−M(1 + ‖µn‖)−δβ(µn).

From β(µn)� ‖µn−ξ‖kβ(ξ), where k is the number of roots of G counted with multiplicity,
we may simplify this to

∑
‖ξi−ξ‖>Q

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi)�M ΠHωSω
∗
S(1)β(ξ)

∑
n

‖µn − ξ‖−M

+ β(ξ)PAN−δ
∑
n

‖µn − ξ‖−M(1 + ‖µn‖)−δ.

The first sum is�M Q−M . We bound the second sum by breaking it into ‖µn‖ 6 ‖ξ‖/2 and
the complement. The first sum is � (1 + ‖ξ‖)−M , and the second is � Q−M(1 + ‖ξ‖)−δ.
Both of these are dominated by (1 + ‖ξ‖)−δ, which gives

∑
‖ξi−ξ‖>Q

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi)�M ΠHωSω
∗
S(1)β(ξ)Q−M + PAN−δβ(ξ)(1 + ‖ξ‖)−δ,

as desired. �
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We combine Lemma 6.3 (taking any M > 0 and large enough Q) and (19) to obtain

VolN
∑

‖ξi−ξ‖6Q

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi) � ΠHωSω
∗
S(1)β(ξ) +O(PAN−δβ(ξ)(1 + ‖ξ‖)−δ).

We now make use of the critical assumption that G is H-large to bound from below the
right hand side.

Lemma 6.4. If ν ∈ X∗(TH) satisfies (5) then ΠHωSω
∗
S(1)�ε P

2−ε.

Proof. Note that for any v ∈ P and ν ∈ X∗(TH) we have

q‖ν‖
∗

v

∫
Hv

τ(v, ν)(x)dx = vol(Hv ∩Kvν(πv)Kv) > vol(KH,vν(πv)KH,v)� q
2‖ν‖∗H
v ,

where we have used our assumption that T , and hence TH , are split at v. If ν ∈ X∗(T ) satisfies
(5), then so does −ν, and applying the above bound with ±ν, we get

∫
H(FT )

τ(v, ν)τ(w, ν)∗ �
1 if v 6= w. Summing over v, w ∈ S yields the claim. �

We deduce from the above lemma that for such a choice of ν we have

VolN
∑

‖ξi−ξ‖6Q

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi)�ε P
2−εβ(ξ)(1 +O(PAN−δ(1 + ‖ξ‖)−δ)).

We now treat (18). Lemma 6.2 (b) gives ωSω
∗
S(1) � P . By positivity we may truncate

the spectral sum to obtain the upper bound

VolN
∑

‖ξi−ξ‖6Q

|ω̂S(ψi)|2hξ(ξi)� Pβ(ξ)(1 + PAN−δ(1 + ‖ξ‖)−δ).

Choosing P to be a small power of (1 + ‖ξ‖)N , we find δ > 0 such that

(20) VolN
∑

‖ξi−ξ‖6Q

|ω̂S(ψi)|2hξ(ξi)� β(ξ)(1 + ‖ξ‖)δN δ

and

(21) VolN
∑

‖ξi−ξ‖6Q

|ω̂S(ψi)|2|PH(ψi)|2hξ(ξi)�ε β(ξ)(1 + ‖ξ‖)2δ−εN2δ−ε.

Comparing (20) and (21) we find that there is δ > 0 and Q > 1 such that for every ξ ∈ a∗

and every N there is a Hecke-Maass form ψi on YN with spectral parameter ‖ξi − ξ‖ 6 Q
and satisfying |PH(ψi)| � (1 + ‖ξi‖)δN δ. This implies the same lower bound on ‖ψi‖∞, and
in particular proves Theorem 1.1.

It remains to refine this power growth to obtain the stated lower bounds of Theorem 1.2.
For this, we will make a special choice of orthonormal basis of Hecke-Maass forms for L2(YN).
First recall that we have a Hilbert direct sum decomposition

L2(YN) =
⊕
π

m(π)πK(N)KHK∞ ,

the sum ranging over irreducible representations of G0
∞ × G(Af ) in L2(G(F )\G(A)) with

πK(N)KHK∞ 6= 0, each occuring with multiplicity m(π). Each π gives rise to a spectral
datum cπ (as defined in the paragraph preceding Theorem 1.2), and this assignment π 7→ cπ
is finite to one. Given a spectral datum c for (G,N), the space V (N, c) is the direct sum of
m(π)πK(N)KHK∞ over all π in the fiber over c.
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Let {ci} be an enumeration of the spectral data, and for each ci write Vi = V (N, ci) and
ξi = ξ(ci). The automorphic period PH defines a linear functional on each finite dimensional
vector space Vi, and its kernel is of codimension at most 1. If the kernel is codimension 1
we let φi ∈ Vi be a unit normal to it, and otherwise choose φi ∈ Vi to be an arbitrary unit
vector. We may complete this set of vectors to an orthonormal basis of Hecke-Maass forms
for L2(YN), to which we apply (20) and (21). Since H acts as a scalar on Vi we may write
the left-hand side of (20) as

VolN
∑
ci

‖ξi−ξ‖6Q

|ω̂S(φi)|2hξ(ξi) dimVi,

and the left-hand side of (21) as

VolN
∑
ci

‖ξi−ξ‖6Q

|ω̂S(φi)|2|PH(φi)|2hξ(ξi).

We obtain Theorem 1.2 by comparing the right-hand sides of (20) and (21) as before. �

7. Bounds for real orbital integrals

The aim of this section is to the establish uniform bounds on real orbital integrals that
were used in the proof of the global bounds of Proposition 5.3.

7.1. Notation. We adopt the following notation in this section.

• G is a (Zariski-) connected reductive group over R with real Lie algebra g.
• θ is a Cartan involution of G
• K is the fixed point set of θ, so that K is a maximal compact subgroup of G.
• g = p + k is the Cartan decomposition associated to θ.
• A and AG are maximal split tori in G and Z(G) respectively. We assume that θ acts

by −1 on A and AG.
• A0 is the connected component of A in the real topology.
• a and aG are the Lie algebras of A and AG.
• W = NG(A)/ZG(A) is the Weyl group.
• a+ is a choice of open Weyl chamber in a.

For a semisimple element γ ∈ G let Gγ be its centralizer. The Lie algebra of Gγ is denoted
by gγ. By [17, Thm 7.39], G has a Cartan decomposition G = KA0K, and any g ∈ G may
be written as g = k1e

Hk2 for a unique H ∈ a+. We use this to define a map X : G→ a+ by
g ∈ KeX(g)K. Let ‖ · ‖ be the norm on a/aG obtained by restricting the Killing form, which
we pull back to a function on a. We let DG (or D if there is no confusion) denote the Weyl
discriminant.

7.2. The subgroup Gcpt. It may be seen that Proposition 7.4 below cannot hold for all
semisimple γ ∈ G. For instance, if γ lies in a compact normal subgroup of G then the
conjugacy class of γ will be contained in K, and the function f‖X(·)‖−η will be singular
everywhere on the conjugacy class. We now define a subgroup of elements of G that we
will exclude, denoted Gcpt. Note that in the following discussion we take care to distinguish
between an algebraic group and its real points.
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Let Gad be the adjoint form of G, so that there is an exact sequence Z(G) → G
π→ Gad

of algebraic R-groups. The group Gad breaks up into a product of R-almost simple factors.
We let Gad

cpt and Gad
nc be the product of the compact and noncompact factors respectively. It

may be seen that Gad
cpt(R) is the maximal compact normal subgroup of Gad(R). We define

Gcpt = π−1(Gad
cpt(R)) ⊂ G(R). We record two properties of Gcpt for later use.

Lemma 7.1. Let gnc be the product of the R-simple factors of g of noncompact type. Then
if g ∈ G(R), Ad(g) is trivial on gnc if and only if g ∈ Gcpt.

Indeed, it is clear that if g ∈ Gad(R), then Ad(g) is trivial on gnc if and only if g ∈ Gc(R).
The lemma follows because π commutes with the adjoint action on gnc. The following is also
clear.

Lemma 7.2. If Z(G) is anisotropic, then Gcpt is a compact normal subgroup of G(R).

7.3. Statement of results and sketch of proof. The aim of this section is to prove the
following two propositions bounding Oγ(f) for semisimple γ ∈ G. We shall prove them
together, by induction on the semisimple rank of G.

Proposition 7.3. There is A > 0 depending only on G with the following property. Let f ∈
C(G) be bounded and compactly supported modulo center. Then we have Oγ(f)�f D(γ)−A

for every semisimple γ ∈ G.

Proposition 7.4. Suppose that the semisimple rank of G is at least 1. There exists A > 0
depending only on G with the following property. Let 0 < η < 1/2 and let f ∈ C(G) be
bounded and compactly supported modulo center. Then there is a constant c(η, f) > 0 such
that

(22) Oγ(f‖X(·)‖−η) < c(η, f)D(γ)−A

for every semisimple γ ∈ G−Gcpt.

We sketch the proof of Propositions 7.3 and 7.4; complete details will be given in the sub-
sequent paragraphs. We use an induction argument with three steps, based on the general
approach of [31, §7].

Step 1 : We reduce to the case where Z(G) is anisotropic. This is simple; if AG is the maxi-
mal split torus in Z(G), we simply push the orbital integrals forward to G/AG.

To describe the remaining steps, we begin with a definition.

Definition 7.5. We say that γ ∈ G is elliptic if Z(Gγ) is anisotropic.

Step 2 : If γ is not elliptic, we may choose a nontrivial split torus S ⊂ Z(Gγ) and define M
to be the centraliser of S in G. Because we have assumed that Z(G) is anisotropic, M is a
proper Levi subgroup satisfying Gγ ⊂M , and we may apply parabolic descent to Oγ(φ).

Step 3 : If γ is elliptic, we may assume without loss of generality that γ ∈ K. For ε > 0,
define K(ε) = {g ∈ G : ‖X(g)‖ < ε}. Proving the bound (22) is roughly equivalent to
controlling the volume of the conjugacy class of γ that lies inside K(ε), uniformly for ε and
D(γ) small. This turns out to be equivalent to bounding the set of points in G/K that are
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moved distance at most ε by the rotation γ. Note that this set will be noncompact if Iγ is
noncompact. We solve this problem by writing the metric on G/K in polar co-ordinates. A
key point is that the component of the metric in the angular variables grows exponentially.

7.4. Reduction to the case of Z(G) anisotropic. Let AG denote the maximal split torus
in Z(G), and let G = G/AG. We wish to show that if Propositions 7.3 and 7.4 hold for G
then they hold for G. We have an exact sequence 1 → AG → G → G → 1 of algebraic
groups over R, and by Hilbert 90 this gives an exact sequence on points. If γ ∈ G, we
denote its image in G by γ. If Gcpt is the subgroup of G defined as in Section 7.2, we have
Cc = Gcpt/AG and so γ still satisfies hypotheses of Proposition 7.4. We denote the connected
centraliser of γ by Iγ. There is an exact sequence 1 → AG → Iγ → Iγ → 1, and so G → G
induces a bijection Iγ\G ' Iγ\G. Moreover, this bijection carries µcan

G /µcan
Iγ

to µcan
G
/µcan

Iγ
. It

follows that if f ∈ C(G) is invariant under AG, and we let f be its image in C(G), we have

OG
γ (f) = OG

γ (f).
Let f ∈ C(G) be bounded and compactly supported modulo center. We may assume

without loss of generality that f > 0, by replacing f by its absolute value. We may choose
h ∈ C(G) that is invariant under AG and satisfies h > f , and let h be the image of h in C(G).

We have OG
γ (f) 6 OG

γ (h) = OG
γ (h), and likewise for f‖X(·)‖−η. Because D(γ) = D(γ), if

Propositions 7.3 and 7.4 hold for G then they hold for G.
We may henceforth assume that Z(G) is isotropic. We may then take the function f of

Propositions 7.3 and 7.4 to lie in Cc(G). As in Section 5, we write µγ = µcan
G /µcan

Iγ
.

Remark 7.6. From this point on, we will only ever invoke Proposition 7.3 in our induction.
As a result, there is no need to worry about the extra hypotheses of Proposition 7.4 holding
after reduction to a parabolic subgroup.

7.5. Parabolic descent. We handle the case when γ is not elliptic by the process of para-
bolic descent, which we now recall. Let P = MN be a semi-standard parabolic subgroup of
G, so that A ⊂M . Choose Haar measures on N and K so that dk gives K measure 1, and
we have dµcan

G = dµcan
M dndk in Langlands MNK co-ordinates. The parabolic descent along

P is defined by

f ∈ L1(G) 7→ fP ∈ L1(M),

where

fP (m) = δ
1/2
P (m)

∫
N

∫
K

f(k−1mnk)dndk.

If γ ∈M , we define DG
M(γ) by chosing a maximal torus γ ∈ T ⊂M , letting ∆ and ∆M be

the roots of T in G and M , and setting DG
M(γ) =

∏
α∈∆−∆M

|α(γ)− 1|. It may be seen that

this is independent of the choice of T . We say that γ ∈ M is (G,M)-regular if DG
M(γ) 6= 0.

We recall the descent relation between the orbital integrals of f and fP .

Lemma 7.7. If γ ∈M is (G,M)-regular and f ∈ Cc(G), we have

DG
M(γ)1/2Oγ(f) = OM

γ (fP ).
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Proof. Because γ is (G,M) regular, we have Iγ ⊂ M . Let µMγ = µcan
M /µcan

Iγ
. We may

parametrize Iγ\G in Langlands co-ordinates as (Iγ\M)NK, which allows us to rewrite
Oγ(f) as follows.

Oγ(f) =

∫
Iγ\G

f(x−1γx)dµγ(x)

=

∫
Iγ\M

∫
N

∫
K

f(k−1n−1m−1γmnk)dµMγ (m)dndk

= DG
M(γ)−1/2δP (γ)1/2

∫
Iγ\M

∫
N

∫
K

f(k−1m−1γmnk)dµMγ (m)dndk

= DG
M(γ)−1/2OM

γ (fP ).

�

We shall need a version of Lemma 7.7 that can be applied to the singular functions
f‖X(·)‖−η, which we now derive. Define the positive definite inner product 〈·, ·〉+ on [g, g]
by 〈u, v〉+ = −〈θu, v〉. If A ∈ GL([g, g]), define tA to be the transpose with respect to
〈·, ·〉+. Following [21, §3.2], we define the functions L,N : GL([g, g]) → R by L(A) =
log(tr(AtA)/ dim g) and N (A) = tr(AtA)/ dim g.

Lemma 7.8. We have L(Ad(g)) 6 2‖X(g)‖ for all g ∈ G.

Proof. We follow [21, Lemma 3.2]. It may be seen that tAd(g) = Ad(θ(g))−1 for g ∈ G. We
write g ∈ G as k1e

X(g)k2, so that Ad(g)tAd(g) = Ad(gθ(g)−1) = Ad(k−1
2 e2X(g)k2). Taking

traces gives
N (Ad(g)) = tr(Ad(e2X(g)))/ dim g 6 e2‖X(g)‖,

and taking logs completes the proof.
�

Lemma 7.9. Let BM ⊂ M and Bn ⊂ n be compact. There is C > 0 depending on BM and
Bn such that for all m ∈ BM , V ∈ Bn, we have N (Ad(meV )) > 1 + C‖V ‖2.

Proof. Choose a basis for [g, g] subordinate to the root space decomposition [g, g] = (Zg(a)∩
[g, g]) ⊕

⊕
α∈∆ gα that is orthonormal with respect to 〈·, ·〉+, where ∆ are the roots of a in

g. It may be seen that the nonzero entries of Ad(m) and Ad(m)(Ad(eV ) − 1) with respect
to this basis are disjoint, so we have

N (Ad(meV )) = N (Ad(m)) +N (Ad(m)(Ad(eV )− 1)) > 1 +N (Ad(m)(Ad(eV )− 1)).

It follows that if N (Ad(meV )) = 1 then N (Ad(m)(Ad(eV ) − 1)) = 0, so V = 0. By a
compactness argument, we may therefore assume that ‖V ‖ 6 1. By applying the Taylor
expansion of eV and the fact that N is a quadratic form, we have

N (Ad(m)(Ad(eV )− 1)) = N (Ad(m)ad(V )) +OBM (‖V ‖3).

By compactness, we have N (Ad(m)ad(V )) > C for all ‖V ‖ = 1 and m ∈ BM . As N is
quadratic, we have N (Ad(m)ad(V )) > C‖V ‖2 for all V and m ∈ BM , which completes the
proof. �
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Lemma 7.10. Let P ( G be semi-standard. Let f ∈ Cc(G), and for 0 < η < 1/2 define
Fη = f‖X(·)‖−η. We have

(i) Fη ∈ L1(G), and the parabolic descent F P
η (m) is well defined and finite for any m ∈M .

(ii) There exists f1 ∈ Cc(M) depending only on f and η such that |F P
η (m)| 6 f1(m) for all

m ∈M .

Proof. We are free to replace f by its absolute value, so that f > 0, and assume that f is
bi-K-invariant. The claim that Fη ∈ L1(G) follows from the Cartan decomposition. Let
B ⊂ G be a compact set containing supp(f). There are compact sets BM ⊂M and Bn ⊂ n
depending only on B such that meV ∈ B implies m ∈ BM and V ∈ Bn. It follows that
supp(F P

η ) ⊂ BM .
Lemma 7.8 implies

F P
η (m)δ

−1/2
P (m) =

∫
N

f(mn)‖X(mn)‖−ηdn�
∫
N

f(mn)L(Ad(mn))−ηdn.

Writing n = eV and applying Lemma 7.9 gives

F P
η (m)δ

−1/2
P (m)�

∫
n

f(meV )‖V ‖−2ηdV.

The right-hand side is bounded by C(B, η)‖f‖∞. This proves (i), and (ii) follows by com-
bining this with supp(F P

η ) ⊂ BM . �

Lemma 7.11. Let f ∈ Cc(G), and for 0 < η < 1/2 define Fη = f‖X(·)‖−η. If γ ∈ M is
(G,M) regular, then the integral Oγ(Fη) converges absolutely, and we have

(23) DG
M(γ)1/2Oγ(Fη) = OM

γ (F P
η ).

Proof. We first assume that f > 0. Define φε by

φε(y) =
{
f(y)‖X(y)‖−η, ‖X(y)‖ > ε,
f(y)ε−η, ‖X(y)‖ 6 ε.

The monotone convergence theorem implies that Oγ(φε)→ Oγ(Fη) and φPε → F P
η monoton-

ically as ε → 0. Another application of monotone convergence gives OM
γ (φPε ) → OM

γ (F P
η ).

Lemma 7.7 then implies that Oγ(φε) = DG
M(γ)−1/2OM

γ (φPε ) converges to DG
M(γ)−1/2OM

γ (F P
η ),

which from Lemma 7.10 is finite. Therefore Oγ(Fη) converges absolutely and satisfies (23).

In the general case, define f̃ = |f |, and let F̃η and F̃ P
η be the corresponding functions on

G and M . Then F̃η and F̃ P
η dominate Fη and F P

η , and the integrals Oγ(F̃η) and OM
γ (F̃ P

η )
are finite. We may then repeat the argument in the case f > 0, with monotone convergence
replaced with dominated convergence.

�

7.6. The case when γ is not elliptic. We only prove Proposition 7.4, as Proposition 7.3
follows by a similar argument. Let 0 < η < 1/2, and let f ∈ Cc(G) and Fη = f‖X(·)‖−η. We
assume that f > 0. Assume that γ ∈ G is not elliptic, and let M be a proper Levi subgroup
with Gγ ⊂ M . By conjugation, we may assume that M is standard. Because Gγ ⊂ M ,
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Ad(γ)− 1 must be invertible on g/Lie(M), so that γ is (G,M)-regular. Apply Lemma 7.10
to Fη to obtain f1 ∈ Cc(M) such that |F P

η (m)| 6 f1(m) for all m ∈M . Lemma 7.11 gives

OG
γ (Fη) = (DG

M(γ))−1/2OM
γ (F P

η ) 6 (DG
M(γ))−1/2OM

γ (f1).

Because the semisimple rank of M is smaller than that of G, we may apply Proposition 7.3
on M to obtain OM

γ (f1) < c(η, f)DM(γ)−A. Combining these gives

OG
γ (Fη) < c(η, f)(DG

M(γ))−1/2DM(γ)−A < c′(η, f)DG(γ)−A,

which completes the proof.

7.7. The case of γ elliptic. We first observe that, if γ ∈ G is elliptic, then it is conjugate
to an element of K. This is because if Z(Gγ) is compact, then γ lies in the compact group
Z(Gγ), which is conjugate to a subgroup of K. We shall assume that γ ∈ K for the rest of
Section 7.

We next prove Proposition 7.3 in the case γ ∈ Gcpt. By Lemma 7.2, Gcpt is a compact
normal subgroup of G. If γ ∈ Gcpt, the conjugacy class of γ is a closed subset of Gcpt, hence
compact and of finite volume. We therefore have

Oγ(f) 6 ‖f‖∞µγ(Iγ\G).

Because there are only finitely many possibilities for Iγ up to conjugacy, we have µγ(G/Iγ)�
1.

We shall assume γ ∈ K − Gcpt for the rest of Section 7. Because θ(γ) = γ, gγ is θ-
stable. We may then write gγ = pγ + kγ where kγ = k ∩ gγ and pγ = p ∩ gγ. Let p⊥γ be the
orthocomplement of pγ in p. We note that Lemma 7.2 implies that pγ 6= p. Indeed, if pγ = p
then Ad(γ) fixes p, and hence [p, p]. However, p+[p, p] is the product of the R-simple factors
of g of noncompact type, see [10, Ch. V Thm 1.1] and the subsequent proof.

We next convert the problem to one on the symmetric space S = G/K. We extend ‖ · ‖
to all of p by setting it equal to the norm induced by the Killing form. Then ds will denote
the associated metric tensor on S. We note that the distance function dS attached to ds is
given by dS(g1, g2) = ‖X(g−1

1 g2)‖. For ε > 0 we put K(ε) = {g ∈ G : ‖X(g)‖ < ε} and write
1K(ε) for the characteristic function of K(ε).

To set up Proposition 7.3, we let f ∈ Cc(G) and take εf > 0 to be such that supp(f) ⊂
K(εf ); it follows that

(24) |Oγ(f)| 6 Oγ(1K(εf ))‖f‖∞.

For Proposition 7.4, we may assume that f > 0, and choose f0 ∈ Cc(G) with supp(f0) ⊂
K(εf ) such that

f‖X(·)‖−η �f f0 +
∞∑
k=1

2ηk1K(2−k).

We deduce that

Oγ(f‖X(·)‖−η)�f Oγ(1K(εf )) +
∞∑
k=1

2ηkOγ(1K(2−k)).
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In either case, it therefore suffices to bound Oγ(1K(ε)) uniformly in ε > 0 and γ ∈ K −Gcpt.
We note that for γ ∈ K −Gcpt we have D(γ)� 1, where the implied constant depends only
on G.

Lemma 7.12. There is A > 0 such that for all γ ∈ K − Gcpt, T > 1, and 0 < ε < T , we
have

Oγ(1K(ε))�T

{
εdγD(γ)−dγ , if ε 6 2D(γ),

εAD(γ)−A, if ε > 2D(γ),

where dγ > 1 is the codimension of IγK in G.

From Lemma 7.12 it follows that Oγ(1K(ε))�ε D(γ)−A for all ε; when combined with (24),
this proves Proposition 7.3 for elliptic γ.

To complete the proof of Proposition 7.4 we apply Proposition 7.3 and Lemma 7.12 to
deduce that

Oγ(f‖X(·)‖−η)�f D(γ)−A +
∑

2k+1>D(γ)−1

2ηk−kD(γ)−1 +
∑

2k+1<D(γ)−1

2ηk−AkD(γ)−A.

Our assumption that 0 < η < 1/2 implies that both geometric series are bounded by D(γ)−A.
This gives

Oγ(f‖X(·)‖−η) < c(η, f)D(γ)−A,

as desired.

Proof of Lemma 7.12. We first observe that Oγ(1K(ε)) = µγ(Iγ\G(ε)), where G(ε) = {x ∈
G : x−1γx ∈ K(ε)}. The set G(ε) is right K-invariant, and G(ε)/K is the set of points x ∈ S
such that dS(x, γx) < ε. Moreover, G(ε) is left Iγ-invariant, and we will see it is roughly a
tube around Iγ. Bounding the volume of Iγ\G(ε) is therefore roughly equivalent to finding
the radius of this tube, in a way which we now make precise.

Let x ∈ G(ε). By [10, Chapter VI, Theorem 1.4], we may write x = eXγeX
γ
k with Xγ ∈ pγ,

Xγ ∈ p⊥γ , and k ∈ K. The condition x−1γx ∈ K(ε) simplifies to e−X
γ
γeX

γ ∈ K(ε), which

(since γ ∈ K) is equivalent to e−X
γ
eγ.X

γ ∈ K(ε). This implies that dS(eX
γ
, eγ.X

γ
) < ε:

the element eX
γ

is rotated by γ by distance at most ε. Proposition 8.1 below then states
‖Xγ‖ 6 rγ,ε, for an expression rγ,ε > 0 depending on γ and ε. If we let Bp⊥γ

(r) be the ball of

radius r around 0 in p⊥γ with respect to ‖ · ‖, it follows that G(ε) ⊂ Iγ exp(Bp⊥γ
(rγ,ε))K.

Let Icγ ⊂ Iγ be a compact set such that µcan
Iγ

(Icγ) = 1. Note that we may assume that γ
lies in a fixed maximal torus in K, so that there are only finitely many possibilities for Iγ
and we may ignore the dependence of our bounds on Icγ in what follows. We have

µγ(Iγ\G(ε)) 6 µG(Icγ exp(Bp⊥γ
(rγ,ε))K).

We now bound µG(Icγ exp(Bp⊥γ
(rγ,ε))K), using the radius estimates of Proposition 8.1 below.

We first take ε 6 2D(γ). Let Bp(r) denote the ball in p of radius r with respect to ‖ · ‖. We
have

Icγ exp(Bp⊥γ
(rγ,ε))K ⊂ Icγ exp(Bp(rγ,ε))K = IcγK exp(Bp(rγ,ε)).

Proposition 8.1 gives rγ,ε = CεD(γ)−1 for some C > 0. Since γ /∈ Gcpt we have pγ 6= p, so
that the codimension dγ of IγK in G is at least 1. Because IcγK is compact and contained
in IγK, the result follows.
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For the remaining range, we will reduce the problem to well-known volume estimates for
expanding balls in the symmetric space S. Let BG(r) = exp(Bp(r))K be the ball of radius
r around the identity in G with respect to dS. Then

Icγ exp(Bp⊥γ
(r))K ⊂ Icγ exp(Bp(r))K = IcγBG(r).

We also have IcγBG(r) ⊂ BG(r + C1) for some C1 > 0. If 2D(γ) < ε < T , Proposition

8.1 gives rγ,ε = C log(εD(γ)−1) for some C > 0. If r � 1, we have µG(BG(r)) � eC2r for
some C2 > 0. We deduce that µG(IcγBG(rγ,ε)) is bounded by εAD(γ)−A for some A > 0, as
desired. �

8. Radius bounds on tubes

This section is devoted to the proof of the following result, used in the proof of Lemma
7.12.

Proposition 8.1. Let γ ∈ K −Gcpt. If V ∈ p⊥γ , T > 1, and dS(eV , eγ.V ) < ε < T , then

‖V ‖ �T

{
εD(γ)−1, if εD(γ)−1 6 2

log(εD(γ)−1), if εD(γ)−1 > 2.

We shall prove Proposition 8.1 by expressing dS in polar co-ordinates. To deal with the
singularities of the Cartan decomposition, we will introduce a system of polar co-ordinates
for every conjugacy class of Levi subgroups in G.

8.1. Notation. We let ‖ · ‖ denote the norms on either p or k obtained by restricting the
Killing form (resp. minus the Killing form). Let ∆ be the roots of a in g. Let A ⊂ P0 be
a minimal parabolic subgroup of G. Let ∆+ be the set of positive roots corresponding to
P0. We may assume that the positive Weyl chamber a+ chosen in Section 7.1 is the one
corresponding to ∆+. Let Φ ⊂ ∆+ be the simple roots.

We say that a parabolic subgroup P is standard if P0 ⊂ P , and that a Levi subgroup L of
a parabolic P is standard if P is standard and A ⊂ L. Let L be the set of proper standard
Levi subgroups of G. Then L contains exactly one representative of every conjugacy class
of proper Levi subgroups of G. L is in bijection with the proper subsets of Φ, and we now
recall this correspondence. If ΦL ⊂ Φ, we define AL ⊂ A to be the neutral component of the
kernel of all α ∈ ΦL. The Levi L associated to ΦL is ZG(AL), which is Zariski-connected by
[3, Prop 18.4]. We introduce the following notation for L.

• l is the Lie algebra of L.
• KL = K ∩ L. It is known that KL is a maximal compact subgroup of L, and that
KL meets every connected component of G in the real topology (see for instance [17,
Prop. 7.25] and [17, Prop. 7.33]).
• l = kL + pL is the Cartan decomposition corresponding to KL.
• k⊥L is the Killing-orthogonal complement of kL in k.
• aL is the Lie algebra of AL, which is the center of l.
• ∆L is the set of roots vanishing on aL.
• a+

L = {H ∈ aL : α(H) > 0 for α ∈ ∆+ −∆L}.
• Sa is the unit sphere in a.
• S+

a = Sa ∩ a+.
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• Let κ > 0 be a constant to be chosen later. We define S+
L = {H ∈ Sa ∩ a+

L : α(H) >
κ for α ∈ ∆+ −∆L}.

8.2. A system of approximating open sets. For each L ∈ L, we choose open sets
UL, U

′
L ⊂ S+

a that approximate S+
L using the following lemma.

Lemma 8.2. There exist two collections of open sets {UL ⊂ S+
a : L ∈ L}, {U ′L ⊂ S+

a : L ∈
L} (for the relative topology on S+

a ) with the following properties.

(a) U ′L cover S+
a .

(b) U
′
L ⊂ UL.

(c) UL lies in the ball of radius 1/2 around S+
L .

(d) If α /∈ ∆L, α does not vanish on UL.

Proof. We let δ > 0 to be chosen later. We define UL ⊂ S+
a to be the subset of H satisfying

α(H) < δ22|ΦL|+1, α ∈ ΦL,

α(H) > δ22|ΦL|, α /∈ ΦL,

and U ′L ⊂ S+
a to be the subset of H satisfying

α(H) < δ22|ΦL|, α ∈ ΦL,

α(H) > δ22|ΦL|+1, α /∈ ΦL.

It is immediate from the definition that U
′
L ⊂ UL. Because S+

L ⊂ S+
a is the subset of H

satisfying

α(H) = 0, α ∈ ΦL,

α(H) > κ, α /∈ ΦL,

it is clear that (c) holds if δ is chosen small enough and we let κ = δ. For (d), let α /∈ ∆L.
We may assume without loss of generality that α ∈ ∆+. We then have α =

∑
β∈Φ nββ with

nβ > 0 and nβ > 0 for at least one β /∈ ΦL. It is then clear that α is nonzero on UL.
It remains to prove (a). Let H ∈ S+

a . Let ΦL ⊂ Φ be a set such that

(25) α(H) < δ22|ΦL| for all α ∈ ΦL.

Note that at least one such set exists, namely ∅. Furthermore, suppose that ΦL is maximal
with this property. Note that we cannot have ΦL = Φ if δ is chosen small enough. If
α(H) > δ22|ΦL|+1 for all α /∈ ΦL, then H ∈ U ′L. If there is some β /∈ ΦL such that
β(H) 6 δ22|ΦL|+1, then ΦL ∪ {β} also satisfies (25), which contradicts maximality. �

8.3. A system of polar co-ordinates on p. Let CL = {tH : t > 0, H ∈ UL} be the cone
over UL. We define C0

L = Ad(KL)CL ⊂ pL and CL = Ad(K)CL ⊂ p, and define C ′L, C0
L
′, and

C ′L in the same way using U ′L. It follows that C0
L is open in pL, and CL is open in p, and that

C ′L cover p \ {0}.
We recall the definition of the principal bundle K×KL pL, which is the quotient of K× pL

by the action of KL given by

kL · (k, V ) = (kk−1
L , kL.V ).

Define PL = K ×KL C0
L ⊂ K ×KL pL. The natural map K × C0

L → CL ⊂ p given by
(k, V ) 7→ k.V factors to a map ΠL : PL → CL. We shall prove that ΠL is a diffeomorphism;
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this will provide us with a system of polar coordinates on CL with angular variable in K/KL

and radial variable in C0
L. We shall then give a formula for the metric on S in these polar

coordinates.
To lift our polar coordinate map to a map of tangent spaces, define BL to be the quotient

of K × C0
L × k⊥L × pL by the action

kL · (k, V,X, Y ) = (kk−1
L , kL.V, kL.X, kL.Y ).

We may naturally view BL as a vector bundle over PL with fiber k⊥L × pL. There is a map
dΠL : BL → TCL given by dΠL(k, V,X, Y ) = (k.V, k.[X, V ] + k.Y ).

Proposition 8.3. The map ΠL : PL → CL is a diffeomorphism, and dΠL : BL → TCL is an
isomorphism of vector bundles.

Proof. We first show that ΠL is a bijection. Surjectivity is clear, to prove injectivity suppose
that (k1, V1), (k2, V2) ∈ K × C0

L satisfy k1.V1 = k2.V2. By the definition of C0
L, we may write

Vi = ki,LHi with ki,L ∈ KL and Hi ∈ CL ⊂ a+. Because H1 and H2 are conjugate under K,
we have H1 = H2 = H (see e.g. [17, Lemma 7.38] for the proof of this in our case where
the groups may be disconnected in the real topology). We then have k1k1,L = k2k2,L.H,
so that k1k1,L ∈ k2k2,LKH where KH is the stabilizer of H in K. Because H ∈ CL, we
have α(H) 6= 0 for all α /∈ ∆L, and Lemma 8.4 implies that k−1

2 k1 ∈ KL. It follows that
(k2, V2) = (k1, (k

−1
1 k2).V2) = (k1, V1) in PL.

Because PL and CL are smooth manifolds of the same dimension, to show ΠL is smooth it
suffices to show that its differential is surjective on tangent spaces everywhere. In addition,
because ΠL is K-equivariant it suffices to check that this holds at a point (e,H) with H ∈ CL.
Let X ∈ k⊥L and Y ∈ pL, and consider the path (exp(tX), H + tY ) in PL. Applying ΠL and
differentiating at t = 0 gives

d

dt
exp(tX).(H + tY )|t=0 = [X,H] + Y.

Because α(H) 6= 0 for all α /∈ ∆L, ad(H) is an isomorphism from k⊥L to p⊥L , so the differential
of ΠL is surjective.

To prove the claim about dΠL, we know that it is a map of vector bundles that lies over
a diffeomorphism. Moreover, the argument above implies that it is an isomorphism on each
fiber, and so it must be an isomorphism. �

Lemma 8.4. If H ∈ a satisfies α(H) 6= 0 for all α /∈ ∆L, and KH is the stabilizer of H in
K, we have KH ⊂ KL.

Proof. Let k ∈ KH . The algebras a and k.a are both contained in Zg(H). The root space
decomposition and our assumption on H imply that Zg(H) ⊂ l. Therefore a and k.a are two
maximal abelian subalgebras in pL, and so by [17, Lemma 7.29] there is kL ∈ KL such that
kLk.a = a. We have kL.H = kLk.H ∈ a, and because H, kL.H ∈ a there is an element of the
Weyl group of L that maps H to kL.H. It follows that we may assume kLk.H = H without
loss of generality. Because kLk.a = a and kLk.H = H, the action of kLk on a must be by an
element of the subgroup of the Weyl group of G generated by reflections in the roots with
α(H) = 0. The set of such roots is contained in ∆L, which implies that this Weyl element
fixes aL. Therefore kLk ∈ ZG(aL) = L, which completes the proof. �
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8.4. Lower bounds on angular displacement. From now on, we shall identify BL with
the tangent space of PL. Define ΘL : CL → K/KL to be the composition of the isomorphism
CL ' PL with projection to the base. This is the angular variable of our polar coordinate
system.

Define a metric tensor dsKL on K/KL as follows. For V ∈ Te(K/KL) ' k⊥L we define
dsKL(V ) = ‖V ‖, and we extend dsKL to the whole manifold by K-invariance. We let dKL
be the associated distance function. The next lemma gives a lower bound for how much γ
rotates any V ∈ p⊥L .

Lemma 8.5. If V ∈ CL ∩ p⊥γ , then dKL(ΘL(V ), γΘL(V ))� D(γ).

Proof. We may assume without loss of generality that ‖V ‖ = 1. If we let V = k.H with
H ∈ UL, we have ΘL(V ) = kKL and dKL(ΘL(V ), γΘL(V )) = dKL(k, γk). By property (c) of
UL, there exists H0 ∈ S+

L with ‖H−H0‖ 6 1/2. Let V0 = k.H0, and let W be the projection
of V0 to p⊥γ . We have ‖W‖ > 1/2. Because I − γ acts on p⊥γ with determinant � D(γ) and
all its eigenvalues are 6 2 in absolute value, we have ‖γ.V0 − V0‖ = ‖γ.W −W‖ � D(γ).
We then have ‖γk.H0−k.H0‖ � D(γ), and applying Lemma 8.6 to H0, k, and γk completes
the proof. �

Lemma 8.6. If H ∈ S+
L and k1, k2 ∈ K, we have dKL(k1, k2)� ‖k1.H − k2.H‖.

Proof. Let OH ⊂ p be the orbit of H under K. We let dsO be the metric tensor on OH
obtained by restricting the Killing form, and we let dO be the associated distance func-
tion. Because dO(k1.H, k2.H) > ‖k1.H − k2.H‖, it suffices to prove that dKL(k1, k2) �
dO(k1.H, k2.H). Because the map Ad : K/KL → OH is a diffeomorphism, this would follow
from knowing dsKL � Ad∗dsO. Because both metrics are K-invariant, it suffices to prove this
at e ∈ K/KL. If V ∈ k⊥L ' Te(K/KL), we have dsKL(V ) = ‖V ‖ and Ad∗dsO(V ) = ‖[H,V ]‖.
Our assumption that α(H) > κ for H ∈ S+

L and α ∈ ∆+ −∆L implies that ad(H) maps k⊥L
to p⊥L with bounded distortion, and the result follows. �

8.5. Metrics in polar co-ordinates. Let ds be the metric on S, dsp the pullback of ds via
the exponential, and dsP the pullback of dsp to PL under the map PL → C0

L ↪→ p. We shall
compare dsP to the (degenerate) metric ds0 on PL obtained by pulling back dsKL under the
natural projection PL → K/KL.

Proposition 8.7. There is c > 0 such that

dsP (k, V,X, Y ) > sinh(c‖V ‖)ds0(k, V,X, Y )

for all (k, V,X, Y ) ∈ TPL ' BL.

Proof. First note that ds0(k, V,X, Y ) = ‖X‖. Our immediate goal is then to give a similarly
convenient formula for dsP , allowing for a comparison with ds0. We will do so by expressing
dsp in polar coordinates.

We begin by picking a convenient basis of p. For each α ∈ ∆+, choose a basis Vα,1, . . . , Vα,p(α)

for gα such that 〈Vα,i, θ(Vα,j)〉 = −δij/2. Let Xα,i = Vα,i + θ(Vα,i) and Yα,i = Vα,i − θ(Vα,i).
Let M = ZK(a), and let k⊥M be the complement of Lie(M) in k. Then the vectors Xα,i for
α ∈ ∆+ (resp. α ∈ ∆+−∆L) form a basis for k⊥M (resp. k⊥L) that is orthonormal with respect
to minus the Killing form. The vectors Yα,i are orthonormal in p, and together with a basis
of a they form a basis of p. Note that we will omit the index i from sums of the Xα and Yα
from now on.
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We identify the tangent space to K/M at kM with k⊥M via the differential of the map
k⊥M 3 X 7→ k exp(X)M ∈ K/M . The polar co-ordinate map K/M × a → p allows us to
identify the tangent space to p at a point k.H with k⊥M + a, and under this identification the
metric dsp becomes

ds2
p = da2 +

∑
α∈∆+

sinh2 α(H)dX2
α,

where da is the Killing metric on a, see for instance [5, Proposition 2.3]. If H ∈ a+ then it
follows that the metric dsp at H with respect to the vectors Yα and the subspace a is given
by

(26) ds2
p = da2 +

∑
α∈∆+

sinh2 α(H)

α(H)2
dY 2

α .

Returning to the proof of the proposition, note that from the left K-invariance of both
metrics, it suffices to check the claimed inequality at TxPL where x = (e,H) and H ∈ CL.
By continuity, we may also assume that H ∈ CL ∩ a+. Consequently, condition (d) in the
definition of UL ensures that

(27) α(H)� ‖H‖
for all α ∈ ∆+ −∆L.

Let (e,H,X, Y ) ∈ TxPL. We have dΠL(e,H,X, Y ) = (H, [X,H] + Y ). If

X =
∑

α∈∆+−∆L

cαXα,

then
[X,H] = −

∑
α∈∆+−∆L

α(H)cαYα ∈ p⊥L .

Applying (26) we find that

ds2
p(H, [X,H] + Y ) > ds2

p(H, [X,H]) =
∑

α∈∆+−∆L

c2
α sinh2 α(H).

From (27) it follows that sinh2 α(H) > sinh2(c‖H‖) for some c > 0. We therefore have

ds2
P (e,H,X, Y ) > sinh2(c‖H‖)

∑
α∈∆+−∆L

c2
α = sinh2(c‖H‖)‖X‖2

as required. �

8.6. Proof of Proposition 8.1. Let γ, V, ε, and T be as in the statement of Proposition
8.1. Let 1/2 > δ > 0 be such that for all L the δ-neighbourhood of U ′L in p is contained in
CL.

We first consider the case where ‖V ‖ 6 max(Tδ−1, 1). Because dS ◦ exp is quasi-isometric
to the Killing metric on the ball of radius Tδ−1 in p, we have dS(eV , eγ.V ) �T ‖γ.V − V ‖
where the implied constant depends only on T and G. Arguing as in Lemma 8.5 gives
‖γ.V − V ‖ � ‖V ‖D(γ), and combining this with our assumption ε > dS(eV , eγ.V ) gives
εD(γ)−1 � ‖V ‖ in this case.

We now assume that ‖V ‖ > max(Tδ−1, 1). Choose L ∈ L such that V ∈ C ′L. Let p
be a path of length < ε from eV to eγ.V in S. Because the map X : S → a+ is distance
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non-increasing, our assumptions that ‖V ‖ > Tδ−1 and ε < T imply that p(t) ∈ CL for all t.
We may therefore bound the length of p using Proposition 8.7. If p̃ is the pullback of p to
PL, we have

ε >

∫
ds(p′(t)) =

∫
dsP (p̃ ′(t)).

Because ‖V ‖ > Tδ−1 > 2ε, we have ‖p̃(t)‖ > ‖V ‖/2 for all t. We may therefore apply
Proposition 8.7 (after shrinking c) to obtain

ε >

∫
dsP (p̃ ′(t)) > sinh(c‖V ‖)

∫
ds0(p̃ ′(t)).

The metric ds0 computes the length of the projection of p̃ to K/KL, or equivalently the
length of the path ΘL(p(t)). Lemma 8.5 therefore gives∫

ds0(p̃ ′(t)) > dKL(ΘL(V ),ΘL(γV ))� D(γ).

Combining these gives εD(γ)−1 � sinh(c‖V ‖).
To prove Proposition 8.1 in the case that εD(γ)−1 6 2 we use sinh(c‖V ‖) > c‖V ‖ to

obtain εD(γ)−1 � ‖V ‖ for both ranges ‖V ‖ 6 max(Tδ−1, 1) and ‖V ‖ > max(Tδ−1, 1).
To prove Proposition 8.1 for εD(γ)−1 > 2, note that we may assume that ‖V ‖ > max(Tδ−1, 1).

The bound then follows from εD(γ)−1 � sinh(c‖V ‖)� ec‖V ‖.

9. Construction of admissible groups G

This section is devoted to the proof of the following proposition, which provides examples
of groups satisfying the hypotheses of Theorem 1.1.

Proposition 9.1. Let G′/R be connected, simply connected, and R-almost simple. Let F be
a totally real number field, and let v0 be a real place of F . There is a connected semisimple
group G/F with Gv0 ' G′ that satisfies conditions (2) and (3) of Theorem 1.1.

It is an interesting question whether condition (3) on the existence of a rational Cartan
involution is automatic or not. We believe that it is not when G is almost simple of type
An, Dn, or E6, but are unsure otherwise.

9.1. Lie algebra version. We begin by proving the analogue of Proposition 9.1 for abso-
lutely simple Lie algebras.

Proposition 9.2. Let g′/R be an absolutely simple Lie algebra. There exists a Lie algebra
g/Q with an involution τ defined over Q such that g⊗R ' g′, and τ is a Cartan involution
of g⊗ R.

Proof. Let g∗/Q be the Q-split Lie algebra satisfying g∗ ⊗ C ' g′ ⊗ C. We shall obtain the
Lie algebra g of the proposition by appropriately twisting g∗, as we now explain.

There is a canonical Q-involution on g∗ inducing a Cartan involution of g∗⊗R. To define
it, first let h be a rational splitting Cartan subalgebra of g∗, i.e. so that the adjoint action
of h is diagonalisable over Q. Let ∆ be the roots of h in g∗, and let g∗ = h ⊕α∈∆ g∗α be the
root space decomposition. Let {Xα : α ∈ ∆} ∪ {Hi : 1 6 i 6 n} be a rational Chevalley
basis with respect to this root space decomposition. Let θ∗ be the involution of g∗ defined
by θ∗(Xα) = X−α and θ∗(Hi) = −Hi. Then θ∗ induces a Cartan involution of g∗ ⊗ R.
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Next let θ′ be a Cartan involution of g′ and write τ0 for the involution on g∗⊗C obtained
by extending θ′ to g∗ ⊗ C ' g′ ⊗ C. Lemma 9.3 below, applied with the pair (g∗, τ0), then
produces a Q-involution τ of g∗ commuting with θ∗ and conjugate to τ0 in Aut(g∗ ⊗ C).

We obtain g by twisting g∗ by θ∗τ . More precisely, we let g∗+ and g∗− be the ±1 eigenspaces
of θ∗τ on g∗ and define g = g∗+ + ig∗− ⊂ g∗⊗Q(i). It remains to verify the required properties
of g and to check that τ defines a Cartan involution on g⊗ R.

Firstly, it is clear that g is a Lie algebra over Q, and that τ gives a Q-involution of g,
since τ and θ∗ commute. Let c denote the complex conjugation of g∗ ⊗ C with respect to
g∗⊗R. Because θ∗ is a Cartan involution, the fixed-point set of θ∗c is a compact real form u
of g∗⊗C. The complex conjugation of g∗⊗C ' g⊗C with respect to g⊗R is equal to θ∗τc.
Because u is also the fixed point set of τ ◦ (θ∗τc), this implies that τ is a Cartan involution
of g⊗ R.

We now show that g⊗ R ' g′. Indeed, g⊗ R and g′ are both real forms of g∗ ⊗ C. If we
let g ⊗ R = k + p and g′ = k′ + p′ be the Cartan decompositions induced by τ and θ′, we
have k⊗ C ' k′ ⊗ C because τ and θ′ are conjugate in Aut(g∗ ⊗ C). As k and k′ are both of
compact type, this implies that k ' k′ and [10, Ch. X, Theorem 6.2] implies that g⊗R ' g′.

�

Lemma 9.3. Let g∗/Q be a Q-split Lie algebra with Q-involution θ∗ as above. Let τ0 be an
involution of g∗ ⊗ C. Then there exists a Q-involution τ of g∗ which commutes with θ∗ and
is conjugate to τ0 in Aut(g∗ ⊗ C).

Proof. We shall use the classification of automorphisms of g ⊗ C in [10, Ch. X, Theorem
5.15]. This implies that one of the following holds:

(1) τ0 is conjugate to an involution τ that satisfies τ(H) = H for H ∈ h and τ(Xα) =
εαXα where εα = ±1. Because τ leaves h invariant, we must have εα = ε−α.

(2) τ0 is conjugate to an involution τ induced by an automorphism of the Dynkin diagram.
This means that there is a linear map σ : h → h that induces a map on ∆, and τ
satisfies τ(H) = σ(H) for H ∈ h and τ(Xα) = Xσ(α) for α ∈ ∆.

In both cases, it may be seen that τ commutes with θ∗. That τ is defined over Q is clear in
case (1), and in case (2) it follows from the fact that σ preserves ∆ and hence the Q-structure
on h.

�

We may immediately extend Proposition 9.2 to allow g′/R to be R-simple. To do this,
we note that if g′ is R-simple but not absolutely simple, then g′ = ResC/Rh

′ where h′/C is
simple. We treat this case by finding a rational form h of h′ such that h⊗R is compact, and
then setting g = Q(i)⊗ h, considered as a Q-algebra.

Finally, we extend the above construction to totally real number fields, as in Lemma 9.1.

Lemma 9.4. Let F be a totally real number field, and let v0 be a real place of F . Let g′/R
be an R-simple Lie algebra. There exists g/F with an involution θ defined over F such that
gv0 ' g′, gv is of compact type for all real v 6= v0, and θ induces a Cartan involution of gv0.

Proof. By Proposition 9.2 and the remark above, there exists g0/Q and a Q-involution θ of
g0 such that g0 ⊗ R ' g′, and θ induces a Cartan involution of g0 ⊗ R. Let g0 = k0 + p0 be
the rational Cartan decomposition associated to θ. Choose α ∈ F such that αv0 > 0, and
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αv < 0 for all other real v. Define g = k0 ⊗ F +
√
αp0 ⊗ F ⊂ g0 ⊗ Q. We extend θ to an

involution of g defined over F .
We have gv0 ' g0 ⊗ R ' g′, and it is clear that θ induces a Cartan involution of gv0 . If

v 6= v0 is real, we have gv = k0 ⊗ R + ip0 ⊗ R ⊂ g0 ⊗ C so that gv is of compact type. �

9.2. Proof of Proposition 9.1. We now return to the proof of Proposition 9.1.
Let g′/R be the Lie algebra of the connected, simply connected, and R-almost simple

group G′/R given in the lemma. Apply Lemma 9.4 to g′ and the distinguished real place v0

of F to obtain g/F and θ. Let Int(g) be the identity component of Aut(g), and let G be
the simply connected cover of Int(g). Then G has Lie algebra g, and θ induces an involution
of G which we also denote by θ (as the derivative at the identity of the former is equal to
the latter). Because G′ and Gv0 are connected, simply connected semisimple groups with
isomorphic Lie algebras, they are isomorphic. If v 6= v0 is real, then gv is of compact type
and G(Fv) is compact.

By Lemma 9.4, θ induces a Cartan involution of gv0 , and it follows that θ also induces a
Cartan involution of Gv0 (in the sense that the fixed point set Gθ

v0
is a maximal compact

subgroup of Gv0). This completes the proof.
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