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Abstract—Skypatterns are an elegant answer to the pattern
explosion issue, when a set of measures can be provided. Sky-
patterns for all possible measure combinations can be explored
thanks to recent work on the skypattern cube. However, this
leads to too many skypatterns, where it is difficult to quickly
identify which ones are more important. First, we introduce a
new notion of pattern steadiness which measures the conservation
of the skypattern property across the skypattern cube, allowing
to see which are the “most universal” skypatterns. Then, we
extended this notion to partitions of the dataset, and show in
our experiments that this both allows to discover especially
stable skypatterns, and identify interesting differences between
the partitions.

I. INTRODUCTION

Pattern mining is an important field of Data Mining, whose
goal is to detect regularities in the data. It has been success-
fully for applications as diverse as market basket analysis in
supermarkets, debugging with execution trace for embedded
systems [1] and understanding characteristics of carcinogenic
molecules [2].

However, such success stories rely on an important invest-
ment of human expert time. The reason is that pattern mining
suffers from the so-called pattern explosion: there is a huge
number of output patterns of mixed interest, requiring tedious
manual inspection. One of the promising solution to this
problem is the notion of skypatterns [3]. Inspired by skyline
queries from the database community, the idea of skypatterns
is to consider a set of measures of interest for the user, and
to output only patterns that are not dominated on any of these
measures: these are the skypatterns. Skypatterns are thus a
solution to a multi-criteria optimization problem, and are the
Pareto front over the proposed measures. There are usually
very few skypatterns compared to the total number of patterns,
and the measures help in the understanding of their interest.

A difficulty is to consider the many possible combination of
measures over which a pattern can be a skypattern. This diffi-
culty is addressed with the notion of skypattern cube recently
proposed [4]. The skypattern cube is the lattice of all possible
measure combinations, with for each measure combinations its
skypaterns. The authors of [4] have shown that this allowed
to determine, for each combination of measure, its proper
skypatterns: patterns which are skypatterns only for the given
combination of measures, and not for the others.

A natural question arises: what about patterns that are
skypatterns on most combinations of measures? This includes

top-level skypatterns (i.e. patterns that are skypatterns for
all combinations of measures), but also patterns that are
skypatterns for many combinations of measures, and fall short
to be skypatterns on other combinations of measures, for
sake of robustness. Such patterns are interesting, because they
cannot be dominated on most the combinations of measures
considered, and can thus be seen as “universal dominants”.
This characteristic allow them to give a good summary of
the most important elements of the dataset over the proposed
measures. We call these patterns steady patterns.

Steady patterns express a notion of robust global dominance
over the measures, and are thus expected to be especially
important in the data according to the selected measures.
This leads to another question: if there exists natural ways to
partition the dataset (by a class, or along a temporal attribute),
are the “global” steady patterns also steady over the partitions?
If yes, the “steadiness” of these patterns is not affected by
the partitioning, they thus have some property of stability
over the data which is worth reporting. If patterns are only
steady on some partitions, this can help to understand the
different characteristics of these partitions. For example, if the
partitioning of the data is temporal, it can be interesting to
see if a global steady pattern is steady on most periods of
time except one: it can quickly pinpoint this period of time
as different, prompting a look at the change in measures and
possibly at more details of the data.

This paper proposes answers to the questions above, through
the following contributions:

- We define a robust measure of steadiness, which allows to
evaluate how much a pattern verifies the skypattern property
over all combinations of measures;

- We extend this definition to a dataset and its partitions,
with a measure of local-aware steadiness which indicates the
stability of a pattern over the partitions of the dataset;

- We propose efficient methods to compute both measures;
- We perform a thorough experimental study over real

datasets, which helps to understand the nature of steady
patterns and show their interest for real data analysis.

This paper is organized as follows. After introducing the
background in Section II, we present in Section III our defi-
nitions of steady patterns. We then present in Section IV our
method to compute steady patterns from the skypattern cube.
We discuss related work in Section V. Section VI presents the
experiments and finally we conclude.



Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Item A B C D E F
Price ($) 30 40 10 40 70 55

Weight (Kg) 4 6 2 0.5 1 2
TABLE I

TRANSACTIONAL DATASET T .

II. BACKGROUND

We introduce in this section the definitions of skypattern and
skypattern cube that are necessary for the rest of this paper.

A. Context and Definitions

Let I be a set of distinct literals called items. An itemset (or
pattern) is a non-null subset of I. The language of itemsets
corresponds to LI = 2I\{∅}. A transactional dataset T is
a multiset of patterns of LI (i.e. multiset of transactions).
Table I depicts a transactional dataset T where each transac-
tion ti is described by items denoted A, . . . , F . The traditional
example is a supermarket database in which each transaction
corresponds to a customer and every item in the transaction
is a product bought by the customer. An attribute (price) is
associated to each product (see Table I).

Constraint-based pattern mining aims to mine all patterns x
of LI satisfying a query q(x) (i.e. conjunction of constraints)
which is called theory [5]: Th(q) = {x ∈ LI | q(x) is true}.
A common example is the minimal frequency constraint
(q(x) ≡ freq(x) ≥ minfr). Formally, freq(x) = |T (x)|
where T (x) is the support of x (i.e T (x) = {t ∈ T | x ⊆ t}).
The latter provides patterns x having a number of occurrences
in the dataset exceeding a given minimal threshold minfr.
There are other usual measures for a pattern x:

- area(x) = freq(x)× size(x).
- min(x.att) (resp. max(x.att)) is the lowest (resp. highest)

value of the set of item values of x for attribute att.
- mean(x.att) = (min(x.att) + max(x.att))/2.

Example 1.For the dataset in Figure I, freq(BC)=5,
area(BC)=10 and mean(BCD.price)=25.

B. Skypatterns and Skypattern Cube

1) Skypatterns: Skypatterns enable to express a user-
preference point of view according to a dominance relation [3].
Definition 1 (Pareto-Dominance). Given a set of measures M ,
a pattern xi dominates another pattern xj w.r.t. M (noted
by xi �M xj), iff ∀m ∈ M,m(xi) ≥ m(xj) and ∃m ∈
M,m(xi) > m(xj).
Example 2.From T and with M={freq,area}, BCD
dominates BC as freq (BCD)=freq (BC)=5 and
area(BCD)>area(BC) (see Figure I).
Definition 2 (Skypattern and skypattern operator). Given a set of
measures M and a dataset T , a skypattern w.r.t. M is a pattern
not dominated w.r.t. M . The skypattern operator Sky(T ,M)

Fig. 1. (Thick)-Skypatterns for M={freq,area} with ε = 0.25.

returns all the skypatterns w.r.t. M for T : Sky(T ,M) =
{xi ∈ LI | 6 ∃xj ∈ LI ,xj �M xi}
Example 3.Let M={freq,area}, we have that
Sky(T ,M)={BCDE,BCD,B,E} and Figure 1 provides
its graphical representation. The dark gray area is the
forbidden area since it cannot contain any (thick-)skypattern.
The light gray area is the neighborhood of the skypatterns.
The other part is called the dominance area. The edge of this
area (blue line) marks the boundary between them.

2) Soft-skypatterns: Skypatterns can be stringent, thus soft-
skypatterns have been recently introduced by [6] capturing
patterns that do not strictly satisfy the Pareto-dominance, but
are nevertheless valuable.

Simply, by changing the dominance relation we can mine
different types of soft-skypatterns. For instance, we can eas-
ily extend the notion of thick-skylines [7] to obtain thick-
skypatterns. Thick-skylines [7] are non-skyline points that are
close in a ε distance to a skyline point.
Definition 3 (Strongly Dominating Relation [7]). Let M a set of
measures, a pattern xi strongly dominates another pattern xj
w.r.t. M (noted by xi �εM xj), iff ∀m ∈M, (1−ε)×m(xi) ≥
m(xj) ∧ ∃m′ ∈M, (1− ε)×m′(xi) > m′(xj).
Definition 4 (Thick-skypattern and Thick-skypattern operator).
Given a set of measures M and a dataset T , a thick-skypattern
w.r.t. M is a pattern not strongly dominated w.r.t. M and is
close for a distance ε to a skypattern. The thick-skypattern
operator Thick-Sky(T ,M) returns all the thick-skypatterns:
Thick-Sky(T ,M) = {xi ∈ LI | 6 ∃ xj ∈ LI ,xj �εM xi)∧

(∃xj ∈ Sky(T ,M), ε-neighbors(xi,xj))}
where ε-neighbors(xi,xj) = ∀m∈M,

|m(xi)−m(xj)|
max{m(xi),m(xj)} ≤ ε

Example 4.Let M={freq,area} and ε=0.25, thus
Thick-Sky(T ,M)=Sky(T ,M)∪{BCE,BDE,CDE,C,D}.
Figure 1 provides its graphical representation (e.g. BDE is
a thick-skypattern because there exists the skypattern BCD
and ε-neighbors(BCD,BDE)).

3) Skypattern Cube: Skypattern cube [4] for a set of
measures M consists of the 2|M |−1 skypattern sets on all
possible non empty subsets Mu ⊆M .
Definition 5 (Skypattern Cube). Let M be a set of measures.
SkyCube(M) = {(Mu, Sky(T ,Mu)) |Mu ⊆M,Mu 6= ∅}.
Example 5. Figure 2a depicts the lattice associated to M .
Second column in Figure 2b associates to each non-empty
subset of M its skypattern set.



(a) Lattice associated to M .

Subset of M Global Skypatterns Local Skypatterns
T1 T2

{m1, m2, m3, m4}
{BCDEF, BCDE, BCD, BDE,
BEF, BE, BF, B, EF, E} {BEF, BF, B, EF, E, F} {BCDEF, BCDE, BCEF, BCF,

BDEF, BDE, BEF, BF, EF, E}
{m1, m2, m3}

{BCDE, BCD, BDE, BE, EF,
E} {EF, E} {BCDE, BDE, E}

{m1, m2, m4}
{BCDEF, BCDE, BCD, BEF,
BF, B} {BEF, BF, B, EF} {BCDEF, BCDE, BCEF, BCF}

{m1, m3, m4} {BEF, BE, BF, B, EF, E} {BEF, BF, B, EF, E, F} {BEF, BF, EF, E, BDE, BE}

{m2, m3, m4}
{BCDEF, BCDE, BDE, BEF,
BF, EF, E} {BEF, BF, EF, E} {BCDEF, BCDE, BCEF, BCF,

BDEF, BDE, BEF, BF, EF, E}
{m1, m2} {BCDE, BCD, B, E} {EF} {BCDE}
{m1, m3} {E} {E} {E}

{m1, m4} {BF, B} {BF, B} {BCF, BF, BCDE, BCD, BCE,
BC, BDE, BD, BE, B}

{m2, m3} {BCDE, BDE, EF, E} {EF, E} {BCDE, BDE, E}

{m2, m4}
{BCDEF, BCDE, BEF, BCF,
BF} {BEF, BF, EF} {BCDEF, BCDE, BCEF, BCF}

{m3, m4} {BEF, BF, EF, E} {BEF, BF, EF, E} {BEF, BF, EF, E}

{m1} {B, E} {B, EF, E, F}
{BCDE, BCD, BCE, BC, BDE,
BD, BE, B, CDE, CD, CE, C,
DE, D, E}

{m2} {BCDE} {EF} {BCDE}
{m3} {E} {E} {E}
{m4} {ABF, BCF, BF} {ABCF, ABF, BCF, BF} {ABCF, ABF, BCF, BF}

(b) Skypattern cube for M .

Fig. 2. M = {m1 : freq(x),m2 : area(x),m3 : mean(x.price),m4 : mean(x.weight)}.

III. STEADY PATTERNS

We can now propose our main contributions, which are the
measures of steadiness.

A. Steadiness

In [4], the main issue of skypattern cube is that the number
of measure combinations is exponential w.r.t the number of
measures, even if they proposed a concise representation of
the cube with equivalence classes to regroup nodes in the
measure lattice (similarly to closed and free pattern in a pattern
lattice). Thanks to skypattern cube we can extract hundreds or
thousands of patterns ensuring that they are Pareto-optimal
w.r.t at least one combination of measures, but this amount of
patterns could be untreatable by a human-user. In this case,
steadiness for a skypattern refers to its nature as skypatterns
through all the cube, in other words a skypattern is steady
(resp. unsteady) if it is a skypattern or close to be (e.g. thick-
skypatterns) for many (resp. few) measure combinations.

Since in the skypattern cube there are 2|M | − 1 subsets of
measures, we define Steadiness of a skypattern for the cube.

Definition 6 (Steadiness of a pattern). Given a set of measures
M and a dataset T . The steadiness of a pattern x is the
average steadiness of x for each subset of measures Mu ⊆M .

steadiness(x, T ) =

( ∑
Mu⊆M

std(x,Mu, T )

)
/
(
2|M | − 1

)
where std : LI × {2M \ ∅} × {dataset} → [0, 1]

std(x,Mu, T ) =

 1 if x ∈ Sky(T ,Mu)
(1− ε) if x ∈ Thick-Sky(T ,Mu)

0 otherwise

B. Local-awareness

1) Locality: As we already defined a transactional dataset
T is a multiset of transactions. A local sub-dataset of T is sub-
multiset of transactions of T . A local-aware dataset T p =
{T , T1, . . . , Tn}, corresponding to T , is a set of n disjoint
local sub-datasets Ti of T with 1 ≤ i ≤ n.

Example 6. From dataset T from Figure I and with n = 2,
we obtain its local-aware dataset T p = {T , T1, T2} where
T1 = {t1, t2, t3} and T2 = {t4, t5, t6, t7}.

Thus, instead of studying a dataset T only as a whole, we
are going to study its corresponding local-aware dataset T p.
We extend the notion of skypattern cube to this kind of dataset.
Definition 7 (Local and Global Skypattern and Local-aware
Skypattern Operator). Given a set of measures M and a local-
aware dataset T p = {T , T1, . . . , Tn}. A skypattern w.r.t. M is
local (resp. global) iff is a skypattern w.r.t. M in any of the
local sub-datasets of Ti (resp. in the global dataset T ). The
local-aware skypattern operator Skyp(M) returns all the local
and global skypatterns w.r.t. M :

Skyp(M) = Sky(T ,M) ∪
⋃

1≤i≤n
Sky(Ti,M)

Example 7.For the local-aware dataset T p in Exam-
ple 6 and a set of measures M={freq, area}, we
have that Skyp(M)={BCDE,BCD,B,E,EF1, BCDE2}
as Sky(T ,M)={BCDE,BCD,B,E}, Sky(T1,M) =
{EF} and Sky(T2,M)={BCDE}.
Definition 8 (Local-aware Skypattern Cube). Let M be a set of
measures.
SkyCubep(M) = {(Mu, Sky

p(Mu)) | Mu ⊆M,Mu 6= ∅}.
Example 8.Consider the dataset in Figure I. As in Example 5,
we have the same lattice from Figure 2a. In Figure 2b, for
each non-empty subset of M its local-aware skypattern set is
the union from second to fourth columns.

2) Local-aware Steadiness: The notion of steadiness (see
Definition 6) can be extended for a local-aware dataset, in
order to estimate a measure of steadiness based on steadiness
values for different partitions of the dataset.
Definition 9 (Local-aware Steadiness of a pattern). Given a set of
measures M and a local-aware dataset T p = {T , T1, . . . , Tn}.
The local-aware steadiness of a pattern x is the average local-
aware steadiness of x for every subset of measures Mu ⊆M .

steadinessp(x, T p) =

∑
Mu⊆M

stdp(x,Mu, T p)

2|M | − 1



where stdp : LI × {2M \ ∅} × T p → [0, 1]

stdp(x,Mu, T p) = 0.5×

(
std(x,Mu, T ) +

∑
1≤i≤n

std(x,Mu,Ti)
n

)

In the rest of this paper, we denote as steady (resp. unsteady)
patterns the k skypatterns with highest (resp.lowest) steadi-
ness, for a given value of k. As we are going to show in
experiments steady skypatterns are interesting because they
show skypatterns with a stability through a local-aware cube,
and unsteady skypatterns are interesting because they have few
occurrences as skypatterns through a local-aware cube (i.e.
they occur exceptionally or under special conditions).

IV. COMPUTATION

This section presents our approach for computing steady
skypatterns by using the local-aware skypattern cube. The
key idea is to compute the local-aware skypattern cube by
adapting existing methods for a regular skypattern cube. Then
we compute the steady skypatterns from this local-aware cube.

A. Computing Skypattern Cube

In the best of our knowledge there are two methods to
extract directly the skypattern cube from a dataset.

1) Regular Methods: [4] relies in the relations between
nodes of the measures lattice, defining derivation rules in order
to avoid computing the whole skypattern set for a node by
deriving most of the skypatterns for a node from its child
nodes. And [8] applies a more direct approach by computing
a superset of the cube (i.e. edge-skypatterns), to finally filter
the skypattern cube.

2) Generalizing the Regular Methods for Periodic Patterns:
The regular methods extract skypatterns w.r.t to a set measures
directly but there are other types of patterns that add an extra
layer, besides mining patterns they have to satisfy a condition
that cannot be modeled as a measure.

For instance, periodic patterns can be directly mined [1].
Even if it could seem easy to modeling period as a measure
for patterns, it’s not the case. A pattern can have different
period values regarding its occurrences, meaning that we can
have different instances of periodic patterns corresponding to
a single mined pattern. Unlike frequent, emerging or closed
patterns to which we have one value by pattern.
In this case, we can define a general method:

a) Mining periodic patterns with an ad hoc tool.
b) Post-processing the output with an SKYCUBE extracting

tool [9]. SKYCUBE is a multidimensional generalization of
skylines extracting all skylines sets for a set of dimensions.

3) From SKYCUBE to skypattern cube: This section shows
how the problem of computing a skypattern cube w.r.t. a set
of measures M can be converted into an equivalent problem
of computing a skyline cube in |M | dimensions.

Let f be a mapping from LI to IRk that associates, to each
pattern x ∈ LI , a data point f(x) ∈ IRk with coordinates
(m1(x),m2(x), . . . ,mk(x)). Let P = {f(x) | x ∈ LI}. P
is a multiset: let xi and xj s.t. xi 6= xj . If xi and xj are
indistinct w.r.t. M then f(xi) = f(xj).

Pattern m1 m2 m3 m4

ABC 2 6 25.00 3.00
ABDEF 1 5 50.00 3.25
...

...
...

...
...

BCD 5 15 25.00 3.00
...

...
...

...
...

BF 3 6 47.50 4.00
B 6 6 40.00 3.00
E 6 6 70.00 0.50

TABLE II
MULTIDIMENSIONAL VIEW OF PATTERNS FOR M IN FIGURE 1.

Example 9.Table II reports the mapping between all the pat-
terns in T and data points of IR4 (|M | = 4). f(B) (resp.
f(BCD)) is the data point with coordinates (6, 40, 6, 40)
(resp. (5, 15, 25, 3)).

B. Computing Local-aware Skypattern Cube

In the case of a local-aware dataset T p = {T , T1, . . . , Tn},
we need to compute the local-aware skypattern cube.

This could be done easily, by computing n+1 skypattern
cubes (each one for each dataset in T p) and unifying these
cubes into a single one. By applying the method described in
precedent sections (see Sections IV-A1, IV-A3) to each dataset
Ti ∈ T p, we can obtain n+1 skypattern cubes.

Unifying these n+1 skypattern cubes is an easy task. Fore-
ach set of measures Mu (i.e. node in the cube) we regroup
all skypattern sets Sky(Ti,Mu), in other words ∀Ti ∈ T p,⋃
Mu⊆M

Sky(Ti,Mu)) that corresponds to the local-aware sky-

pattern set Skyp(Mu) (see Definition 8).
Finally we regroup these local-aware skypattern sets into

form the local-aware skypattern cube (see Definition 8).

C. Computing Steady Skypatterns

For all extracted skypatterns we compute their steadiness
w.r.t. the obtained local-aware cube (see Definition 6) and take
the k skypatterns with the highest (resp. lowest) steadiness i.e.
steady (resp. unsteady) skypatterns. This could be seen as a
top-k of steady skypatterns, but using as score (or interesting-
ness measure) the steadiness of the mined skypatterns.

V. RELATED WORK

There are two methods to compute the skypattern cube:
[4] propose a bottom-up approach based on derivation rules
exploiting the relation between the nodes in the measure
lattice and [8] that proposes a more direct aproximation-
based method, that computes a superset of the whole set of
skypatterns in the skypattern cube, then filter edge-skypatterns
that are not present in the skypattern cube.

Although these methods are not directly adaptable for peri-
odic pattern mining because the period is not a straightforward
measure over the patterns but it is taken into account the
complexity of the problem (i.e P×LI where P ∈ {1, n}) fur-
thermore for more complex notions as Periodic Concepts [1].



VI. EXPERIMENTAL EVALUATION

In this section we show the results for our experiments
over two study cases (execution trace analysis and weather
analysis). In each case we show: i) a quantitative analysis for
CPU-time and space, and ii) a qualitative analysis, first only
with global steadiness (see Definition 6) and after showing the
benefit of adding local-awareness (see Definition 9)

A. Experimental protocol

All experiments were conducted on a computer running
Linux with a core i5 processor at 2.13 GHz. Our method
consists of the following steps:

- Preprocessing the logfile into a transactional dataset.
- Mining periodic patterns: we use PERMINER [1].
- Computing the skypattern cube: we use ORION [9].
- Post-processing the output by computing its steadiness.
1) Preprocessing of logfiles into transactional datasets:

In these experiments, our data always have the form of a
logfile. A logfile is a sequence of events, where each event
is associated with a timestamp. This temporal component will
allow use to exploit periodic patterns, with allow to have a
rich set of measures for skypattern computation.

From a practical point of view, pattern mining algorithms
aim to find common patterns in a transactional dataset There-
fore, in order to make logfiles exploitable by pattern mining
algorithms (e.g. PERMINER), the logfile has to be split into a
sequence of sets of events. In literature there are many possible
methods to split a logfile, for instance for execution traces the
most common method is a Time Interval Method.

Example 10.In Figure 3 we have the result of splitting a logfile
using a time interval of 0.1 ms.

2) Measures: Now we describe some of the measures that
we use for computing the steady patterns for our study cases.
An important advantage of using the skypattern cube is that
we can combine heterogeneous measures, in other words in
one query we can have measures based on (Periodic) Pattern
Mining, on Statistics or on Expert Knowledge.

(i) Classical Periodic Pattern Mining Measures
- Frequency: This measure is to maximize because frequent
event sets help to detect unusual behaviors (e.g. a hard-drive
writing function frequently is followed by an interruption).
- Size: This measure is to maximize because user would like
large patterns having the most possible combinations of events
together in order to detect anomalies in their performance.
- Period: The constant distance between some occurrences of
a pattern x, formally noted as per(x). This measure is to
minimize to obtain event sets that appear often periodically in
the trace.

(ii) Statistical Measures
- % of Rupture of periodicity: The relative gap between the
average distance among the occurrences of a pattern and the
period computed by PERMINER. Formally, %Rupture(x)
This measure is to maximize because we would like to obtain
patterns that seem periodic (in a subset of their occurrences)
but not for all of their occurrences.

Fig. 3. Splitting an execution trace into time intervals of 0.0001 sec (0.1 ms).

(iii) Knowledge-based Measures:We will detail these mea-
sures in each subsection depending on the study case.

B. Steady skypatterns for Trace Analysis

In this section, we report an experimental evaluation on
datasets obtain from execution traces. The aim of Execution
trace analysis is to trace any event that happens during the
execution of a software application and carry out a post-
mortem analysis of the execution trace. This allows to detect
subtle timing bugs between several hardware or software
components. These are not functional bugs and thus cannot
be detected with traditional debugging software, whose intru-
siveness changes the timings of the different components.
In our case we use a trace that has been obtained from a
STMicroelectronics board equipped with a dual core SMP
ARM 1 used in a set-top box. The trace has been collected
while the box presented failures when displaying a video
stream from the HDMI port.

1) Events and Processes: This trace contains various types
of low-level events generated by the operating system:
- I-{i}(p): Interruption number {i} generated by process p.
- C{id1}-{id2}: Switch from process id1 to process id2.
- E-{f} / X-{f}: Enter/Exit syscalls of a function f .
These events are generated by various running processes:
- 0: Main process.
- 1402 (irq/140-vsync0): Interrupt handler process for
interruption-140 (vertical synchronization in main screen).
- 1403 (irq/141-vsync1): Interrupt handler process for
interruption-141 (vertical sync in secondary screen).
- 1577 (irq/138-display): Interrupt handler process for
interruption-138 (display in main screen).

2) Measures: Now we describe the knowledge-based mea-
sures commonly used in execution trace analysis, in addition
to the other measures described in Section VI-A2.
- % of CPU Usage: The percentage of CPU-time in the
processors used by event in a pattern x. %CPU(x) is the ratio
between the sum of all durations for all x occurrences and
the whole duration of the trace. This measure is to maximize
because a pattern x with a high value of %CPU(x) its a pattern
consuming a lot of CPU-time of the processors.

1http://www.st.com/content/st com/en/products/digital-set-top-box-ics/
uhd-set-top-box-processors/stih312.html



(a) # of patterns vs steadiness. (b) # of patterns vs ε.

(c) Time vs frequency. (d) # of patterns vs frequency.

Fig. 4. Quantitative analysis (Computing time and number of patterns).

- Number of Interruptions: The maximal number of interrup-
tions that occur between the beginning and the end of a pattern
x in any of the occurrences of x.
This measure is to maximize because a pattern x with a high
value of #Int(x) is a pattern having events that trigger a lot
of interruptions consuming CPU-time and probably hinders
the usual working of other events.
- Delay between two events: The average delay (i.e. gap)
between two given events appearing in a pattern x for all
its occurrences. In this case, e1=I-140(0) and e2=I-141(1402)
because these interruptions for vertical synchronization in both
screens are not supposed to happen independently.
This measure is to maximize because a pattern x with a high
value of delay(x, e1, e2) is a pattern where these two events
e1, e2 occur with a big time gap meaning that two events
supposed to occur sequentially have an unusual behavior.

3) Quantitative analysis: Figure 4a shows the evolution of
number of patterns by varying the steadiness threshold. The
number of steady patterns decreases rapidly as soon as steadi-
ness threshold increases meaning that there are a few steady
patterns. Figure 4b shows the evolution of number of patterns
by varying ε (i.e. neighborhood size for thick-skypatterns). The
number of thick-skypatterns does not increase dramatically
even for values over 20%. Figure 4c shows the evolution of
computing time by varying the frequency threshold (in terms
of percentage). Our approach remains effective even with low
frequency thresholds. Figure 4d shows the evolution of number
of patterns by varying the frequency threshold (in terms of
percentage). The number of skypatterns is much lower than
the number of periodic patterns making them easier to handle.

4) Qualitative analysis: In this section we analyze the
results of (un)steady patterns in HDMI blackout trace.
a) Global Steady Skypatterns In this section we apply the
global steadiness (see Definition 6). Figure 5a shows the

distribution over the dataset of the most steady pattern:
p923 (C0-1577 C0-2272 C1403-1402 C1577-0 C72-0 I-

138(0) I-140(0) I-141(1402)). Each grey horizontal line rep-
resents events in a time window, and the occurrences of this
pattern are the orange lines.
This pattern is interesting for analysis because it contains
events that are directly linked to display. For instance, it
contains the display-related interruptions 138, 140 and 141 and
switches between their corresponding handler process 1577,
1402 and 1403. There are many other patterns that contain
partially these events but this one is the largest. Also, this
pattern has peaks of %Rupture which means that even if
this events are expected to happen periodically together in
this kind of trace, sometimes they are cut or replaced by other
switches events which breaks the periodicity of the pattern
in some regions. Finally, this pattern has a peak of delay,
meaning that both events (I-140(0) and I-141(1402)) occur too
separately when they were not supposed to.
b) Local-aware Steady Skypatterns In this section we apply the
local-aware steadiness (see Definition 9). Figure 5b shows the
distribution over the dataset (and the 10 subdatasets divided
with red lines) of the most local-aware steady pattern: p954
(C0-1402 C0-1577 C0-2272 C1403-1402 C1577-0 C72-0 I-
138(0) I-140(0) I-141(1402)). The occurrences of this pattern
(blue lines) in the whole dataset (i.e. all the trace).
Similarly to the most global steady pattern p923, this pattern
also contain events that are directly linked to display but
adding some more switches. Unlike p923, we can also study
the nature of this pattern according to the regions. For instance,
in region 5 this pattern has no peak for delay meaning that
for this region there was no problems for vertical sync.
c) Local-aware Unsteady Skypatterns For the least local-aware
steady skypattern we have a tie between various patterns which
are thick-skypatterns for a measure set in a specific region. In
order to illustrate, we only take one p5084 (C1402-18 C1402-
2276 C1402-2278 C1403-1402 C1403-72 C18-0 C2275-
1402 C2278-2275 I-141(1402)) which is a thick-skypattern in
region 2. Figure 5c shows the distribution over the dataset of
the least steady pattern by showing their occurrences of each
pattern (color lines) in the whole dataset (i.e. all the trace), and
the 10 subdatasets are divided with red lines (corresponding
to the time windows).
This pattern is a skypattern for {size,freq} is mostly
composed by switches from/to process 1402 (irq/140-vsync0)
meaning that in this region this interruption has many inter-
action with other processes.

C. Steady skypatterns for Weather

In this section, we report an experimental evaluation for
weather data. The dataset has been obtained from Canadian
historical weather data(http://climate.weather.gc.ca), and we
use the data for Montreal in year 2012 giving the weather
state hourly for the whole year.

1) Measures: Now we describe the knowledge-based mea-
sures commonly used in weather analysis, in addition to the
other measures described in Section VI-A2.



(a) p923 (Global) (b) p954 (Local-aware) (c) p5084 (Local-aware)

Fig. 5. Dataset view of the most (un)steady patterns.

For some measures we are going to use a rela-
tive gap to an optimal value, now we define this gap.

rel_gap(v, o,m,M) =

{ v−m
o−m if v < o
M−v
M−o otherwise

where v is an input value, o an optimal value for v, m minimal
possible value for v and M maximal possible value for v.
- % of Humidity: The percentage of average opti-
mal humidity for an event in a pattern x. Formally,
%Hum(x)=rel_gap(avg(x.hum), 40, 100, 18) where v is
the average humidity for x, the optimal value for humidity (o)
is set to 40% because the good conditions of humidity for life
are about between 30% and 50%, the minimal (resp. maximal)
humidity (m) (resp. M ) registered in Montreal in 2012 is 18%
(resp. 100%). This measure is to minimize because a pattern x
with a low value of %Hum(x) is a pattern having an humidity
far from the optimal living conditions.
- % of Temperature: The percentage of average opti-
mal temperature for an event in a pattern x. Formally,
%Temp(x)=rel_gap(avg(x.temp), 25, 33,−23.3) where v
is the average temperature for x, the optimal value for tem-
perature (o) is set to 25◦C because the good conditions of
temperature for living are about between 23◦C and 27◦C,
the minimal temperature (m) registered in Montreal in 2012
is −23.3◦C and the maximal temperature (M ) registered in
Montreal in 2012 is 33◦C This measure is to minimize because
a pattern x with a low value of %Temp(x) its a pattern having
values of temperature far from the optimal living conditions.
- Wind Speed: The average wind speed of a pattern x.
Formally, wd-spd(x)=avg(x.windspeed). This measure is
to maximize because a pattern x with a high value of
wd-spd(x) contains high-risk events (e.g. tornadoes).
- Visibility: The average visibility of a pattern x.
Formally, vis(x) = avg(x.visibility). This measure is to
maximize because a pattern x with a high value of vis(x)
contains dangerous events in the city (e.g. thunderstorms).

2) Quantitative analysis: Figure 7a shows the evolution of
number of patterns by varying the steadiness threshold. Sim-
ilarly, the number of steady skypatterns is quickly decreases

as soon as steadiness threshold increases. Figure 7b shows
the evolution of number of mined patterns by varying the
frequency threshold (in terms of percentage). This dataset is
very particular because it contains a low number of periodic
patterns which could lead to a negligible difference between
the number of periodic patterns and the number of skypatterns.

3) Qualitative analysis: In this section we analyze the
results of (un)steady patterns in weather log data.
a) Global Steady Skypatterns: In this section we apply
the global steadiness (see Definition 6). Figure 6a shows
the distribution over the dataset of the most steady pat-
tern: p7 (Fog Mosty-Cloudy Rain-Showers) which is
a skypattern for {size,freq,%Temp,%Hum,vis} and
{freq,%Temp,%Hum,vis,%Rupture}. When this pattern
occur it’s periodic but with interval according to the month of
the year. And as expected Fog and Rain-Showers have high
humidity, low temperature and low visibility.
b) Local-aware Steady Skypatterns: In this section we apply
the local-aware steadiness (see Definition 9). Figure 6b shows
the distribution over the dataset of the most steady pattern p4
(Fog Mosty-Cloudy Rain) and its occurrences (blue lines) in
the whole year, and the 12 months. Some occurrences have
a darker tone meaning that this pattern is a local skypattern
for that corresponding subdataset. For example, this pattern
is a skypattern for {freq,%Hum,%Rupture} and {%Temp,
%Hum, wd-spd, vis} globally but locally is a skypattern
in January (for {%Hum,vis}), April (for {%Temp, wd-spd,
vis}) and September (for {%Temp,wd-spd,%Rupture}).
Meaning that a mostly-cloudy rainy fog have peaks of low
visibility and unusual humidity in January, this same effect
with unusual temperatures in April and September.
c) Local-Aware Unsteady Skypatterns: Figure 6c shows the
distribution over the dataset of the least steady patterns by
showing their occurrences (color lines) in the whole year, and
the 12 months of the year. In this case we can clearly see that
these are patterns that are optimal locally to a subdataset.
1) March p139 (Cloudy Ice-Pellets Snow): A skypattern for
{%Temp} and {wd-spd}. This was expected because March



(a) p7 (Global) (b) p4 (Local-aware) (c) p159 (Local-aware)

Fig. 6. Dataset view of the most (un)steady patterns.

(a) # of patterns vs steadiness. (b) # of patterns vs frequency.

Fig. 7. Quantitative analysis (Computing time and number of patterns).

can reach very low temperatures but extraordinarily in 2012
overnight lows for the first time in winter broke −20◦C.
Which partially explains Ice-Pellets instead of Snow Storms.
2) May p145 (Drizzle Fog Mosty-Cloudy Rain Rain-Showers): A
skypattern for {%Hum,wd-spd} and {%Hum,vis}. In May
29, after two days of rain unleashing 120 mm of water,
the streets turned into mud-choked waterfalls and damaged
hundreds of art works at museum.
3) July p155 (Fog Mainly-Clear Mosty-Cloudy Rain-Showers Thun-
derstorms): A skypattern for {%Temp,wd-spd,%Rupture}
and {%Temp,vis,%Rupture}. Meaning that mostly-cloudy,
thunderstorm, fog and rain showers weathers may occur when
there are peaks of temperature and wind speed or visibility
but happen repeatedly in separated periods of July.
4) November p159 (Drizzle Mosty-Cloudy Rain Rain-
Showers): A skypattern for {%Temp,%Hum,%Rupture}
and {%Hum,vis}. Meaning that mostly-cloudy, rain-showers,
drizzle weathers occur when there are peaks of humidity or
temperature but happen repeatedly in separated periods.
Conclusion: Skypatterns have proved to be an efficient way
to discover patterns of interest when given a set of measures.
In order to study the impact of the different measure combi-

nations, the skypatterns can be explored through a skypattern
cube. In this paper, we went one step further and proposed the
notion of steady patterns, which can be seen as “salient points”
of the skypattern cube. Their limited number allows to get a
quick understanding of the main features of the data according
to the given measures. We also extended this notion to datasets
that can be partitioned, providing a new way to characterize
the partitions based on the measures. The relevance and the
effectiveness of our approach have been highlighted through
experiments that show that (un)steady patterns can provide
interesting insights. In the future, we would like to investigate
some promising perspectives. The first one is applicative: our
study is focused on temporal datasets, but studying other
kinds of datasets, such as medical studies, which have many
available measures and possible partitionings. A second one
is algorithmic: currently our approach requires to post-process
all the patterns of the skypattern cube. For sake of efficiency
it could be interesting to directly compute the steady patterns.
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