
HAL Id: hal-01408375
https://hal.science/hal-01408375v1

Submitted on 4 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UML-MARTE Temporal Property Verification Tool
based on Model Checking

Ning Ge, Marc Pantel, Xavier Crégut

To cite this version:
Ning Ge, Marc Pantel, Xavier Crégut. A UML-MARTE Temporal Property Verification Tool based
on Model Checking. International Conference on Embedded Real Time Software and Systems (ERTS
2014), Feb 2014, Toulouse, France. �hal-01408375�

https://hal.science/hal-01408375v1
https://hal.archives-ouvertes.fr

A UML-MARTE Temporal Property Verification Tool based on
Model Checking

Ning Ge, Marc Pantel, and Xavier Crégut

University of Toulouse, IRIT/INPT
{Ning.Ge | Marc.Pantel | Xavier.Cregut}@enseeiht.fr

Keywords: Real-Time System, Temporal Property, UML-MARTE, Time Petri Net, Model Checking

1 Introduction

On today’s highly competitive industrial market, the scale and complexity of safety critical real-time system
are rapidly increasing due to the growth of functional and non-functional requirements. Consequently, veri-
fication of the temporal requirements for real-time system development is becoming more and more difficult
and expensive. Therefore, process and methods for the design and implementation of highly safety critical
real-time system that allow mastering development cost are still an open problem in both industry and
academia.

UML (Unified Modeling Language) [26] was developed to provide a common language for specification,
modeling and documentation in the software development process. Today, UML is the industry standard for
software modeling. MARTE (Modeling and Analysis of Real-Time and Embedded Systems) [1] provides support
for specification, design, verification/validation for real-time embedded systems. We use the term UML-MARTE
to indicate the specification language for this work. Its purpose is to propose efficient formal verification tools
to ease the use of UML-MARTE when developing large scale real-time systems in the early phases of Model
Driven Engineering (MDE). To achieve this goal, we propose a temporal property analysis tool based on Time
Petri Nets (TPN) and the TINA toolset for UML-MARTE real-time system designs.

The most significant issue preventing model checking method to be applied widely in industry is the lack
of scalability. The classic verification methodology will encounter scalability problem very quickly along with
the growth of system size. Complex systems usually have thousands of transitions. Although a huge part
of transition’s firing sequence has been eliminated by the system’s behavior, the possible permutation of all
the other ones is still a huge number that will usually lead to combinatorial state explosion. The proposed
analysis tool improves the efficiency of verification from the following aspects: mapping UML real-time model
to TPN, specifying temporal properties using property patterns, performing efficient model-checking based on
observers for the verification of temporal properties, reducing state space before performing model checking.
The verification tool also integrates a fault location analysis approach to help end users in locating the origin
of fault when a safety property is unsatisfied.

We present the state of the art of temporal property verification in Section 2; Time Petri Net and TINA

are presented in Section 3; The temporal property verification tool is detailed in Section 4; A case study is
provided in Section 5; Section 6 gives some conclusion.

2 State of the Art of Temporal Property Verification

Verification of a system is the task of determining that the system is built according to its explicit specifica-
tion. Verification assesses the products against system requirements and ensures that a system will perform
as specified.

In practice, temporal property verification in MDE is implemented in two manners: simulation and formal
verification. Simulation is relatively inexpensive in terms of execution time. But it only validates and verifies
the behavior of a system for one or several particular computation paths. Some existing works have achieved

success in the analysis of real-time systems, such as Cheddar1, SynDEx2, UML-MAST3, and MARTE2MAST4. These
simulation techniques suffer from the exhaustivity problem, which means it is not possible to simulate all
possible behaviors in a design. Contrasting to simulation, formal verification is a systematic process that
uses mathematical reasoning to verify that the design intent is preserved in the implementation.

Formal methods, such as model checking, theorem proving, static analysis, etc, allow specifying a system’s
requirements, designing an implementation, and assessing its consistency, completeness, and correctness
in a mathematical exhaustive fashion. Our work uses model checking as formal method to analyze the
temporal requirements. Many model checking tools have been developed to assess temporal logic formulae
over transition systems/Kripke structure (ktz), such as TINA5 (for Petri Nets and Time Petri Nets), Roméo
6 (for Time Petri Nets), UPPAAL7 (for Timed Automata) and SPIN8 (for Promela).

There also exists some other temporal property verification approaches such as the use of Integer Linear
Programming (ILP) by Lauer et al. [19] that used a modeling approach for Integrated Modular Avionic (IMA)
based on the tagged signal model [23] and the abstraction of network. The tag system was then transformed
into ILP problem. They proposed evaluation method for the end-to-end temporal properties based on ILP,
and obtained optimal results.

3 Time Petri Net and TINA Toolset

Time Petri Nets [25] extends Petri Nets with timing constraints on the firing of transitions. We use an
example (see Ex. 1) to explain its syntax and semantics.

Example 1 (Time Petri Net (TPN)). This example given in Fig. 1 models the concurrent execution of a
process. The transitions in TPN are extended with a time constraint that controls the firing time. Pinit is the
place holding the initial token. When the fork transition is fired, concurrent task1 and task2 start at the
same time within respective execution time [11,15] and [19,27] associated to the transitions modeling their
end. The time constraints rely on a local clock associated to the transitions that start once the transitions
are enabled. When it reaches the join state, the system will exit or restart the whole execution according to
the running time.

[0,0] [3,10]

2

[11,15]

[19,27]Pinit Tfork

Task2_running

Task1_running

Task2_ends

Task1_ends

Pjoin Texit Pexit

(10, ∞]

2

Trestart

Figure 1. Time Petri Net Example

Time Petri Nets are widely used to formally capture the temporal behavior of concurrent real-time
system due to their easy-to-understand graphical notation and semantics. The use of time intervals instead

1 http://beru.univ-brest.fr/ singhoff/cheddar/index.html
2 http://www.syndex.org/
3 http://mast.unican.es/umlmast/
4 http://mast.unican.es/umlmast/marte2mast/
5 http://projects.laas.fr/tina/
6 http://romeo.rts-software.org/
7 http://www.uppaal.com/
8 http://spinroot.com/spin/what.html/

of explicit clocks as in timed automaton eases the modeling and analysis. There exist several analysis tools,
such as TINA or Roméo. Our work relies on TINA (TIme petri Net Analyzer). TINA is a toolbox for the edition
and analysis of Petri Nets, also providing inhibitor and read arcs, Time Petri Nets, with possibly priorities
and stopwatches, and an extension of Time Petri Nets with data handling called Time Transition Systems
(tts). TINA toolset includes the following tools: nd as editor and GUI for Petri Nets, Time Petri Nets and
automata; tina for construction of reachability graphs; sift for construction and checking of reachability
graph; selt as a State/Event LTL model checker; muse as the µ-calculus model checker; etc.

4 UML Temporal Property Analysis Tool

The main contribution of this work is the design and implementation of a property-driven verification frame-
work dedicated to temporal properties verification for UML-MARTE real-time software designs (see Fig. 2).
The verification framework consists of five core elements: semantic mapping from UML-MARTE to TPN; tempo-
ral property specification; temporal property verification; state-space reduction and feedback analysis. We
details these elements in the follows sections.

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Iteration
Tag

Property Pattern
Result

Temporal Property
Specification

Verification
Result

Computation

Temporal Property
Verification Result

Feedback
Generation

System Model
Temporal
Property

Architecture
Model

Behavior
Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern
Temporal

Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

TPN
Reduction

4

Figure 2. Framework of UML analysis Tool

4.1 Semantic Mapping from UML-MARTE to TPN

UML, by its nature, was intended to be a general purpose software modeling language, and as such, is not
simple enough to be efficiently used by non-software experts. For the purpose of this work, we have selected
a large enough subset of UML diagrams and diagram elements for modeling real-time software architecture
and behavior. We focus on the semantic mapping from UML model to verification model.

From the viewpoint of methodology, this mapping approach is based on the pioneering work [4] by
Combemale et al. Aiming the definition of all the steps from the property specification to effective verification,

they introduced a generic approach to define the operational semantics (a semantics of observable events)
built upon the properties expressed at the metamodel level. Property-driven means that the formal activities
in the development process are based on the purpose of property-verification-ease. From a language point of
view, a precise definition of model elements behavior is required for the execution of behavioral models.

We defined operational semantics for the end user model UML-MARTE and map it to the execution model
TPN. According to the to-be-assessed temporal property, we have defined the operational and mapping se-
mantics for UML architecture diagram: composite structure diagram and UML behavior diagrams: activity [14]
and state machine. For some untimed UML elements not influencing temporal properties, the target TPN se-
mantics can be standardized and homogeneous for all the properties, such as Join, Fork, Merge, Initial nodes
in activity diagram, etc. For the timed UML elements, the mapping semantics eliminates the unnecessary in-
formation and preserves the minimal set of semantics to reduce the state space in the verification. A universal
scheduling algorithm including a preemption option is defined. The scheduling algorithm will guarantee the
semantic that is used to decide for the given time T, which resource requester(s) will be allocated by the
resource instance(s).

4.2 Temporal Property Specification

The temporal requirements can be semantically decomposed into a set of elementary properties called prop-
erty patterns. Property patterns, on one hand ease the use of formal methods especially for the non-expert
users by providing the recurrent solutions to verification problem; and on the other hand decompose complex
properties into a set of simpler ones and thus decrease the cost of verification.

Dwyer et al. firstly proposed qualitative time property patterns for finite-state verification [5, 6]. They also
performed a large-scale study in which specifications containing over 500 temporal properties were collected
and analyzed. They noticed that over 90% of these could be classified under one of the proposed patterns
[6], which encourage other works to extend Dwyer’s pattern system to define quantitative time property
patterns with additional real-time constraints [18, 17, 2].

From the viewpoint of property verification, we think the quantitative time property patterns based on
Dwyer’s patterns are not atomic. Most requirement patterns can be checked using a set of atomic patterns.
We have defined such a minimal set of atomic property patterns used to compose temporal requirements
in purpose of specification and verification. The classic temporal property patterns will be automatically
mapped to our atomic patterns using the predefined pattern metamodel and the mapping library.

In the proposed pattern system (see Fig. 3), the temporal requirements will be specified using tempo-
ral property patterns (either atomic pattern or composite pattern). The composite patterns can be easily
composed by using the binary operators (or, and, imply). Atomic patterns are built using occurrence modi-
fier, basic predicate and scope modifier. Basic predicates are based on state and event modifier while scope
modifiers are based on event modifiers. We have applied parts of this approach for a subset of temporal
requirements in the work [13, 12].

4.3 Temporal Property Verification

A quantitative time requirement expressed using Dwyer’s patterns with real-time extensions can be specified
using various formalisms of logic formulae. For example, the time-bounded response property Exist S responds
to P within k t.u (time unit) can be specified as EG(P ⇒ AF<k(S)) in TCTL. Such an expressing method
for quantitative properties are interesting for theoretical purpose, but its practical use would be limited due
to the capability of model checking tools.

Usually, the above problem is solved by using observers. Observers run in parallel with the model under
checking. A certain transitions will be fired and the expected states will be reached if and only if some timed
conditions are satisfied. These behaviors will be observed to check the satisfaction of temporal properties.

As we presented in the work [9, 10, 12], a TPN observer is a complementary structure attached to the
original system. As shown in Fig. 4, in order to assess a temporal property, a TPN observer is associated with
the original system, by linking from the transition TA in component A and the transition TB in component
B. The observer contains a place Ptester, which can assess this temporal property using state-event modal
µ-calculus (MMC) formulae in ktz format. According to the temporal requirement, one or more MMC formulae

Atomic Pa*ern

Event Modi2erState

Scope Modi2erBasic PredicateOccurrence Modi2er

Temporal Property

Composite Pa*ern

Temporal Property

Pa-ern

Figure 3. Temporal Property Specification

TPN Structure TPN Structure

TPN Structure

Component A TPN Component B TPN

TPN Observer

[0,0] [0,0]

TA TB

ptester

Figure 4. Observer Structure

are generated, such as �(Ptester = 1) or ♦(Ptester = 0), etc. The MMC formulae will be on-the-fly checked
using model checker muse in TINA toolset.

As model checking consumes a lot of resources, the design and implementation of the observers obligate
to follow four principles to ensure that the observers are sound and to minimize the state space: First, the
observer should not impact the system’s behavior by introducing extra semantics; Second, the introduction
of TPN observers should bring minimized side effect to the size of the state space of the original system;
Third, the TPN system model with integrated observers should be able to perform the possible highest
abstraction (marking abstraction in our case) when unfolding the reachability graph. This high abstraction
reachability graph must preserve all the information related to the expected property; At last, the checking
of each property pattern must be independent in terms of unfolding reachability graph to promote parallel
computation.

When performing model checking, an observer can give an answer such as Yes or No for the satisfaction
of the given property. For quantitative properties, however, users usually expect to know what is the bound
[tmin, tmax] of that property instead of whether the property is bounded by [tmin, tmax]? In order to fill this
gap of usage, we propose an iterative method (shown as the service 3 in Fig. 2) that will gradually approach
the bounding value by integrating the observer into a binary search engine.

4.4 State Space Reduction

A typical system will run with a large amount of transitions and make the above prerequisites hard to
maintain. The fundamental reason why this computation-oriented approach is not scalable is because it tries

to preserve all information for the verification afterwards. In this work, we focus on state space reduction
approaches related to TPN model dedicated to temporal property verification.

In the above observer-based model checking approach, we have presented the use of on-the-fly and state
abstraction approaches. Both of them focus on reducing state space when performing model checking. An-
other reasonable thinking is to create an equivalence of original TPN in terms of property-related system
behavior, but with less transitions. This reduces directly the scale of computation before performing gener-
ation of state space. Before being sent to the model checker ,the TPN must be reduced in appropriated ways
according to the properties to be assessed.

The reduction is property-driven, which means all structures irrelevant to the verification of a given
property will be eliminated. Compared to existing techniques [27], our approach is driven by property,
because TPN system has been integrated with property observers. This property-driven characteristic allows
removal of much more transitions in TPN model, which directly signifies more reduced state space in model
checking.

We propose practical topology-implicit semantic equivalence reduction patterns which are commonly
found in TPN model with observer structures for temporal property verification [11]. In this approach, redun-
dant zero-time patterns and sequential encapsulation pattern are proposed. In some cases, it is less trivial to
observe and extract a localized topology pattern but still necessary to have the whole TPN reduced. A novel
reduction method based on behavioral equivalence is proposed. This method identifies sub-TPN which exhibits
the same behavior as the original net. Before reducing the pattern-matched structures, we use bi-simulation
function to guarantee the reduced net corresponds exactly to the original behavior.

4.5 Fault Localization in Model Checking

Existing automated fault localization techniques in model checking usually produce a set of suspicious state-
ments without any particular ranking. We designed an automated fault localization approach based on model
checking [16, 15] to ease and accelerate debugging by locating and ranking the suspicious elements in model
checking when a safety property is unsatisfied. We propose a suspiciousness factor to rank the potentially
faulty transitions. We construct error traces in the reachability graph using the violation states. The sus-
piciousness factor is then computed using the fault contribution of each transition on all the error traces.
The fault contribution is computed using the entropy and differential entropy of transition. Based on the
mapping semantics from the end user model (in our case UML) to the verification model (in our case TPN),
the faulty transitions in the reachability graph can be back-traced from TPN to UML.

5 Case Study

We use an avionic case study investigated by M. Lauer et al. [22, 20, 19, 21], which is a part of a flight
management system (FMS) to test our approach. The temporal requirements to be verified is latency temporal
properties. We model the case study system in UML-MARTE composite structure and activity diagrams, and
then map it to TPN model using the semantic mapping. The temporal property is specified using the property
patterns, and then verified using the observer-based model checking. The scalability test shows that our
proposal is able to analyze large scale systems by using the TPN reduction.

5.1 Case Study Description

The architecture of the FMS case study is represented by Fig. 5. Seven modules, from Module1 to Module7
(named M1, ..., M7 afterwards), are used to map the avionic functions. Due to the page limit, the detailed
description of the case study can only be consulted in [22, 20, 19, 21].

The functional chain of responding to pilot’s sporadic request is in Fig. 6. At any time, the pilot can
request some information on a given waypoint. The KU1 (Keyboard and Cursor Control Unit) controls the
physical device used by the pilot to enter his requests. When KU1 receives a request (req1), it broadcasts
wpid1 and wpid2 to the Flight Managers FM1 and FM2 respectively. The FMs manage the flight plan,
i.e., the trajectory between successive waypoints. When a request occurs, both query the NDB (Navigation
Database) by sending query1 (resp. query2) to retrieve the static information on the waypoint such as

Module
1

KU1

MFD1

Module
2

KU2

MFD2

Module
3

FM1

Module
4

FM2

Module
5

ADIRU1

Module
6

ADIRU2

Module
7

NDB

S1

S4 S5

S3S2

RDC1 RDC2

sensor1 sensor2

key1 display2 key2display1

Figure 5. Architecture of Case Study

the latitude and the longitude. The NDB separately answers each FM by sending a message answer1
(resp. answer2) containing the expected data. Upon reception of this message, each FM computes two
complementary dynamic data: the distance to the waypoint, and the estimated time of arrival (ETA). These
data (wpInfo1 and wpInfo2 resp.) are periodically sent to respective MFDs (Multi Functional Display)
which periodically elaborate the pages to be displayed on the screens.

FM1

FM2 NDB

KU1

FM2

MFD1FM1NDB

MFD2

req1

disp2

disp1

wpInfo2

wpInfo1

answer2

answer1

query2

query1
wpId1

wpId2

Figure 6. Functional Chain: Sporadic Response to Request

5.2 Latency Temporal Properties

Because of their critical nature, IMA systems must also satisfy strong real-time requirements. In the case
study, we focus on the latency temporal requirements. The latency corresponds to the time elapsed between
an event at the beginning of a functional chain and the first event depending on it at the end of the chain,
i.e. a sporadic input must result in an output before a certain amount of time.

Example 2 (Latency Property Example). The example of latency is represented in Fig. 7. On the functional

chain:
req1−−−→ KU1

wpId1−−−−→ FM1
query1−−−−→ NDB

answer1−−−−−→ FM1
wpInfo1−−−−−−→ MFD1

disp1−−−→, the maximum time between
req1 and the first occurrence of disp1 depending on req1 must be 700 ms.

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

FM
1

FM
1

FM
1

FM
1

FM
1

NDB NDB NDB

M1

M3

M7

req1[1]

0

15 45

25 50 225

75 195

25 45 125

disp1[5] disp1[6]

l10 240

Figure 7. Latency Temporal Property

5.3 Modeling and Semantics

We specify the model of the case study by using UML-MARTE. The IMA architecture and AFDX network are
specified using composite structure diagram; the behavior of each module is specified using activity diagram
for the functional chain of latency temporal property. An abstraction of AFDX network is applied. The
abstraction is proposed in [20]. The complexity can be significantly reduced by characterizing the lower
(resp. upper) bound of the network traversal time along the virtual link path as a time interval [a, b]. These
bounds are determined by the trajectory approach [24] which has been successfully applied to AFDX networks
in [3].

5.4 Latency Temporal Property Verification

The UML-MARTE model is automatically mapped to the verification model TPN. Then the observers dedicated
to maximum time interval property are added to the associated TPN transitions. This observer-integrated
model and MMC formulae are sent to the muse model checker to perform model checking. The computation
results are shown in Table 1. For latency temporal property, the WCT (resp. BCT) is 450.4 (reps. 75.2) ms. For
freshness temporal property, the WCT (resp. BCT) is 316429 (resp. 1012) ms. The original system for latency
property without TPN observer has 9378 states and 23250 transitions. TPN observers cause side-effect to the
size of stat space of original system. The side-effect depends on tmin and tmax on the tester transition. By
applying the reduction techniques, the number of state and transition is largely reduced. Take WCT latency
property for example, compared to the execution time before reduction (278.313 s), the execution time is
reduced to 2.484 s.

Table 1. Latency Temporal Property Verification Result

Property
Property

Value (ms)
State/Transition Number Execution Time (s)
Before Reduc. After Reduc. Before Reduc. After Reduc.

Latency
System N/A 9378/23250 N/A N/A N/A

WCT 450.4 67105/145024 9/10 278.313 2.484
BCT 75.2 11162/28922 8/9 43.781 3.719

5.5 Scalability Test

The proposed methods target large scale systems. We implement a series of experiments to evaluate whether
the cost of verification is acceptable for the large scale systems by extending the case study. We test the

scalability of proposed methods by increasing the length of each functional chain. The latency functional
chain is enlarged by increasing the number of NDB . Each latency functional chain traverses P NDB , i.e.
2P + 3 functions.

L1 =
req1−−−→ KU1

wpId1−−−−→ FM1
query1−−−−→ NDB1

query2−−−−→ ...
queryP−1−−−−−−→ NDBP−1

queryP−−−−−→ NDBP

queryP−−−−−→ NDBP−1
answerP−1−−−−−−−→ ...

answer2−−−−−→ NDB1
answer1−−−−−→ FM1

wpInfo1−−−−−−→ MFD1
disp1−−−→

(1)

By increasing P from 1 to 11, we give out the property values and solving time by using proposed
verification and reduction approaches in Table 2. The reduction phase consumes much more time than the
model checking. Once the reduction is finished, the analysis phase is fast. The binary search method is used
to compute the bound value. Fig. 8 shows that the solving time of case study is linear to NDB number.

Table 2. Scalability Test of Latency Property

NDB/Fun.
Prop. Val. (ms) S/T (after R.) Reduction

Time (s)
Analysis Time (s) Solving Time (s)

WCT BCT WCT BCT WCT BCT WCT BCT

1/7 75.2 450.4 9/10 8/9 38.049 2.484 1.860 40.533 39,909

2/8 125.2 750.4 9/10 8/9 57.876 2.656 1.883 60.532 59,759

3/9 275.2 1050.4 9/10/ 6/5 79.813 2.812 2.079 82.625 81,892

4/10 375.2 1350.4 9/10 6/5 102.500 2.906 2.079 105.406 104,579

5/11 425.2 1650.4 9/10 6/5 124.987 3.015 2.102 128.002 127,089

6/12 575.2 1950.4 9/10 6/5 149.359 2.891 2.196 152.250 151,555

7/13 675.2 2250.4 9/10 6/5 169.607 2.953 2.227 172.560 171,834

8/14 725.2 2550.4 9/10 6/5 193.329 3.031 2.250 196.360 195,579

9/15 875.2 2850.4 9/10 6/5 216.239 3.000 2.211 219.239 218,45

10/16 975.2 3150.4 9/10 6/5 239.953 3.047 2.195 243.000 242,148

11/17 1025.2 3450.4 9/10 6/5 263.049 3.188 2.195 266.237 265,244

0	

50	

100	

150	

200	

250	

300	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

So
lv
in
g	
Ti
m
e	
(s
)

NDB	 Number

Latency	 for	 L1

WCT	

BCT	

Figure 8. Solving Time of Scalable Latency Property

6 Conclusion

The UML temporal property verification tool is applied during the architecture design phase of MDE. This tool
targets the efficient verification, and supports the analysis of temporal requirements in real-time systems.
The efficiency is ensured by the approaches integrated in the tool framework, including the property-driven
semantic mapping, property specification based on patterns, observer-based model checking, and state space
reduction. We test the integrated tool, on a simplified industrial case study: IMA-based airborne system. The
test results show the efficiency of the tool.

In the future, we intend to investigate new approaches to diagnosing design errors based on the model
checking results. We have got some preliminary results in the works that diagnose faults in the simulation
and testing based on Hidden Markov Model [8, 7]. The next step is to investigate how to integrate these
approaches in the formal verification of real-time properties and other functional properties.

Acknowledgment

This work was funded by the FUI Projet P and EuroStars HiMoCo projects.

References

1. OMG, UML profile for MARTE: modeling and analysis of real-time embedded systems version 1.0 (Nov 2009)
2. Abid, N., Dal Zilio, S., Le Botlan, D.: Real-time specification patterns and tools. In: Formal Methods for Industrial

Critical Systems, pp. 1–15. Springer (2012)
3. Bauer, H., Scharbarg, J.L., Fraboul, C.: Applying and optimizing trajectory approach for performance evaluation

of afdx avionics network. In: Emerging Technologies & Factory Automation, 2009. ETFA 2009. IEEE Conference
on. pp. 1–8. IEEE (2009)

4. Combemale, B., Crégut, X., Garoche, P.L., Thirioux, X., Vernadat, F.: A property-driven approach to formal
verification of process models. In: ICEIS (Selected Papers). Lecture Notes in Business Information Processing,
vol. 12, pp. 286–300. Springer (2007)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state verification. In: Pro-
ceedings of the second workshop on Formal methods in software practice. pp. 7–15. ACM (1998)

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In:
Proceedings of the 21st International Conference on Software Engineering. pp. 411–420. ACM (1999)

7. Ge, N., Nakajima, S., Pantel, M.: Efficient online analysis of accidental fault localization for dynamic systems
using hidden markov model. In: Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS
Integrative M&S Symposium. p. 16. Society for Computer Simulation International (2013)

8. Ge, N., Nakajima, S., Pantel, M.: Hidden markov model based automated fault localization for integration testing.
In: Software Engineering and Service Science (ICSESS), 2013 4th IEEE International Conference on. pp. 184–187.
IEEE (2013)

9. Ge, N., Pantel, M.: Time properties verification framework for uml-marte safety critical real-time systems. In:
European Conference on Modelling Foundations and Applications. pp. 352–367. Springer (2012)

10. Ge, N., Pantel, M.: Verification of synchronization-related properties for uml-marte rtes models with a set of time
constraints dedicated formal semantic (2012)

11. Ge, N., Pantel, M.: Real-time property specific reduction for time petri net. In: International Workshop on Petri
Nets and Software Engineering (PNSE@PetriNets). pp. 165–179 (2014)

12. Ge, N., Pantel, M., Berthomieu, B.: A flexible wcet analysis method for safety-critical real-time system using
uml-marte model checker (2014)

13. Ge, N., Pantel, M., Crégut, X.: Formal specification and verification of task time constraints for real-time systems.
In: Leveraging Applications of Formal Methods, Verification and Validation. Applications and Case Studies, pp.
143–157. Springer (2012)

14. Ge, N., Pantel, M., Crégut, X.: Time properties dedicated transformation from uml-marte activity to time
transition system. ACM SIGSOFT Software Engineering Notes 37(4), 1–8 (2012)

15. Ge, N., Pantel, M., Crégut, X.: Automated failure analysis in model checking based on data mining. In: Interna-
tional Conference on Model and Data Engineering. pp. 13–28. Springer (2014)

16. Ge, N., Pantel, M., Crégut, X.: Probabilistic failure analysis in model validation & verification. In: International
Conference on Embedded Real Time Software and Systems (ERTS) (2014)

17. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electronic Notes in Theoretical Computer Science
153(2), 117–133 (2006)

18. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the 27th international conference
on Software engineering. pp. 372–381. ACM (2005)

19. Lauer, M., Ermont, J., Boniol, F., Pagetti, C.: Latency and freshness analysis on ima systems. In: Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference on. pp. 1–8. IEEE (2011)

20. Lauer, M., Ermont, J., Boniol, F., Pagetti, C.: Worst case temporal consistency in integrated modular avionics
systems. In: High-Assurance Systems Engineering (HASE), 2011 IEEE 13th International Symposium on. pp.
212–219. IEEE (2011)

21. Lauer, M., Ermont, J., Pagetti, C., Boniol, F.: Analyzing end-to-end functional delays on an ima platform. In:
Leveraging Applications of Formal Methods, Verification, and Validation, pp. 243–257. Springer (2010)

22. Lauer, M.: Une mthode globale pour la vrification d’exigences temps rel - Application l’Avionique Modulaire
Intgre. Ph.D. thesis (juin 2012)

23. Lee, E.A., Sangiovanni-Vincentelli, A.: Comparing models of computation. In: Proceedings of the 1996
IEEE/ACM international conference on Computer-aided design. pp. 234–241. IEEE Computer Society (1997)

24. Martin, S., Minet, P.: Worst case end-to-end response times of flows scheduled with fp/fifo. In: Networking,
International Conference on Systems and International Conference on Mobile Communications and Learning
Technologies, 2006. ICN/ICONS/MCL 2006. International Conference on. pp. 54–54. IEEE (2006)

25. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of a theoretical study. Commu-
nications, IEEE Transactions on 24(9), 1036 – 1043 (1976)

26. OMG: Unified Modeling LanguageTM, Superstructure (Feb 2009)
27. Sloan, R.H., Buy, U.: Reduction rules for time petri nets. Acta Informatica 33(7), 687–706 (1996)

