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ABSTRACT
Problems where agents wish to cooperate for a common goal,
but disagree on their view of reality are frequent. Of partic-
ular interest are settings where one agent is an AI “helper
agent” and the other is a human. The AI wants to help
the human to complete a task but the AI and human may
disagree about the world model. This may come about for
example because of the limited rationality and biases of the
human or because of misaligned reward models. In this pa-
per, we formalize this as the multi-view sequential game,
and show that even when the human’s model is far from
correct, an AI can still steer their behavior to more benefi-
cial outcomes. In particular, we develop a number of algo-
rithms, based on dynamic programming to discover helper
policies for the AI, under different assumptions about the
AI’s knowledge. Experimentally, we show that the AI’s be-
liefs about human model are not required to be accurate in
order to act as a useful helper agent.

CCS Concepts
•Human-centered computing → Collaborative interac-
tion; •Computing methodologies → Multi-agent sys-
tems;

Keywords
stochastic games, Human-AI co-operation, human-in-the-
loop, Markov decision process, backwards induction

1. INTRODUCTION
Situated in the general area of value-aligned AI, we in-

troduce a model of sequential multi-agent decision making
for agents whose views of the world disagree. This can oc-
cur when agents have simply different utilities, beliefs, or
computational bounds. It can lead agents to different con-
clusions about what the optimal joint policy is, even when
they in principle agree on the objectives. Of main interest
to us is the case where agents have the same utility function,
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but their models or utility estimates differ due to bounded
rationality or information. This is particularly the case in
scenarios where humans and artificially intelligent agents in-
teract. The problem for the AI agent is to design a policy
that takes into account human behaviour in order to help
the human achieve its actual goal. This is the focus of the
present paper.

As an example, consider humans trying to rescue people
from a fire, with the aid of robotic agents. The robots may
have accurate information about the layout of the build-
ing and so may be better equipped to make decisions about
where to search. They should, however, take into account
the limited knowledge of the human agents. Another exam-
ple is a doctor trying to plan diagnostic tests for a patient.
A diagnostic aid AI may provide a list of recommended tests
for the doctor to perform, in order for the doctor to arrive
at an accurate diagnosis with a small number of tests.

Formalising this setting leads to a class of sequential multi-
agent decision problems, extending stochastic games. In
particular, while in a stochastic game there is an underlying
transition kernel to which all the agents agree, the same is
not necessarily true in our setting. Each agent may have
a different transition model. In particular, we assume that
humans are incorrect about reality, and so the AI must plan
taking this into account.

This framework that we develop is applicable to many
scenarios involving human-AI collaboration, where there is
agreement about the utility function, but disagreement about
the optimal plan due to bounded human rationality. In this
paper we model this bounded rationality through allowing
the human to have an incorrect world model.

We focus on collaborative policies, where the AI takes ac-
tions directly in the environment together with the human.
The human is assumed to observe the policy of the AI and
to best respond to this policy, but for a potentially incorrect
model of the world. We consider variations where in addi-
tion to the human having an incorrect model of the world,
this (incorrect) model is not known by the AI.

In this paper, we examine the helper agent problem from
the perspective of an AI trying to help a human. In particu-
lar, we model the problem as a generalized stochastic game,
and study the power of the helper-AI intervention as the
human’s model of the world becomes more noisy and also
considering that the AI may not completely understand the
human’s viewpoint. We investigate computational solutions



to this problem and demonstrate that the AI can indeed be
helpful, even when it misunderstands humans.

In particular, we show that these types of games are sig-
nificantly different from standard sequential games, as they
are not efficiently solveable via backwards induction, even
when players take alternating moves with full information
and with a finite time horizon. In this paper, we study
the effect of a dynamic programming algorithm for find-
ing a policy for the AI, when the human’s model is known.
In particular, we develop a backwards induction algorithm,
which maintains separate transition matrices and values for
both players, to find approximately optimal policies for the
AI. We provide a number of experimental results for apply-
ing this framework to the problem of AI-helper agents. We
show that the helper-AI will improve the human’s perfor-
mance unless the human’s model is extremely noisy, and as
long as the AI understands the human’s world model well
enough. However, blithely assuming that human model is
correct and identical to the planner’s can lead to a mod-
erate performance loss. We tested our algorithms on three
types of environments. Firstly, hand-crafted environments
with small numbers of states, designed to maximise the dis-
crepancy between the views of the human and AI. Secondly,
randomly generated environments. Finally, an environment
corresponding to a problem in sequential experiment design.

1.1 Related work
A related problem is how to use internal rewards to im-

prove the performance of computationally-bounded, rein-
forcement learning agents [13]. For example, even a myopic
agent can maximize expected utility over a long time horizon
if augmented with appropriately designed internal rewards.
This model can be cast into our framework by allowing the
helper agent actions to directly provide rewards to the hu-
man. However, unlike AI, it is less natural to consider a
reward deliver from the robot to the person. Consequently,
we focus on the AI taking actions in the same environment
as the human.

Another related problem is how people can be used to
train an AI agent [2]. This essentially allows the teacher
to demonstrate how to perform a given task. The problem
is how to make the best use of opportunities for demon-
stration. This setting naturally falls within our framework,
where the teacher takes the role of our AI and the learner
the role of our human. We would need to specify an appro-
priate advice-giving set of actions for the teacher agent. But
previous work assumes that agents have a consistent envi-
ronment model. More precisely, if the learner plays action
a at state s, and the teacher’s optimal policy plays a′, that
doesn’t necessarily mean that the learner’s assumed optimal
continuation matches that of the teacher. Consequently, the
learner may perform even worse under if he changes his ac-
tions.

The work most closely related to ours is that of envi-
ronment design [15, 14] and cooperative inverse reinforce-
ment learning [6]. In these problems, an AI observes a hu-
man agent performing a task, and uses inverse reinforcement
learning [10] to estimate the utility function of the human.
In environment design, the AI is assumed to associated a
limited supply of rewards with different states, and makes
multiple interventions in order to modulate the policy se-
lected by the person. In cooperative iRL, the problem is that
the AI wants to co-operate with the human in a task, but

does not know what the task is. In particular [6] applies this
framework to a set of two-stage game problems where the
human demonstrates in the first stage and the AI imitates in
the second stage. In particular, they show that the human
must take into account the AI’s best response when pro-
viding demonstrations and they develop a feature-matching
algorithm for computing an appropriate demonstration pol-
icy for the human. Experimentally, they show that this has
a significantly improved performance to uninformed demon-
strations. However, it is not at all clear how the human
would be able to compute or implement this demonstration
policy. The focus of our work is entirely different. Firstly,
in our formal model, we do not assume the human and AI
have the same environment model. Furthermore our goal is
not to infer the rewards of the human agent, but rather to
compute a plan so as to optimally guide a human agent with
an incorrect model.

Our work also relates to methods for computing optimal
strategies in stochastic games [3, 16], but differs in that the
agents (here an AI and a human) have different models of the
transitions between states. Gal and Pfeffer [5] have also in-
troduced a general formalism for representing agent beliefs,
which could be used to model non-aligned beliefs. How-
ever, our focus is specifically on the dynamic, cooperative
(multi-view) setting and the question of how to solve the
AI’s planning problem.

Finally, our methodology for computing AI policies when
there is uncertainty about the human’s model builds upon
the minimax methods developed in [8] for Markov decision
processes with uncertain transition probabilities.

2. THE MULTI-VIEW SEQUENTIAL GAME
We model a setting with two players, where we refer to the

first player as the AI and the second player as the human.
The agents act in a shared world, with the AI and then the
human taking an action in each state (the human having
observed the action of the AI), leading to rewards and state
transitions. Thus, the state dynamic is defined on action
pairs— an action of agent 1, and one of agent 2. The way
the game is structured is that the AI selects a policy, this
policy observed by the human, who then selects a policy.

Each player holds a specific model for the transition law
of the dynamic environment, and the players may not agree
on what the law is. We assume the AI has the correct world
model, and thus when there is disagreement it is the human’s
model that is incorrect. The AI also forms a belief about
the model of the human (either a point belief, or a set-based
belief.) We also allow disagreement about the reward func-
tion, and in general we allow neither reward function to be
correct. To keep the set-up simple, and because we prefer
to focus in this first paper on issues involving disagreement
in the model rather than reward, we will assume here that
if there is disagreement the AI has the correct knowledge of
the reward function of the human.

Definition 1. (Multi-view stochastic game) A multi-view
stochastic game µ is a 2-player game with µ = 〈S,A, ρ, β,B〉,
where

• S is a state space.

• A = A1 ×A2.

• ρ = (ρ1, ρ2) is a pair of reward functions ρi : S → R.



• β = {β1, β2} is a set of probability laws, which repre-
sent each agent’s world model.

• B is the belief agent 1 has about agent’s 2 model. (B
is either a point model, or a set of possible models of
agent 2 ).

• If ρ1 6= ρ2, then agent 1 knows the reward function
of agent 2. Moreover, in this case we also define ρ∗,
which we view as the correct reward function for the
human.

At time t, both players observe the state st, and player
1 selects an action at,1 ∈ A1(st) ⊆ A1. Player 2 observes
at,1 and selects an action at,2 ∈ A2(st, at,1) ⊆ A2. The joint
action is denoted by at = (at,1, at,2).

The model of an agent about the world is encapsulated by
the probability law βi, such that:

st+1 | st,at ∼ βi(st+1 | st,at), (2.1)

where st = s1, . . . , st and at = a1, . . . ,at. The AI agent also
has a belief B about the human agent’s model. In particu-

lar, agent 1 has a set B =
{
β

(k)
2

∣∣∣ k} of probability laws,

each one of which represents a possible model for the second
agent.

Each agent is interested in maximising utility at t with
respect to its own reward:

ui,t(s
T ) ,

T∑
k=t

γt−1ρi(sk), (2.2)

given a sequence of future states st. We also use ui , ui,1
to denote the utility starting from the first step.

For the rest of the paper, unless otherwise state, we as-
sume that ρ∗ = ρ1. We also make the following, stronger
assumption.

Assumption 1. Agent 1’s model is correct.

This assumption is natural in our setting, where the AI is
helping the human in decision making and especially helping
the human to overcome some bounded reasoning patterns
or mistaken models. Hence, the actual world model used
in all of our experimental results will correspond to Agent
1’s transition model. Because of this assumption, then if in
addition the AI’s reward function is correct in that it reflects
what the human’s reward“should be” (perhaps distinct from
the reward function ρ2 adopted by the human), then the
AI’s expected utility reflects that of a benevolent and correct
planner.

In most of the specific problems that we consider, we fur-
ther assume ρ1 = ρ2, and assume this is the correct reward
function for the human. The only exception is the experi-
ment design problem (Example 1). There the reward implic-
itly depends on an agent’s model (since it is induced from
information states), and so the utilities of the two agents
differ when their world models differ. In this particular sce-
nario, we assume that Agent 1 knows Agent 2’s reward (this
follows from agent 1 knowing agent 2’s world model.)

Assumption 2. All players in this game have Markov
policies. The first player’s policy being πi(at,1 | st) and the
second player’s being πi(at,2 | st, at,1). We denote joint poli-
cies by π = (π1, π2).

This second assumption is w.l.o.g. when the state is the
complete observation history.

2.1 Properties
While in Markov decision processes (MDPs) it’s possible

to find policies that are optimal for any starting state, this
is not the case here, as we shall see later. For this reason we
consider the following solution concept.

Definition 2. (Optimal policy) Let σ be a distribution over
starting states s1. Then a joint policy π is optimal under
σ, β1 iff

u(π) , Eπβ1,σ u1 ≥ Eπ
′
β1,σ u1 ∀π′,

where

Eπβ1,σ u1 =

T∑
t=1

γt−1
∑
s∈S

ρ∗(s)β1(st = s | π, σ).

The optimal policy is defined under the model of agent 1,
which we assume to be the correct world model. The reward
function adopted is the optimal reward function, and may
differ from ρ1 or ρ2.

If player 1 fixes their policy, this creates an MDP for player
2, who can then easily compute their best response policy.
In our setting, player 1 announces its policy to player 2.
Then player 1 can take into account the reaction of player 2
to his policy. In Markov decision processes, it is traditional
to use the concept of a value function. This is the expected
utility of a policy from a given starting state. The same
concept can be used in our setting. More precisely, for a
given decision process µ, the value function V , defined as:

V πi,t(s) , Eπβi(ui,t | st = s) (2.3)

is the expected utility according to i’s model, if we start
from state s and follow joint policy π. This policy can be
found with a number of dynamic programming algorithms
such as backwards induction (for the finite horizon case) and
the numerous variants of policy and value iteration for the
infinite horizon case [11].

In MDPs there is always a uniformly optimal policy that

satisfies V πt (s) ≥ V π
′

t (s) ∀s. However, in our setting this is
not necessarily the case. When the first player selects a pol-
icy, they other player follows by selecting a response. The
analogy in the MDP setting would be that the dynamics
of the problem change depending on the policy. Thus, it
is entirely possible that there is no uniformly optimal pol-
icy for the first player. This can be seen by the following
counterexample.



Example 1: Non-uniform domination

ε

State 1

1,11,22,12,2

1

State 2

2,2

Figure 1: Non-dominating counter-example.
States are indicated by circles, with their re-
ward written within. Squares indicate action
pairs at each state. Black dotted lines indicate
agreement in the model, while solid blue lines
the model of player 1, and red dashed ones that
of player 2. Omitted action pairs have arcs di-
rectly from the state.

In this example, the players agree on all rewards. They
also agree on all actions in state 2, and about the ac-
tion (2,2) in state 1. However, they think (1,1) and
(2,1) have opposite effects in state 1. They only par-
tially agree about (1,2), which player 1 thinks has only
2/3 probability of staying in state 1.

Unlike MDPs, in Example 1, there is no optimal station-
ary policy for the infinite horizon discounted case. More-
over, there is a non-stationary policy that outperforms all
stationary policies. These policies are generally cyclic, i.e.
they obey π(at+k | st+k) = π(at | st) for some k > 1. It
is, however, possible to determine them using dynamic pro-
gramming. In fact, [16] describes a backwards induction
method for discovering cyclic equilibria in Markov games.

π1 π2 V1 V2

1,1 1,1 2 2.9 10.77 11
1,2 1,2 2 20 19.1 20
2,1 1,1 10.77 11.23 2 2.9
2,2 2,2 2 20 2 20

cyclic cyclic 19.1 20 16.6 20

Table 1: πi are deterministic policies, taking actions
a1, a2, a3 in each respective state. The i-th column of
Vj shows Vj(i). It can be seen that player 1 has no
dominating policy.

Table 1 shows the state values of different policies of the
two players for this example, when player 2 plays the opti-
mal response to player 1.1 There is no stationary policy for
player 1 that is optimal from all starting states. However,
there is a cyclic policy that achieves this.

Finally, there are also problems which induce a cyclic be-
haviour, even if there is a uniformly optimal policy for them.
Example 2 shows a particularly simple such problem.

1See Section 3 for a precise definition.

Example 2: Cyclic

ε

1,2

0 1,2 1

Figure 2: States are indicated by circles,
with the reward at each state written within.
Squares indicate action pairs at each state.
Black dotted lines indicate agreement in the
transition, while solid blue lines the model of
player 1, and red dashed ones that of player 2.

IN this example, the players agree on all rewards.
There are three states, and two actions for each player.
For the left-most state, the two agents disagree on the
effect of pair (1,2), with the first player’s model cor-
responding to the solid blue arrows and the second
player’s to the dashed red arrows. The agents agree
everywhere else. In the middle state, the action pair
(1,2) remains there and leads to the rightmost state
with equal probability.

3. ALGORITHMS
When player 1 fixes a policy π1, player 2 needs to solve a

maximisation problem. From player 2’s perspective, this is
an MDP, and so a uniformly optimal policy can be found.
Thus, there is always a well-defined best-response policy:

π∗2(β2, π1) = arg max
π2

Eσ,β2 [u2 | π1, π2]. (3.1)

Consequently, given that player 2 computes a β2-best re-
sponse, player 1 can always compute the value of any policy
π1:

Eσ,β1 [u1 | π1, β2] = Eσ,β1 [u1 | π1, π
∗
2(β2, π1)]. (3.2)

Then player 1 needs to find a policy

π∗1(β1, β2) ∈ arg max
π1

Eσ,β1 [u1 | π1, β2]. (3.3)

In the case where player 1 has the correct reward, and
the correct world model, then this will is optimizing the
expected utility created by the joint policy induced by the
two players. Unfortunately this is not a zero-sum problem.
This can be seen by writing it in standard form:

Lemma 1. A multiview stochastic game µ can be written
as a game Gq(µ) = 〈π, v〉 with joint strategies π and values

v, such as the value of the k-th policy tuple π(k) = (π
(k)
1 , π

(k)
2 )

for player i is:

vk,i = Eσ(s),βi [ui | π
(k)
1 , π

(k)
2 ]. (3.4)



a subgame perfect Nash equilibrium must exist, the policy
space is rather large. For example, for infinite horizon undis-
counted problems, we must at least consider all stationary
policies, which are O(|S||A). For that reason, we develop an
approximate algorithm based on dynamic programming.

3.1 Dynamic programming approximation
We now describe a dynamic programming approximation.

First, we show how to formulate it as a backwards induction
algorithm for the case where the AI knows the model of the
human. We remind the reader that that player 1 commu-
nicates its policy π1 to player 2 and that player 2 can see
player 1’s action before he chooses his own. At stage t of
the program, player 2 has observed the current state st and
the action at,1 of the first player, and also knows the future
policy of player 1. He now chooses his action

a∗t,2(a1) ∈ arg max
a2

ρ(st)+γ
∑
st+1

β2(st+1|st, a1, a2)V2,t+1(st+1).

For every state and player-1-action, there is a well-defined
continuation for player 2. Now, player 1 needs to define his
action. This can be done easily, since we know player 2’s
continuation, and so we can define a value for each state-
action pair for player 1:

Q1,t(st, at,1) = ρ(s)+γ
∑
st+1

β1(st+1|st, at,1, a∗2(at,1))V1,t+1(st+1).

Action a∗t,1 can now be defined as maximizing Q2,1. What
remains is to define the values of the current state for both
players, which is

Vi,t(st) = Qi,t(st, a
∗
t,i). (3.5)

Optimality.
Contrary to the MDP setting, this algorithm may not ob-

tain the optimal policy. In addition, for the discounted infi-
nite horizon case, it may not converge to a stationary policy.
This is because of the dependency between the future pol-
icy of player 1 affects the current action of player 2, and so
the effective transition matrix for player 1. More precisely,
the transition actually depends on the future joint policy
πn+1:T , because this determines the value Q2,t and so the
policy of the second player. In practice, this results in a
cyclic behavior for infinite-horizon discounted games. Simi-
lar cycles have been observed before in non-zero sum Markov
games [16]. To handle cycles for infinite-horizon problems
in the experiments, we simply test each of the instantaneous
policies π1 in the cycle, find the best response of player 2,
and then select the best policy among those.

To assess the optimality of the algorithm, we compared it
with a simple local search algorithm2 for stochastic policies.
The table below shows a sample of results for a number of
environments. The first method is the dynamic program-
ming algorithm described. As in Section 2, we compared
this against the stationary policies extracted from one of
the cycles of the algorithm. We also considered stationary
stochastic policies found by local search, which could fre-
quently improve over the dynamic program.

It is also interesting to note that if we assume that the hu-
man’s model and reward matches that of the AI, the problem

2More precisely, a line search algorithm on the principal
axes, combined with random restarts.

Cyclic 11 12.8 10.4 0.9 8.5 19.6
Stationary 11 2.8 9.0 0.9 8.4 11
Local 11 13.4 10.5 0.9 9 19.4

Table 2: Expected utility of policies found by three
different algorithms in 6 different environments.

reduces to an MDP. From result on approximate MDPs [4],
we know that our utility loss will be bounded by the L1 dis-
tances between our assumption and reality. In particular,
for a finite-horizon γ-discounted problem, the error will be
O(‖β1 − β2‖1(1− γ)−2).

3.2 The case of unknown beliefs.
In this setting, we assume that we just know that β2 ∈ B.

In practice, the AI can simply construct a ball B around its
own model, or sample a set of possible model from some dis-
tribution. In either case, the question of which belief to plan
against is a problem. In prior work in MDPs with uncertain
transitions, both minimax or maximax choices were consid-
ered [8]. We shall consider only the minimax problem here,
as we believe it may provide robustness. Even then, though,
we have two possible solutions. The first is to consider the
minimax problem:

min
β2∈B

max
π1

Eσ,β1 [u1 | π1, π
∗
2(β2, π1)], (3.6)

π∗2(β2, π1) ∈ arg max
π2

Eσ,β2(u2 | π1, π2). (3.7)

For a finite B, this simply requires enumerating all possi-
ble models. After finding the minimising β2, we simply play
the best response π1 to it. Unfortunately, this is somewhat
optimistic for our purposes, and it is probably more robust
to solve the corresponding maximin problem.

max
π1

min
β2∈B

Eσ,β1 [u | π1, π
∗
2(β2, π1)] (3.8)

The maximin problem is significantly harder, as it requires
enumerating all policies π1. However, when B is a factored
space, so that each part of the human’s transition model
can be changed independently of the others, we can use the
following DP approach to find a maximin policy:

β̂t ∈ arg min
β1

Eβ1 [V ∗(st+1) | st, at,1, a∗t,2] (3.9)

Q1,t(st, at,1) = ρ(st) + γ Eβ2 [V ∗(st+1) | st, at,1, a∗t,2]
(3.10)

a∗1,1 ∈ arg max
a1

Q1,t(st, a1) (3.11)

Vi,t(st) = Qi,t(st, a
∗
t,1) (3.12)

In particular, if B is composed of a set of polytopes de-
scribing sets of transition probabilities for each state-action
pair, then we only need to consider the vertices of this poly-
tope. This is the case whenB is the set of transition distribu-
tions within an L1 ball of the AI’s model, i.e. when B is the
set of models β2 satisfying ‖β1(· | s, a)− β2(· | s, a)‖1 ≤ ds,a
for some permissible error bounds ds,a. This is essentially
the approach used in the optimistic value iteration algorithm
for UCRL2 [7].



Example 1: Experiment design

A classical goal in experiment design [12, 9] is to max-
imise the expected information gain after T experi-
ments. We assume the AI has an accurate probability
table of different parameters, observations and exper-
iments, while the human’s model maybe incorrect. It
is instructive to consider the particular case where the
AI suggests a set of experiments, and the human se-
lects one of them.

s1

1, Chest X-ray

1, Stethoscope

2, Antibody count

2, Stethoscope

Figure 4: In this illustration, the AI selects a
set of exams out of which the physician can
choose. The AI has two actions, the first
leaves the human with a choice between us-
ing a stethoscope or a blood exam for antibody
count. The second gives a choice between a
stethoscope and an X-ray.

In this setting there is a true parameter θ∗ (the
disease status) and we can make experiments a, ob-
serving outcomes x. Hence the state at time t is the
complete history of experiments and outcomes st =
(ak, xk)t−1

k=1, with s1 being empty. This can be seen
as an information-state MDP, where each agent i has
a prior belief ξi(θ) and a set of conditional proba-
bilities pi(x|a, θ) over all outcomes, given an action
a = (a1, a2), and disease status θ. Then the transition
distribution for each player is decomposed as:

βi(st+1 = (st, at, x) | st, at) =
∑
θ∈Θ

pi(x | at, θ)ξi(θ | st),

where is βi(θ | st), is the posterior distribution arising
from the history st and the likelihood model ξi. After
T tests, the game ends and the players obtain reward

ρi(sT ) =
∑
θ∈Θ

ξi(θ | sT ) ln ξi(θ | sT ),

equal to the negative entropy of the parameter pos-
terior, while ρi(st) = 0 for t < T . Note that in this
scenario, the human’s expected reward will not match
the AI’s due to the different posterior.

4. EXPERIMENTS.
We set out to investigate the performance of a human

agent acting in an environment with possibly incorrect be-
liefs. We model this by the human using a transition matrix
that deviates from the true world model. In all cases, we
measure the expected utility with respect to correct world

model, and provide the AI with the correct world model.
Apart from the experiment design setting, both players re-
wards agree.

4.1 Environments and simulation
We experimented on the two detailed domains given in

Examples 1 and 2, a number of randomly generated infinite-
horizon problems, as well as randomly generated experiment
design problems with the structure described in Example 1.
In all cases, we measured performance in terms of the AI’s
model of the world, i.e. we assumed its correctness. To
model human inaccuracy, the human model was a noisy ver-
sion of the AI’s model. All simulations were run 100 times
for each measured point.

Infinite-horizon problems.
For those problems, we set γ = 0.95. The randomly gen-

erated domains had up to 16 states and 4 actions per agent.
They were created by sampling transition matrices from uni-
form distributions on the simplex. All environments had
reward of 0.1 in one state, and 1 in another state, with 0
everywhere else.

The human model for these problems was drawn from
an product-Dirichlet prior that was 1/ε-concentrated around
the AI’s belief.

Experiment design.
We tested randomly generated experiment design prob-

lems with 2 conditions, observations and actions per agent,
and with a planning horizon of up to 3 steps. Both the AI
and human had the same initial belief over the condition.
However, the human’s likelihood model p2 was generated by
ε-contaminating the AI’s model with the uniform distribu-
tion. This avoided creating loops in the information-state
MDP for the human (though the AI has no way of knowing
that).

4.2 Aiding an incorrect human
In our experiments, we considered four kinds of joint poli-

cies. We wished to test whether the AI could help improve
the joint policy, even when it did not have an accurate idea
of the human’s beliefs. We examined the behaviour of a
number of joint policies as the human’s accuracy degrades
with increasing ε. We tested each environment for differ-
ent values of ε, with a different generated human belief each
time, and measured the average over 100 trials. The cases
we considered are given below.

Human only.
The human selects a joint policy according to its belief.

This corresponds to the human programming the AI with
the policy he thinks would be optimal and the AI and the
human then acting in the world.

AI Known.
In this case, the AI is not only autonomous, but it also

knows the belief of the human. We expect that in that case,
human performance can be significantly improved even when
human beliefs are far from being correct.

AI Unknown.
In this case, the AI does not know the human’s belief.



More specifically, the AI assumes that its beliefs and those
of the human are the same. While this may still help, in
some cases it has the opposite effect.

AI Sample.
Finally, we also considered the case where the AI assumes

a set of possible beliefs for the human, different from its own.
In that case, decision making for the AI involves also solving
a minimax problem.

4.3 Results
The experimental results for the above cases are shown in

Figure 3. The horizontal axis is the amount of error of the
human model, while the vertical axis is the expected utility
measured under the model of the AI. We show results both
for the infinite horizon domains (a-g) and for the experiment
design domain (h).

We can see that when the human is correct, all cases ob-
tain the same performance. However, the human’s utility
quickly deteriorates when he makes all the decisions by him-
self. If the AI knows exactly what the human model is, then
it can significantly increase his performance. However, it
is also interesting to investigate what happens when this is
no longer true. We see that when the AI simply guesses
that the human has the same model as it does, the joint
policy is sometimes even worse than only when the human
takes decisions. Perhaps surprisingly, sampling and using
the minimax policy does not improve upon simply assuming
that the human’s model is the same as the AI’s most of the
time (see 3(h)). This might be due to the fact that these
policies are overly pessimistic.3

5. CONCLUSION AND FUTURE WORK
We introduced a framework for AI-helper agents. This re-

lies on the premise that an AI will be useful for tasks where
it could perform better than humans, due to its superior
knowledge or computational capabilities. For this reason,
we assume that the AI and human have different models of
the world, and perhaps different utilities, but that the AI is
correct. We show that games of this type, while not solve-
able exactly by efficient algorithms, can still be tackled with
a simple dynamic programming method. Our experiments
over a large number of domains, including a realistic ex-
periment design problem, demonstrate that as the human’s
internal model deteriorates, the AI can still help him main-
tain his performance close to the best possible level. This
was possible even when the human’s model was unknown,
and the AI simply assumed that he had an identical model
to its own.

In future work, we would like to examine algorithms that
scale better computationally and that do not suffer from
the problems of the dynamic programming heuristic. One
idea is to extend gradient methods developed in [1] to the se-
quential setting. This might be particularly interesting since
our results in Table 2 indicate that some performance gain
can be achieved using stochastic policies when the human
model is known. However, it is unclear whether there exists
a viable method for the case when it is unknown.

We would also like to explore different assumptions for
this problem. In particular, it would be interesting to see

3Minimax results on the other domains not shown to avoid
clutter.

how to deal with the case where we assume that the human
does not know the AI’s policy, and only observes its actions.
Finally, a natural extension of our work is to consider the
case where the AI learns the reward or the world model of
the human agent.
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(c) Deterministic
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(h) Experiment design, |Ai| = 2, T = 3

Figure 3: Effect of incorrect human knowledge. The horizontal axis denotes the deviation of the human’s
model from reality. The vertical axis is the expected utility of the policies described in Section 4.2.


